
Exercises supplementing those in Friedberg, Insel and Spence’s
Linear Algebra, 4th Edition.

This is a collection of additional exercises that I have put on homework sheets when teaching from this
text (several times when teaching a regular linear algebra course, and most recently, when teaching the
honors version of that course), supplementing the exercises in the book. Some I included in the
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and/or more challenging problems’’ to think about. We covered Chapters 1, 2 and 5 and most of
Chapters 6 and 7, and Appendices A, B and D; so these exercises concern those parts only.

I have given the exercises numbers that indicate the relevant section of the text, beginning where the
numbering of the exercises in that section leaves off. The numbers of the exercises on these pages are
shown in quotation marks to distinguish them from the exercises in the text.
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§1.3, ‘‘Exercise 32’’: Let F1 and F2 be fields, and let ‘‘even’’ and ‘‘odd’’ elements of (F1 , F2) be
defined as in Exercise 22 (p.21). Writing Se for the set of even elements, and So for the set of odd
elements, let us assume the result of that exercise: that Se and So are subspaces of (F1 , F2).

Prove that if F1 and F2 both have characteristic ≠2, then (F1 , F2) = Se 2+ So . (Actually, this
will be true if we merely assume F2 has characteristic ≠2; but the picture is somewhat different, and I
have given you both assumptions to avoid confusion. But if you prove it only using the assumption on
F2 , that’s fine.)

§1.4, ‘‘Exercise 18’’: If S is a subset of a vector space V , show that S ⊆ span(S ) .
(The authors should probably have included this in the first sentence of Theorem 1.5, p.30.)

§1.5, ‘‘Exercise 21’’: Let x1 , ... , xn be elements of a vector-space V .

(a) Show that if xi ∈ span({x1 , ... , xi –1}) for i = 1, ... , n, then x1 , ... , xn are linearly independent.
(Note: For i = 1 we understand {x1 , ... , xi –1} to mean the empty set ∅ . As noted in the Definition

on p.30, we understand span(∅ ) to be {0 }.)

(b) Let us define
B = { xj : xj ∈ span ({ xi : i < j })}.

(Here we are not assuming the condition of part (a).) Prove that B is a basis for the subspace
span ({ x1 , ... , xn }) of V .

(c) State the contrapositive of (a).

§1.5, ‘‘Exercise 22’’: (Generalization of §1.5, Exercise 20.) Suppose r1 , ... , rn are distinct real numbers.
Show that the elements f1 , ... , fn ∈ (R, R ) defined by fm (t) = erm t are linearly independent. In
determining what equations they do or do not satisfy, you may use the techniques taught in first-year
calculus.

(Suggestion: Look at behavior as t → ∞ .)

§1.6, ‘‘Exercise 36’’: (a) Let F be a field, and in F4 consider the four elements

u1 = (0,1,1,1), u2 = (1,0,1,1), u3 = (1,1,0,1), u4 = (1,1,1,0).

Show that if the characteristic of F is not 3, then { u1 , u2 , u3 , u4 } is a basis of F4, while if the
characteristic of F is 3, then that set is neither linearly independent nor a spanning subset of F4.

The above result is related to §1.4, Exercise 6, and §1.5, Exercise 8. Of those two exercises in the text,
the former, like the latter, ought to show different conclusions depending on whether the characteristic of
F is 2. (The conclusion that the authors state is the one that is true when the characteristic is not 2.) In
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the present exercise, by varying things a bit, we get characteristic 3 to be the special case instead of
characteristic 2.

(b) Can you get, for every positive integer p which can be the characteristic of a field, a statement of the
same sort, for which characteristic p is the exceptional case?

§1.6, ‘‘Exercise 37’’: This exercise is essentially §1.6, Exercise 28, turned backward, and I recommend
thinking about that one before doing this one. You may assume the results of that exercise in doing this
exercise.

Suppose V is a vector space over R, of finite dimension n, and we wish to make it into a vector
space over C, in such a way that the operation ‘‘+’’ of the new vector space structure is the same as the
operation ‘‘+’’ of the old structure, and such that for every r ∈ R ⊆ C, the operation of multiplication by r
is the same in the new vector space structure as it was in the old. (In concise language, we wish to extend
the structure of vector space over R to a structure of vector space over C.)

(a) Show that this is possible if n is even.

(b) Show that it is not possible if n is odd.

(c) Show that in case (a), if n ≠ 0, there are infinitely many extensions of the given structure of vector
space over R to a structure of vector space over C.

(c) Show, nevertheless, that the dimensions of the vector spaces over C obtained by all extensions of the
original structure are the same.

§1.7, ‘‘Exercise 8’’: Let F be a field, and let S denote the vector space of all sequences (ai ) =
(a1 , ... , an , ... ), where each ai is a member of F. (In the book’s notation, these sequences would be
written {ai } = {a1 , ... , an , ... }.) For each positive integer i, let ei ∈ S denote the sequence
(0, ... , 0,1,0, ... ) whose i th coordinate is 1, and whose other coordinates are all 0.

Show that the set {ei } is linearly independent, but is not a basis for S .

§1.7, ‘‘Exercise 9’’: Show that one can deduce as immediate corollaries of §1.7, Exercise 6, the following
results. (You can get credit for this exercise if your deduction is correct, even if you did not do
Exercise 6.)

(a) The result of §1.7, Exercise 4.
(b) The following generalization of §1.7, Exercise 7: Let G be a generating set for a vector space

V , and let L be a linearly independent subset of V . Then there exists a subset H of G such that
L ∪ H is a basis of V .

§1.7, ‘‘Exercise 10’’: (a) Using the maximal principle, prove the following statement, dual thereto:
Let be a family of sets. If, for each chain ⊆ F, there exists a member of that is
contained in each member of , then has a minimal member (a member M containing no
member of other than M itself).

(b) Show that a subset β of a vector space V is a basis if and only if β is a minimal spanning set of V .

The above two results suggest that we might be able to get a variant proof that every vector space has a
basis, by dualizing the proof in our text. This is not so, however:

(c) Show by example that if V is an infinite-dimensional vector space, and is the set of all spanning
sets of V , and is a chain in , then there need not exist a member of that is contained in all
members of .

Thus, we cannot apply the result of (a) to get a minimal spanning set in V . Such sets always exist,
since we know that V has a basis. But the only proof we have available is the one based on constructing
a maximal linearly independent set.
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§1.7, ‘‘Exercise 11’’: Prove that the following statement is equivalent to the maximal principle. That is,
assuming the maximal principle, prove the statement below, and assuming that statement, prove the
maximal principle:

Every family (i.e., set) of sets contains a maximal chain (i.e., a chain which is not a
subset of any other chain).

§1.7, ‘‘Exercise 12’’: Let be the set of all subsets X of the natural numbers Z≥0 which contain no
two adjacent integers; i.e., such that for every n ∈ Z≥0, if n ∈ X, then n +1 ∈ X.

Describe in concrete terms what it means for a set X to be a maximal member of , and show that
has infinitely many maximal members.
(We haven’t had the concept of countability in this course; but if you have seen it, you might find it

interesting to show that has uncountably many maximal members.)

§1.7, ‘‘Exercise 13’’: The maximal principle, used in §1.7, does not give a way of explicitly finding a
maximal chain in , even if is described explicitly; hence the proof of Theorem 1.12 does not
provide an explicit way of constructing bases for infinite-dimensional vector spaces.

For some infinite-dimensional vector spaces that arise naturally in mathematics, it is easy to explicitly
describe bases. For instance, the text noted earlier that P(F ) has a basis consisting of the powers of x.
Each element of P(F ) is determined by the sequence of coefficients of the powers of x, and that
sequence can be any sequence having only finitely many nonzero terms. So it is not surprising to find that
the vector space Sfin of those sequences of members of F having only finitely many nonzero terms also
has an explicit basis: the set {ei } of the preceding exercise.

At the opposite extreme, I suspect that logicians can prove that the full vector space S of all
sequences of elements of F has no basis that can be described explicitly.

This exercise will consider a case in between these extremes: a subspace of S for which an explicit
basis can be found, but where the construction of such a basis is quite challenging.

Let us call a sequence (ai ) periodic if there is some positive integer k such that for all i > 0, we
have ai+k = ai .

(a) Show that the set Sper of periodic sequences forms a subspace of S .

(b) Construct an explicit basis β of Sper . (You should give an explicit description of members of β,
so that given a sequence s ∈ S one can easily say whether it belongs to β.)

§2.1, ‘‘Exercise 41’’: (Dimension Theorem for infinite-dimensional vector spaces.) Let V and W be
vector spaces, and let T : V → W be a linear transformation. Show that if V is infinite-dimensional,
then either N(T) or R(T) is infinite-dimensional (without using results from the optional §1.7).

(Note: one can prove a stronger form of the Dimension Theorem, which distinguishes different cardinalities of infinite bases –
countable, and the infinitely many types of uncountability. However this course does not assume familiarity with these concepts;
moreover, to prove that form would require using the results of §1.7.)

§2.1, ‘‘Exercise 42’’: Suppose V and W are finite dimensional vector spaces over a field F, let
V0 ⊆ V be a subspace, and let T : V0 → W be a linear transformation. Show that there exists a linear
transformation T ′ : V → W whose restriction to V0 is T . (The mathematician’s way of saying this is
‘‘T can be extended to a linear transformation V → W’’.)

§2.1, ‘‘Exercise 43’’: Let T : V → W be a function between vector spaces over a field F. Show that
the following conditions are equivalent:

(i) T is a linear transformation.

(ii) For every positive integer n, every family of n vectors x1 , ... , xn ∈ V , and every family of n
scalars a1 , ... , an ∈ F, if Σn

i =1 ai xi = 0, then Σn
i =1 ai T(xi ) = 0. (Intuitively: Every linear relation
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satisfied by elements x1 , ... , xn in V is also satisfied by their images T(x1), ... , T(xn ) in W .)
Suggestion for proving (ii) ⇒ (i): Apply (ii) to linear relations of the two forms 1· (a x) + (– a) · x = 0

and 1 · x + 1 · y + (–1) · (x + y) = 0.
(The above exercise will be called on in §6.5, ‘‘Exercise 34’’ below.)

§2.1, ‘‘Exercise 44’’: Let T : V → W be a linear transformation of vector spaces, let V ′ be a subspace
of V , and let TV ′ : V ′ → W be the restriction of T to V ′ ; i.e., the linear map V ′ → W defined by
TV ′ (x) = T(x) for all x ∈ V ′ .

Show that the following conditions are equivalent:

(i) R(TV ′ ) = R(T) .

(ii) Every vector x ∈ V can be written as a sum x = y + z, where y ∈ V ′ and z ∈ N(T) .

(In notation which will be introduced in §5.2, condition (ii) says that V = V ′ + N(T). )
(The implication (i)⇒ (ii) states in general form an observation used in a particular case at the end of the proof of

Theorem 7.3.)

§2.1, ‘‘Exercise 45’’: If f : X → Y is a function, then the graph of f means the set

{(x, f (x)) : x ∈ X} ⊆ X × Y.

Let V and W be vector spaces, and T : V → W a function. Let us make the product set V × W
into a vector space as in §1.2, Exercise 21 (where it was called Z).

Show that a function T : V → W is a linear transformation if and only if the graph of T is a
subspace of this vector space V × W .

§2.1, ‘‘Exercise 46’’: Let V be the vector space over R of all continuous functions R → R, and let
W denote the subspace of all constant functions.

Assume as known, from calculus, that every function in V has an antiderivative, and that any two
antiderivatives of a given function differ by a constant.

(a) Show that for each f ∈ V , the set of antiderivatives of f forms a coset of W in V .
(b) Show that the function sending each f ∈ V to the set of all its antiderivatives is a linear map

V → V ⁄ W .
(c) Let U ⊆ V denote the subspace of continuously differentiable functions (differentiable functions

whose derivatives are continuous). Assuming the Fundamental Theorem of Calculus, show that the
operation of integration induces a linear transformation V → U ⁄ W , which is one-to-one and onto.

(d) Writing D : U → V for the operation of differentiation, describe relation between D and the
inverse to the map of part (c).

§2.1, ‘‘Exercise 47’’: Suppose V is a vector space, and V1 and V2 are subspaces such that V =
V1 2+ V2 . Let T1 denote the projection of V onto V1 along V2 , and T2 the projection of V
onto V2 along V1 .

Show that T1 + T2 = IV , T1
2 = T1 , T2

2 = T2 , and T1 T2 = T2 T1 = T0 .

§2.1, ‘‘Exercise 48’’: Suppose V is a vector space, and V1 and V2 are subspaces such that V =
V1 2+ V2 , and let T1 denote the projection of V onto V1 along V2 . Likewise let W be another
vector space, W1 and W2 subspaces such that W = W1 2+ W2 , and U1 the projection of W onto
W1 along W2 .

Show that the map (V , W) → (V , W) given by T → U1 T is also a projection. Onto what
subspace and along what subspace? Prove the same, and answer the same question, for the map

(V , W) → (V , W) given by T → T T1 .

§2.1, ‘‘Exercise 49’’: Show by example that for V a vector space, and T , U : V → V two projection
maps, the composite T U need not be a projection map.



- 5 -

§2.2, ‘‘Exercise 21’’: (Extension of §2.2, Exercise 13.)
Let V and W be vector spaces, and let T and U be nonzero linear transformations V → W .

(a) Prove that if R(T) ≠ R(U), then {T , U} is a linearly independent subset of (V , W) .

(b) Show by example that the converse to (a) is not true.

(c) Show by example that the obvious analog of (a) for three linear transformations is not true; that is, one
can have nonzero S , T , U ∈ (V , W) such that all of R(S), R(T), R(U) are distinct, but S , T , U
are linearly dependent in (V , W) .

(d) Given three (or more) elements of (V , W), can you find a statement relating their ranges which
does imply that they are linearly independent elements of that vector space?

§2.2, ‘‘Exercise 22’’: (Dual of the preceding exercise.)
Let V and W be vector spaces, and let T and U be nonzero linear transformations V → W .

(a) Prove that if N(T) ≠ N(U), then {T , U} is a linearly independent subset of (V , W) .

(b) Show by example that the converse to (a) is not true.

(c) Show by example that the obvious analog of (a) for three linear transformations is not true; that is, one
can have nonzero S , T , U ∈ (V , W) such that all of N(S), N(T), N(U) are distinct, but S , T , U
are linearly dependent in (V , W) .

(d) Given three (or more) elements of (V , W), can you find a statement relating their null spaces
which does imply that they are linearly independent elements of that vector space?

§2.2, ‘‘Exercise 23’’: Let V and W be finite-dimensional vector spaces over a field F, of dimensions
m and n respectively, let β, γ be ordered bases of these spaces, and let A be any n × m matrix over
F. Show that there exists a unique linear transformation T : V → W such that [T]γ

β = A.
(This will follow immediately from a result in §2.4; the point of this exercise is to see it using the methods of §2.2.)

§2.4, ‘‘Exercise 26’’: Suppose V is an n-dimensional vector space with an ordered basis β, and W an
m-dimensional vector space with an ordered basis γ. Theorem 2.20 (p.103) implies that (V , W) is
mn-dimensional. Use that theorem to find a basis of this space, and describe the elements of that basis in
terms of their behavior on the basis β of V .

§2.4, ‘‘Exercise 27’’: Let V be the (infinite-dimensional) vector space of all sequences
(a0 , a1 , ... , an , ... ) with all ai ∈ R. Let T : V → V denote the left shift operator, defined by

T(a0 , a1 , ... , an , ... ) = (a1 , a2 , ... , an+1 , ... ) .

I.e., T lops off the first term of a sequence, and shifts each of the remaining terms one step to the left. T
is clearly a linear map. (This looks the operator so named in in §2.1, Exercise 21; but note that we are
here defining it on the space of all sequences of real numbers, not just sequences with all but finitely many
terms 0.) In this and some subsequent exercises, we shall study N( T2 – T – IV ) .

(a) Show that for every pair of real numbers u and , there exists a unique element (a0 , a1 , ... ,
an , ... ) ∈ N( T2 – T – IV ) such that a0 = u and a1 = .

(b) Deduce that N( T2 – T – IV ) is 2-dimensional, and in fact has a basis {x, y }, where x is the
unique element of this space which, as a sequence, begins (1, 0, ... ), and y is the unique element which
begins (0, 1, ... ) .

(c) Compute the sequences x and y of part (b) to ten terms. (You may show the results, without
writing out any argument.)

In the remaining parts of this exercise we shall write W = N( T2 – T – IV ) .

(d) Show that T carries the subspace W into itself, and, regarding the restriction of T to this subspace
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as a linear operator TW : W → W , find the matrix of TW with respect to the basis {x, y } of part (b)
above.

(e) Show that the linear operator TW : W → W is invertible, and find the matrix representing TW
–1 in

terms of that same basis.

(f) From the original definition of T , we see that for each x = (a0 , a1 , ... , an , ... ) ∈ W , the element
TW

–1(x) must have the form (b, a0 , a1 , ... , an–1 , ... ) for some b ∈ R. Find a formula for b in terms of
a0 and a1 . (No argument required.)

(The ideas of this exercise will be continued in §5.1, ‘‘Exercise 29’’ and §5.2, ‘‘Exercise 24’’. Some further variants will be
looked at in §5.2, ‘‘Exercise 25’’ and §7.1, ‘‘Exercise 17’’.)

§2.6, ‘‘Exercise 21’’: Let V be a finite-dimensional vector space, let {x1 , ... , xn } and {y1 , ... , yn } be
two bases of V , and let { f1 , ... , fn } and {g1 , ... , gn } respectively be the corresponding dual bases
of V*.

(a) Show that span({ f1}) = span({g1}) if and only if span({x2 , ... , xn }) = span({y2 , ... , yn }).

(b) Suppose that yi = xi for i = 2, ... , n, while y1 = a1 x1 + ... + an xn . Say why we must have
a1 ≠ 0. Obtain formulas for g1 , ... , gn in terms of f1 , ... , fn .

§2.6, ‘‘Exercise 22’’: (Extension of §2.6, Exercise 19.) Let V be a vector space, and W any subspace
of V . Let W0 ⊆ V* be defined as in the paragraph before §2.6, Exercise 13. Prove that

∩ f ∈ W0 N( f) = W .

§2.7, ‘‘Exercise 21’’: (a) Prove that if T : V → W is a linear transformation between vector spaces, and
N(T) and R(T) are finite-dimensional, then so is V . (Once we know that, the dimension theorem says
that dim V is the sum of the dimensions of those spaces.)

(b) Deduce Lemma 2 on p.135 from the result of part (a) above, by taking N(TU) for the V of that
result, and U for the T thereof.

§5.1, ‘‘Exercise 27’’: Let T: V → V be a linear operator on a finite-dimensional vector space V . Show
that T is diagonalizable if and only if T + IV is diagonalizable, and determine the relationship between
the eigenvalues and eigenvectors of these two operators.

§5.1, ‘‘Exercise 28’’: (a) Show that two diagonalizable n × n matrices over the same field F are similar
if and only if their characteristic polynomials are equal.

(b) Show by example that this statement becomes false if the word ‘‘diagonalizable’’ is removed.

§5.1, ‘‘Exercise 29’’: This will continue the subject begun in §2.4, ‘‘Exercise 27’’. As in that exercise,
we denote by V the vector space of all sequences (a0 , a1 , ... , an , ... ) with ai ∈ R, by T : V → V the
shift operator,

T(a0 , a1 , ... , an , ... ) = (a1 , a2 , ... , an+1 , ... ) ,

and by W the subspace N( T2 – T – IV ) ⊆ V .

(a) For every real number λ , determine all eigenvectors of T with eigenvalue λ , if any.

(b) Show that for any λ , the eigenvectors of TW with eigenvalue λ are precisely those eigenvectors
of T with eigenvalue λ which lie in W .

(c) Determine those real numbers λ such that some eigenvector of T with eigenvalue λ lies in W .
Hence, determine all eigenvalues of TW . For each such eigenvalue, describe an eigenvector.

(d) Recall that in part (b) of §2.4, ‘‘Exercise 27’’ we found that W was 2-dimensional. Deduce that W
has a basis consisting of eigenvectors of TW , and give such a basis.

(e) Express in terms of the basis found in (d) the element of W which, as a sequence, begins (0, 1, ... ) .
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The Fibonacci numbers are the numbers fn (n = 0, 1, 2, ...) determined by the formulas f0 = 0,
f1 = 1, and fn+1 = fn + fn–1 for n > 1. Thus, f0 , f1 , f2 , f3 , f4 , f5 , f6 are 0, 1, 1, 2, 3, 5, 8 .

(f) Translate the result of (e) into a formula for the nth Fibonacci number fn .

§5.2, ‘‘Exercise 24’’: This is the final part of our series of exercises about N( T2 – T – IV ) and the
Fibonacci numbers. In part (d) of §2.4, ‘‘Exercise 27’’ you found the matrix of TW with respect to a
certain basis, {x, y}. Now find the characteristic polynomial and the eigenvalues of this matrix. The
eigenvalues that you get should be the same as those found in §5.1, ‘‘Exercise 29’’(c) above. Why?

If the above exercise is assigned after the two exercises mentioned have been turned in, your instructor should remind the class
of what the matrix found in the former exercise and the eigenvalues found in the latter were, to put everyone on an equal footing.

§5.2, ‘‘Exercise 25’’: Suppose that in our series of exercises about Fibonacci numbers, we replaced the
polynomial T2 – T – IV with another polynomial f ( T) of degree 2 or higher. Examine (either by
general considerations, or by experimenting with different polynomials) to what extent the results obtained
in those exercises have analogs for these new operators f ( T).

Some features holding when the polynomial f (t) does not have repeated roots will change when it does. We shall examine
such an example in §7.1, ‘‘Exercise 17’’ below.

§5.2, ‘‘Exercise 26’’: Suppose M ∈ Mn× n (F ) is a matrix of the form M = & A B '
(O C)

, where A and C

are square matrices, say k × k and (n – k) × (n – k) respectively, B is a k × (n – k) matrix, and O
denotes the (n – k) × k matrix with all entries zero.

Prove a formula expressing the characteristic polynomial of M in terms of the characteristic
polynomials of A and C.

§5.2, ‘‘Exercise 27’’: Suppose V is a finite-dimensional vector space, and V1 , ... , Vk are subspaces of
V . (Finite-dimensionality of V is not needed for the results below to be true, but the authors assume it in
the theorems you will want to call on.)

(a) Show that if V = V1 2+ ... 2+ Vk , then for every vector space W , and every family of linear
transformations

T1 : V1 → W , T2 : V2 → W , . . . , Tk : Vk → W ,

there exists a unique linear transformation T : V → W whose restriction to each Vi is Ti .

(b) Prove the converse statement: If for every space W and family of linear transformations Ti as
in (a), there exists a unique extension as described there, then V = V1 2+ ... 2+ Vk .

§5.2, ‘‘Exercise 28’’: Let T be a diagonalizable linear operator on a vector-space V , and U be any
linear operator on V . Show that U commutes with T (i.e., U T = T U) if and only if each eigenspace
Eλ of T is U-invariant.

§5.3, ‘‘Exercise 25’’: (a) Show that if A ∈ Mn× n (C) and if L = limm→ ∞ Am exists, then L = L2.

A mathematical entity L satisfying the equation L = L2 is called idempotent (from Latin roots
meaning ‘‘the same [as its] powers’’).

(b) Show that if L is any idempotent n × n matrix, then N(L) = R(In – L) and R(L) = N(In – L) . (I
am writing N(L) etc. where the book’s notation would, strictly, require N(LL ) etc..)

(c) Deduce that the only invertible idempotent n × n matrix is In .

(d) Deduce from (a) and (c) the result of §5.3, Exercise 4, p.308.

(e) Show that if T is an idempotent linear operator on a finite-dimensional vector space V , then V =
N( T) 2+ R( T) , and T is the projection of V onto R( T) along N( T). (You may take for granted,
without repeating the proof, that the result about matrices given in (b) above holds for linear
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transformations as well.)

(f) Show that in the situation of (e), if β1 is an ordered basis of N( T) and β2 an ordered basis of
R( T), then [ T]β1 ∪ β2

is diagonal. Assuming T is neither IV nor T0 , what are the eigenvalues
of T?

§5.3, ‘‘Exercise 26’’: Suppose that an n × n transition matrix A has the form

A = &O B '
( C O)

,

where B is r × (n – r) and C is (n – r) × r, for 0 < r < n.

(a) Show that A is not regular by considering the forms of powers of A.

(b) Show that if λ is an eigenvalue of A, then so is – λ . (Suggestion: take an eigenvector
corresponding to λ , write it as a vector of height r perched on top of a vector of height n – r, then
look at what A does to the vector gotten by changing the sign of one of these two pieces.)

§5.3, ‘‘Exercise 27’’: Find, for as small a value of n as you can, a regular n × n transition matrix A
such that A100 has at least one entry equal to 0.

(You and a friend might make it a competition to see which of you can get the smallest n. Writing out the matrices would be
tedious and unenlightening, but in place of this, you can draw a diagram with a circle of dots labeled 1, ... , n representing the
states of the Markov chain, and an arrow from the dot labeled i to the dot labeled j whenever Aij ≠ 0. From this diagram, you
should be able to work out which entries of any power An of A are nonzero.)

§5.3, ‘‘Exercise 28’’: (Simplification of the book’s Exercise 19.)

(a) Suppose A, B, A ′ , B ′ are matrices of nonnegative real numbers, and that A ′ has nonzero entries in
the positions where A does, and no others, and B ′ has nonzero entries in the positions where B does,
and no others. Prove that A ′ B ′ has nonzero entries in the positions where A B does, and no others.

(b) Deduce that if A and A ′ are transition matrices whose nonzero entries occur in the same positions,
then A is regular if and only if A ′ is.

§5.3, ‘‘Exercise 29’’: (Generalization of the book’s Exercise 22.)

(a) For A ∈ Mn× n (C ), let µ(A) be n times the maximum of the absolute values of the entries of A.
Show that for any A, B ∈ Mn× n (C ), we have µ(A B ) ≤ µ(A) µ(B ).

(a ′ ) (Alternative to part (a).) Prove the same conclusion with ρ (defined on p.295) in place of µ . (The
calculation is not much harder than for (a), but takes more insight.)

(b) Deduce from the result of part (a) or (a ′ ) that for any matrix A over C, the matrix eA introduced
on p.312 is defined; i.e., that the limit defining it converges.

§5.3, ‘‘Exercise 30’’: In contrast with Exercise 23 of this section, show that if A, B ∈ Mn× n (C )
commute, i.e., satisfy A B = B A, then eA eB = eA + B.

§5.3, ‘‘Exercise 31’’: Letting J denote the matrix & 0 1 '
( – 1 0 )

, compute e t J for t any real number.

§5.3, ‘‘Exercise 32’’: A permutation matrix means a square matrix having only entries 0 and 1, with
exactly one 1 in each row and exactly one 1 in each column. (If you think about it, you will see that
the action of such a matrix permutes the entries in each column vector, and that each such n × n matrix
corresponds to a permutation of {1, ... , n }.)

Show that if a transition matrix A is invertible, and if its inverse is also a transition matrix, then A is
a permutation matrix.

§5.4, ‘‘Exercise 43’’: Suppose T is a linear operator on a vector space V and λ is an eigenvalue of
T . Show that every subspace of Eλ is a T-invariant subspace of V .
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§5.4, ‘‘Exercise 44’’: Suppose T is a linear operator on a vector space V , and that f ∈ V* is an
eigenvector of T t : V* → V*. Show that N( f) is a T-invariant subspace of V .

§5.4, ‘‘Exercise 45’’: Let T be a linear operator on an n-dimensional vector-space V . Show that the
following two conditions are equivalent:

(i) There exists an ordered basis β = { 1 , ... , n} of V such that the matrix [T]β is upper triangular.

(ii) There exist distinct T-invariant subspaces V0 , ... , Vn of V such that
{0} = V0 ⊂ V1 ⊂ ... ⊂ Vn = V .

§6.1, ‘‘Exercise 31’’: Let F = R or C, let V be a 2-dimensional vector space over F, with basis
{x,y}, and let p, q, r be any three elements of F.

(a) Show that there is a unique function , : V × V → F which satisfies conditions (a)-(c) in the
definition of an inner product (p.330), and has x, x = p, x, y = q, y, y = r.

(b) Show that the function , of part (a) is an inner product on V (i.e., also satisfies condition (d) on
p.330) if and only if p > 0, r > 0, and |q|2 < pr. (Recall the convention that when one writes an
inequality such as p > 0, this is understood to imply in particular that p is real.)

§6.2, ‘‘Exercise 24’’: Suppose V and W are finite-dimensional inner product spaces over the same
field (R or C ), such that dim(V) = dim(W). Show that there exists an isomorphism T : V → W such
that for all x, y ∈ V one has T(x), T(y) = x, y .

§6.2, ‘‘Exercise 25’’: This exercise is for students familiar with the concepts of countable and
uncountable sets.

An infinite-dimensional vector space is called ‘‘countable-dimensional’’ if it has a countable basis, and
‘‘uncountable-dimensional’’ if it does not. (One can prove that for infinite-dimensional as for finite-
dimensional vector spaces, the cardinalities of all bases are the same, so these conditions are equivalent to
‘‘all bases are countable’’, respectively, ‘‘all bases are uncountable’’; but we will not need this fact.)

(a) Prove that every countable-dimensional inner product space has an orthonormal basis. (Starting point:
Express the space as the union of a chain of finite-dimensional subspaces.)

(b) Show, however, that not every maximal orthonormal subset of a countable-dimensional inner product
space need be a basis. (Suggestion: Take an orthonormal basis of the subspace W of
§6.2, Exercise 23(c), and regard it as a subset of V .)

(c) Let V be the vector space of all bounded sequences of real numbers (not restricted to have only
finitely many nonzero terms). Prove that V is uncountable-dimensional. (Suggestion: If S = { 1 , 2 ,
... , n , ... } is any countable subset of V , construct successively elements a0 , a1 , a2 , ... , an , ... such
that for each n, no linear combination of 1 , 2 , ... , n , regarded as a sequence of elements of F, can
have first n +1 terms (a0 , a1 , a2 , ... , an ). Deduce that the element (a0 , a1 , a2 , ... , an , ... ) of V is
not in span(S ). Incidentally, in this construction, each an can, if you wish, be chosen from {0, 1}.)

(d) The space V of part (c) can be made an inner product space by defining, for sequences a =
(a1 , ... , an , ... ) and b = (b1 , ... , bn , ... ), their inner product a, b to be Σ1

∞ an bn ⁄ 2 n (a convergent
infinite sum). Taking this for granted, show that this inner product space has no orthonormal basis.
(Suggestion: Let W be the subspace of V consisting sequences that have only finitely many nonzero
terms. Show that every set S that spans V must have a countable subset S0 whose span contains W;
and that W = {0 }. How do these facts imply that V can have no orthonormal basis?)

On the other hand, in the theory of infinite-dimensional inner product spaces a modified version of the concept of a basis is
often used, which allows vectors to be expressed as ‘‘infinite linear combinations’’ of basis elements, such infinite sums being
defined by convergence in the norm. The subject is more complicated, because some infinite sums converge and others do not; but
in terms of that modified definition, the above space does have an ‘‘orthonormal basis’’.
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§6.2, ‘‘Exercise 26’’: Let W1 , W2 be subspaces of an inner product space V .

(a) Show that W1 ⊆ W2 if and only if W2 ⊆ W1 , and that these equivalent conditions imply
W1 ∩ W2 = {0 }.

(b) Show that if the equivalent conditions of (a) hold, and also the relation W1 + W2 = V , then the
inclusions of (a) are both equalities.

(c) Show that if V is finite-dimensional then we have a converse to (b): if equality holds in at least one
of the inclusions of (a), then W2 ⊆ W1 .

(d) On the other hand, show by example that for infinite-dimensional V , the inclusions of (a) can both be
equalities without W1 + W2 = V holding.

(e) Also show by example that for infinite-dimensional V , one of the the inclusions of (a) can be an
equality without the other being so.

§6.4, ‘‘Exercise 25’’: (a) Suppose A is an n × n matrix and B an n × m matrix over F (the real or
complex field). Show that if A A* + B B* = A* A, then B = O. (Hint. Apply the trace map to both
sides of the given equation. You may use Example 5, p.331, for the case of Mm× n (F ), even though it is
only stated for Mn× n (F ); the proof is the same.)

(b) Deduce that if a matrix of the form & A B '
(O C)

, where A and C are square matrices, is normal, then

B = O. (I.e., B is a zero matrix – not in general the same matrix as the ‘‘O’’ appearing opposite it, but,
rather, the transpose thereof.)

(c) Deduce that if T is a normal linear operator on a finite-dimensional real or complex inner product
space V , and W is a T-invariant subspace of V , then W is also T*-invariant, and W is
T-invariant. (§6.4, Exercise 8, p.376 proves that W is T*-invariant in the complex case, but does not
cover the real case.)

(d) Show by example that the analog of (c) above fails for infinite-dimensional inner product spaces.
(Suggestion: Let V be as in Example 3, p.372, let T be the restriction to V of the operator called T
in that example, and let W be the subspace of V spanned by the functions fn with n ≥ 0.)

§6.4, ‘‘Exercise 26’’: Theorem 6.17, about self-adjoint linear operators on real inner product spaces, is
proved using the Lemma on p.373, which is proved using Theorem 6.15, which concerns linear operators
on complex inner product spaces. This is an illustration of the usefulness of the complex numbers in
proving results involving only real numbers.

However, one can ask whether there is some proof of Theorem 6.17 that avoids using complex
numbers. This exercise will give such a proof.

We will call on a few facts from real analysis (and later, a computation from calculus). Namely, we
will assume that if V is a nonzero finite-dimensional real inner product space, then the set

S = {x ∈ V | ||x|| = 1}

is a nonempty closed bounded set; that for a linear operator T on a finite-dimensional real inner product
space, the real-valued function x → x, T(x) is continuous; and finally, that every continuous function f
on a nonempty closed bounded set E in a finite-dimensional real vector space assumes a maximum value,
i.e., that there is a point p ∈ E such that for all x ∈ E, f ( p) ≥ f (x).

Putting these assumptions together, we conclude that if T is any linear operator on a nonzero finite-
dimensional real inner product space V , then there is a point p in the set S defined above at which the
function x → x, T(x) assumes a maximum value. The rest of the argument, which is what you are to
complete, will use only this conclusion, together with basic facts about real inner product spaces, and one
bit of calculus:
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(a) Show that for any points u, ∈ S which satisfy u, = 0, we have (cos t) u + (sin t) ∈ S for all
real numbers t.

(b) Assuming p ∈ S chosen to maximize p, T( p) , as discussed above, deduce from (a) that for any
∈ S which is orthogonal to p, the function f : R → R given by

f (t) = (cos t) p + (sin t) , T((cos t) p + (sin t) )

assumes a maximum at t = 0. Expand the above function as a trigonometric expression in t, involving
certain inner products as coefficients, and use calculus to obtain from the above maximality statement a
linear relation between those inner products.

In the remaining parts, T will be assumed self-adjoint.

(c) The self-adjointness of T can be applied to the formula obtained in (b) in two ways. Show by
applying it in one way that p is an eigenvector of T , and by applying it in the other way that { p} is
T-invariant. You may use §6.2, Exercise 13(c). (Suggestion: apply that exercise with W = span({ p}). )

(d) Letting V ′ = { p} , show that TV ′ is a self-adjoint linear operator on V ′ , and that dim(V ′ ) =
dim(V) – 1.

(e) If V ′ is nonzero, then by repeating the above argument we get an eigenvector of TV ′ whose
orthogonal complement V ′ ′ is TV ′ -invariant, and we can repeat this construction as long as it continues
to give us nonzero subspaces V (k). Turn this observation into an inductive proof that V has an
orthonormal basis consisting of eigenvectors of T .

§6.4, ‘‘Exercise 27’’: (a) Suppose V is any complex vector space, and T , U are two linear
transformation from V into a complex inner product space W . Show that if all x ∈ V satisfy
T(x), U(x) = 0, then all x, y ∈ V satisfy T(x), U(y) = 0; i.e., the subspaces R(T) and R(U) of

W are orthogonal to one another. (Suggestion: Apply the given condition to x+y and to x+i y, and
treat the resulting equations as in §6.4, Exercise 11(b).)

(b) Deduce the result of §6.4, Exercise 11(b) by taking V = W and T = IV above.

§6.4, ‘‘Exercise 28’’: Suppose T is a normal operator on a finite-dimensional inner product space V .
Show that V has an orthonormal basis {u1 , . . . , uk , 1 , , . . . , m , w1 , . . . , wm } such that the action of T
on this basis is described by

T(uj ) = λ j uj , T( j ) = ρj cos (θj ) j + ρj sin (θj ) wj , T(wj ) = – ρj sin (θj ) j + ρj cos (θj ) wj ,

where λ1 , ... , λk are real numbers, ρ1 , ... , ρm are positive real numbers, and 0 < θj < π ( j = 1, ... , m).
Thus, letting Wj = span({uj }) for j = 1, ... , k, and Wk +j = span({ j , wj }) for j = 1, ... , m, we get

a decomposition of V into mutually orthogonal 1- and 2-dimensional T-invariant subspaces,

V = W1 2+ . . . 2+ Wk 2+ Wk+1 2+ . . . 2+ Wk+m .

(Hint: Begin by reducing to the case where T has the form LA . Then regard A as a matrix over C
rather than R, and write its eigenvalues as λ1 , ... , λk , ρ1 e± i θ1 , ... , ρm e± i θm.)

§6.5, ‘‘Exercise 33’’: (a) Suppose A is a 2 × 2 real symmetric matrix which is not of the form c I
(c ∈ R) . Show that there exist exactly eight (no more, no less) real orthogonal matrices Q such that
Q t A Q is diagonal.

(b) If A is of the form c I, how many such matrices Q are there?

(c) If A is a 3 × 3 real symmetric matrix with distinct eigenvalues, determine the number of real
orthogonal matrices Q such that Q t A Q is diagonal. (The reasoning should be fairly close to that of (a),
so it will suffice to briefly sketch how to modify that reasoning to get your answer.)

§6.5, ‘‘Exercise 34’’: Let V and W be inner product spaces over F, and let T : V → W be a
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function (not assumed to be a linear transformation!) such that for all x, y ∈ V one has
T(x), T(y) = x, y .

Show that for every positive integer n, every family of n vectors x1 , ... , xn ∈ V , and every family
of n scalars a1 , ... , an ∈ F, one has

Σ ai xi = 0 ⇒ Σ ai xi , Σ ai xi = 0 ⇒ Σ ai T(xi ), Σ ai T(xi ) = 0 ⇒ Σ ai T(xi ) = 0.

(I.e., whenever one equality above holds, so does the next. Note that at the middle step you cannot assume
T a linear transformation!)

Deduce using §2.1, ‘‘Exercise 43’’ that T is in fact a linear transformation.
This gives an alternative to the calculations beginning at the bottom of p.386 and continued at the top of p.387, which

complete the proof of Theorem 6.22. The moral is that a proof of something in general may be more transparent than the same
proof in a particular case. (The calculation on pp.386-387 is a particular instance of the n = 3 case of the above calculation.)

§6.5, ‘‘Exercise 35’’: (a) Show that the Lemma on p.380 remains true if the phrase ‘‘finite-dimensional’’
is deleted. (Suggestion: Apply the given relation with x replaced by x + U(x) . When you expand the
resulting equation, two terms will disappear by obvious applications of the same relation. Now apply the
self-adjointness assumption.)

(b) Deduce that if U1 and U2 are self-adjoint operators on the same inner product space V , such
that the functions q1 , q2 : V → F defined by q1(x) = x, U1(x) , q2(x) = x, U2(x) are equal, then
U1 = U2 .

§6.4, Exercise 11(b) (or its generalization, §6.4, ‘‘Exercise 26’’) gives a different proof of the above result for complex inner
product spaces, which shows that in that case, the condition ‘‘self-adjoint’’ is also not needed! However, (c) below shows that for
real inner product spaces self-adjointness must be assumed.

(c) Show that the corresponding statement without the condition ‘‘self-adjoint’’ is not true for real inner
product spaces V ; namely, that if U1 is a non-self-adjoint linear operator on such a space, and we take
U2 = U1*, then the functions q1 , q2 defined as in (b) above are equal. Show, moreover, that if we
take U = (U1 + U1*) ⁄ 2, then U is the unique self-adjoint operator inducing the same function V → F
that U1 and U1* each induce.

The functions V → F discussed above are examples of what are called quadratic forms. The case V = R2 is mentioned on
p.389; the general case is studied in §6.8, generally not covered in Math 110.

§6.5, ‘‘Exercise 36’’: Show that a square matrix A over C is unitary if and only if A = e i B for some
self-adjoint matrix B. (Hint: Use §5.3, Exercise 21.)

§6.6, ‘‘Exercise 11’’: Suppose V is a finite-dimensional vector space over a field F. (Note that we do
not assume F is R or C, nor that V is an inner product space.) Show that if T : V → V is a
projection, then V has a basis consisting of eigenvectors of T .

§6.6, ‘‘Exercise 12’’: Let T be a diagonalizable linear operator on a vector space over any field F (not
necessarily R or C ), with eigenvalues λ1 , ... , λk , and corresponding eigenspaces Eλ1

, ... , Eλk
; and

for i = 1, ... , k, let Ti denote the projection of V onto Eλ i
along 2+ j ≠ i Eλ j

.

Verify that all statements of the Spectral Theorem not referring to the inner product structure, i.e., all
but (b), remain true in this context, and likewise all parts of §6.6, Exercise 7 that do not refer to the inner
product structure, i.e., all but (d) and (g).

So if I were the authors, I would have given these results about diagonalizable matrices in §5.2, and just put in a few addenda
about the case of normal matrices on inner product spaces in this section.

§6.8, ‘‘Exercise 27’’: (a) Show that if invertible n × n matrices A and B over a field F are
congruent, then det(A) ⁄ det(B) is a square in F. (I.e., there is an element c ∈ F such that
det(A) ⁄ det(B) = c2.)

(b) Deduce that for every positive integer n, there are infinitely many congruence classes of invertible
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n × n matrices over the field of rational numbers.

§6.8, ‘‘Exercise 28’’: Given H and K as in Exercise 16, state and prove another formula expressing
H (x, y) in terms of K, which involves evaluating K at only two elements. (Suggestion: Look at
§6.1, Exercise 20.)

§7.1, ‘‘Exercise 14’’: Show that every matrix of the form A =
& λ a b '
! 0 λ c !
( 0 0 λ )

with a and c both nonzero

has Jordan canonical form J =
& λ 1 0 '
! 0 λ 1 !
( 0 0 λ )

, and find an explicit invertible matrix Q (depending on a, b

and c) such that Q A Q–1 = J. (Suggestion: Start by verifying that the standard basis vector e3 can be
taken as the end-vector of a length-3 cycle for A.)

§7.1, ‘‘Exercise 15’’: Find the Jordan canonical form of the general matrix of the form A =
& λ a b '
! 0 λ 0 !
( 0 0 λ )where a ≠ 0.

§7.1, ‘‘Exercise 16’’: Show that for every positive integer n, one has

& 1 1 0 '
! 0 1 1 !
( 0 0 1 )

n
=
& 1 n n(n –1) ⁄ 2'
! 0 1 n !
( 0 0 1 )

.

(This is a special case of §7.2, Exercise 19(b).)

§7.1, ‘‘Exercise 17’’: Let F be any field, let V be the infinite-dimensional vector space of all sequences
(a0 , a1 , ... , an , ... ) with ai ∈ F, and, as in §2.4, ‘‘Exercise 27’’ and §5.1, ‘‘Exercise 29’’, let T : V → V
denote the shift operator

T(a0 , a1 , ... , an , ... ) = (a1 , a2 , ... , an+1 , ... ) .

In those earlier exercises, we studied N( T2 – T – IV ) for F = R; that space, which we called W ,
turned out to contain the sequence of Fibonacci numbers. Here we shall study N( T2 – 2T + IV ), so in
this exercise let us instead write W for this space.

(a) Show that for every pair of scalars u, ∈ F, there exists a unique vector x = (a0 , a1 , ... , an , ... ) ∈ W
such that a0 = u and a1 = , and give a formula for the term an of this vector.

(b) Deduce that W is 2-dimensional.

(c) Show that W is T-invariant, and find the matrix for the restricted operator TW : W → W with
respect to some basis of W .

(d) Determine the characteristic polynomial of TW , its Jordan canonical form, and a Jordan canonical
basis (of W) for TW .

§7.1, ‘‘Exercise 18’’: Let V be an n-dimensional vector space, let T be a linear operator on V whose
characteristic polynomial splits, p(t) = (t – λ1) m1 ... (t –λk ) mk , let Kλ1

, ... , Kλk
be the generalized

eigenspaces associated with the eigenvalues of T , and let J be a Jordan canonical form for T .
Let us call V ‘‘T-cyclic’’ if it is a T-cyclic subspace of itself, as defined on p.313; i.e., if there is

some x ∈ V such that V = span({ x, T(x), T2(x), ... }) .
Show that the following conditions are equivalent:

(i) V is T-cyclic.

(ii) Each of Kλ1
, ... , Kλk

is a T-cyclic subspace of V .

(iii) The matrix J has only one Jordan block for each eigenvalue.

(iv) There is no nonzero polynomial g of degree less than n such g(T) = T0 .
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(v) The operators IV , T , T2, ... , T n–1 are linear independent.

How to approach the above problem: Examine these conditions, and note down what implications among them you can easily
see how to prove. Then make a diagram with corners the symbols (i), (ii), (iii), (iv), (v), and arrows among these corners
indicating these implications. Note which further implications could complete the diagram, i.e., would yield a diagram in which
one can get from any corner to any other by following arrows. Then try to prove such implications.

After entering the new implications you have proved in the diagram, you may find that you can drop some arrows and still have
a diagram showing all conditions equivalent. If so, do so.

There are many forms your final diagram could take; e.g., a pentagon with arrows from one vertex to the next, a ‘‘star’’ with
all arrows going into and out of one central vertex, etc.. You should choose the arrangement that makes for the easiest proof.
Show the diagram of implications you will prove at the beginning of your write-up.

You can get partial credit for proving some but not all of the required implications. (But added redundancy will not help your
score; i.e., if you give a proof of an implication that follows anyway by combining other implications you have proved, this will
give no additional credit.)

§7.2, ‘‘Exercise 25’’: Find two 3 × 3 matrices A and B over the complex numbers such that for every
complex number λ , rank(A – λ I3) = rank(B – λ I3), but such that A and B are not similar; and prove
that the matrices you have given have these properties.

§7.2, ‘‘Exercise 26’’: Find, for some integer n, two n × n matrices A and B over the field of
complex numbers such that An = Bn = 0, and such that rank(A) = rank(B), but such that A and B are
not similar; and prove that the matrices you have given have these properties.

§7.2, ‘‘Exercise 27’’: Let n be a positive integer and λ an element of a field F, and suppose J is the
n × n Jordan block over F with eigenvalue λ . Let {e1 , ... , en } be the standard basis of F n. Show that
a vector a1 e1 + ... + an en is the end vector of a Jordan canonical basis of F n for LJ if and only if
an ≠ 0.

(Every Jordan canonical basis is determined by its end vector; so from this result one can get all Jordan
canonical bases for this linear transformation.)

§7.2, ‘‘Exercise 28’’: (a) Suppose V is a 5-dimensional vector space over a field F, and suppose T
is a linear operator on V , which has characteristic polynomial – (t – λ )5 for some λ ∈ F, and such that
rank(T – λ I) = 2 while (T – λ I)2 = T0 .

Show that R(T – λ I) ⊆ N(T – λ I), and that the former is 2-dimensional and the latter 3-dimensional.
(You will not need anything beyond the methods of Chapter 2 to get the above facts.)

Hence we may choose a basis { 1 , 2} for R(T – λ I) and extend this to a basis { 1 , 2 , 3} of
N(T – λ I). Further, since we have taken 1 , 2 in R(T – λ I), there exist 4 , 5 ∈ V such that 1 =
(T – λ I)( 4) and 2 = (T – λ I)( 5).

Verify that Theorem 7.6 is applicable to { 1 , 2 , 3 , 4 , 5}, and deduce that this set is a basis for
V , and in fact a Jordan basis for T , with dot-diagram •

•
•
•

• . In particular, label that diagram with the
five symbols, 1 , ... , 5 showing how this basis decomposes into cycles under T .

(b) More generally, suppose V is n-dimensional, and T is a linear operator on V with characteristic
polynomial (–1) n(t – λ ) n, and with rank(T – λ I) = m, (T – λ I)2 = T0 . Imitating the above argument,
show how to obtain a Jordan basis for T , and give its dot diagram.

Your analysis will show an arithmetic relation stronger than the obvious condition m ≤ n that must
hold between m and n. Give this relation.

§7.2, ‘‘Exercise 29’’: Here we will push the idea of the preceding exercise one step further.

(a) Suppose V is a 6-dimensional vector space over a field F, and T a linear operator on V which
has characteristic polynomial (t – λ )6 for some λ ∈ F, and such that rank(T – λ I) = 3,
rank((T – λ I)2) = 1, and (T – λ I)3 = T0 .

Show that R((T – λ I)2) ⊆ R(T – λ I) ∩ N(T – λ I) ⊆ N(T – λ I), and that these subspaces have
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dimensions 1, 2, 3 respectively. Deduce that there exists a basis { 1 , 2 , 3} of N(T – λ I) such that

1 can be made the initial vector of a cycle of length 3 and 2 the initial vector of a cycle of length 2,

and such that these cycles, together with 3 , give a Jordan basis of V , with dot-diagram
•
•
•

•
•

•
.

(b) By analogy with part (b) of the preceding exercise, generalize the above argument to the case where
V is n-dimensional, T has characteristic polynomial (–1) n(t – λ ) n, rank(T – λ I) = m1 ,
rank((T – λ I)2) = m2 , and (T – λ I)3 = T0 .

§7.2, ‘‘Exercise 30’’: Generalize the above two exercises to an algorithm for constructing a Jordan basis
for a linear operator T on an n-dimensional vector space V which has characteristic polynomial
(–1) n(t – λ ) n, and satisfies rank(T – λ I) = m1 , rank((T – λ I)2) = m2 , ... , rank((T – λ I) k –1) = mk –1 ,
and (T – λ I) k = T0 .

Since an algorithm means a prescription for applying a sequence of operations to get a desired result,
one needs to know what basic operations one is allowed. So let us assume we have the ability to find the
range and null space of any linear operator, to find the intersection of two subspaces of V , to find a basis
of a given subspace of V , to extend such a basis to a basis of a given larger subspace, and, for any
element in the range of an operator, to find an element which the operator maps to it. These, clearly, are
the tools used in the two preceding exercises.

(The generalization of the chain of subspaces R((T – λ I)2) ⊆ R(T – λ I) ∩ N(T – λ I) ⊆ N(T – λ I)
used in the preceding exercise will consist of the subspaces R((T – λ I) e) ∩ N(T – λ I) for e = k –1, k – 2,
... , 1, 0. For your own understanding, begin by verifying that for m = 3, this is the chain of the
preceding exercise.)

§7.2, ‘‘Exercise 31’’: Suppose T is a linear operator on a finite-dimensional vector space V , and that
the characteristic polynomial of T splits.

Show that if β is a Jordan canonical basis for T , then the basis β* of V*, appropriately
reordered, is a Jordan canonical basis for T t. How do the elements of β* have to be reordered to make
this true?

§7.2, ‘‘Exercise 32’’: Let F = R or C, so that for any square matrix A over F, the matrix eA is
defined (§7.2, Exercise 22).

(a) Show that if A is an n × n matrix and c is a scalar, then ecI + A = ec eA (where ec is understood
as a scalar, and eA as a matrix).

(b) Let J be a Jordan block matrix over F as in §7.2, Exercise 19. Describe precisely the matrix eJ.

Appendix A, ‘‘Exercise 1’’: Label the following statements as true or false. In the first four, ‘‘Z ’’
denotes the set of integers (whole numbers), i.e., Z = { . . . , –2, –1, 0, 1, 2, . . . } .

Answers are given at the end of the next page.

(a) Z ∈ R.

(b) Z ⊆ R.

(c) R ∪ Z = R.

(d) R ∩ Z = R.

(e) If A and B are any sets, then A ∩ B = { x ∈ A : x ∈ B }.

(f) If A and B are any sets, then A ∩ B = { x ∈ B : x ∈ A }.

(g) If X ∩ Y = ∅ , then either X = ∅ or Y = ∅ .

Appendix A, ‘‘Exercise 2’’: Suppose ∼1 and ∼2 are two equivalence relations on the same set A.

(a) Show that the set-theoretic intersection of these equivalence relations (i.e., the intersection of these
equivalence relations regarded as sets of ordered pairs of elements of A ) is an equivalence relation.
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(b) Show by example that the set-theoretic union of these equivalence relations may not be an equivalence
relation.

(c) Suppose we define a relation ∼3 on A by letting a ∼3 a ′ hold if and only if there exists a positive
integer n, and a sequence of elements a1 , ... , an ∈ A, such that a1 = a, an = a ′ , and for each
i = 1, ... , n –1, we have either ai ∼1 ai+1 or ai ∼2 ai+1 . Show that ∼3 is an equivalence relation on A.

(d) Show that for every equivalence relation ∼4 on A, the relation ∼4 contains the union of ∼1 and ∼2
if and only if it contains ∼3 .

Appendix B, ‘‘Exercise 1’’: Suppose A and B are sets and f : A → B a function. One of the
following statements is true (i.e., true in all cases) and the other is false (i.e., false in some cases). Prove
the true statement. For extra credit , you can show the other statement is false, by giving an explicit
example where it fails.

(i) If ∼ 1 is an equivalence relation on A, then the relation ∼ 2 on B given by

∼ 2 = {( f (a), f (a ′ )) : (a, a ′ ) ∈ ∼ 1 } is an equivalence relation.

(ii) If ∼ 1 is an equivalence relation on B, then the relation ∼ 2 on A given by

∼ 2 = {(a, a ′ ) : ( f (a), f (a ′ )) ∈ ∼ 1 } is an equivalence relation.

Appendix D, ‘‘Exercise 1’’: (a) Show that if z is a complex number, then z = w + w- for some
complex number w if and only if z ∈ R (the field of real numbers).

(b) Show that if z is a complex number, then z = w – w- for some complex number w if and only if z
is imaginary.

(c) For which complex numbers z is it true that z = w w- for some complex number w ? (Of course,
you must prove your answer correct.)

(d) For which complex numbers z is it true that z = w ⁄ w- for some complex number w ?

Appendix D, ‘‘Exercise 2’’: Show that neither of the equations

z z- = – 1, z + z- = i

has a solution in C. Why do these facts not contradict the Fundamental Theorem of Algebra?

......................................................................................

Answers to True/False questions on Appendix A: (a) F. (b) T. (c) T. (d) F. (e) T. (f) T. (g) F.


