George M. Bergman Mathematical Induction Fdl 2016

1. Theidea, starting from an example.

Let me introduce the idea of Mathematical Induction using a bit of math that you already lkmagine,

however, that you were disaering it for the first time.
Suppose you and a friend start calculating the sums of reciprocals of powers of 2:

1/2 = 1/2,
1/2+1/4 = 3/4,
1/2+1/4+1/8= 7/8,
1/2+1/4+1/8+ 1/ = 15/16.
You notice a pattern: In each of the akoases,
1) 1/2+1/4+1/8+.. +1/2" = (2"-1)/2".

The two of you wonder whether this will continue to be true for all pesiintegersn. Your friend spends a
few days checking this all the way up to= 100, addinghe terms up for each case, and finato#swork in all
these cases. Then your friend says, “I'm tirefbu take over!”

You could add up the 101 terms for the next cab& + 1/4 +1/8 + 1/@ + ... + 1/2191 But it oceurs to you:
Most of that work is unnecessaryour friend has already added up the first 100 of these tekthgou have
do is add on the next one. And you find that quite easy algebraically:

1/2 +1/4 +.. + 172101
= (1/2+1/4+.. + 112100) +1/2101 (bringing together the 100 terms your friend has added up)
= (2100— 1)/2100 + 1/2101 (using the result of your frienglcalculation).

2101

Writing the abee b the common denominatadt/ , you get

— (2101_2)/2101 + 1/2101
= 1012+ 7)/2101
_ (2101_ 1)/2101.
So youve saval yourself a long, step-by-step addition, and verified that equation (1) also holdls 1.
What about the next casé@bviously rather than starting from scratch, you can similarly enade of the
n=101 case. ¥u do so, and find that the calculation works out the samegivinyg equation (1) forn = 102.
The pattern is cleaend the going becomes very quickopying the computation fom = 102, andjust
changing the exponents at the high end yyouget the casen = 103. Doingthis again, you get the case

n=104; thenn=105, ....
But is there ay point in copying the calculationver and over? Surelyyou can do it once and for all. If at
some step you a veaified (1) for n equal to some valu&, then in the next case you will\e

1/2 + 1/4 + .. + y2K+1
= W2+ 1/4+. + 12Ky + 172K*+1
o) = (2t+_11)/2k Jlr(+11/2k+l kgliy the casen = k)
=" "-21/2 + 1/2
— (2k+1_ 2+ 1)/2k+1
— (2k+1_ 1)/2k+1_
So theres no reed to do anmore calculations for particular values nf Each later case indeed follows from
the case before it, so equation (1) holdsafbpositive integersn.



2. Two more examples.

The kind of situation illustrated ab® cmes up frequentlyLet’'s mote two more cases, before we abstract the
general principle.

Many examples, like the one abee, invdve summation. Br instance, suppose you try summing the finst fe
oddintegers:

1= 1
1+3 = 4,
1+3+5 = 9

’

1+3+5+7 =16.
The sums are the firstesquares, and these examples suggest the general formula
3 1+3+..+(2n-1) = n2.
Is (3) true for alln? Agan, if we have dhecled a gven case n = k, then checking the next case reduces to a
quick calculation:
1+3+..+(2k+1)-1)
1+3+..+(%&-1)+(2k+1)-1)
k2 + (2k+1)
= (k+1)2

which is then = k+1 caseof (3). So since th&k =1 ase is true, and each case implies the,rike result is
true for all positie integersk.

For a dightly different sort of example, note that if we differentiate a function the fofix), weget
xf(x)) = f(x) +xf'(x).
If you differentiate this again, then differentiate the result, and so on (tvwy steies!), you will see a pattern:
(5) xF )™ = nfMDix) + xf M),

To check whether that pattern will continue indefinitelyppose the result true far equal to somealue k.
Then one gets

(4)

(xfe)*+D)
= (o) ®y
(kf (k_l)(x) +xf (k)(x))' (because weke assumed (5) fom = k)
= kf®x) + (F ®x) + xf &%) (usingthe law for differentiating a product)
= (k+1)f 00 +xt ),
which is then = k+1 case of (5). So the pattern does indeed continue indefinitely.

(6)

3. Theformal statement.

In each of the ah@ examples, we dealt with an infinitarhily of statements, one for each pesitintegern.
(In the first case, these were the equations (1), in the second, the equations (3), and in the third, the equations (5).
In each case, we verified the firsivfef these statements, then did a general calculation that showed tkahthe
statement implied th&¢1)-st; and we concluded from this tladitof our statements held.

To get this conclusion, thereas actually no need to check the fimt cases — the very first case, together
with the calculation shwing that each case implied the next, wouldehleeen enough. (But the calculation of the



first few cases still semd an important purpose: It suggesteltat we should try to pree, without which we
could not hae st up the general calculation.)

To discuss this situation in the abstract, we needve girame to the‘h-th statement'of a pattern. Letus
use the symbolP (n), where P stands for ‘proposition’, a logicians term for a statementWe @an nav
formulate the

Principle of Mathematical Induction. Suppose 1), P(2), P(3), ..., P(n), ... are mathematical statements,
and suppose we know that

(i) P(Q) is true,

and that
(ii) for all positive intgers k, P(k) implies P(k+1). (.e., if P(k) is true then P(k+1) is true).
Then Rn) is true for all n=1.

This principle can be used with various degrees of formalitysmple situations, one often uses it without
calling it “mathematical induction’ For instance, when one deduces from the formula for theatled d the
sum oftwo functions the correspondingwafor the dewative d the sum ofany finite numbeof functions,
mathematical induction underlies the reasoning, but the reasoning is clear enough that it does obeha
spelled out. (So in that sense, yowddeen using mathematical induction for a long time.)

In less trivial situations, if one has a statement that one wantsv® forall n, one often shows that it is true
for n=1, shows that then-th statement implies th@+{1)-st, and then says, “Hence, by induction, the statement
holds for all n” . In particulat it often happens that in the midst of a proof, one needs a statement which can be
proved by induction. Onemay then say something likéWe daim that for all n = 1, such-and-sucls true.
Indeed, it is true fom=1 because ... Now assume inductely that it is true forn=Kk.” One then shows wh
this implies that it is also true fan=k+1, andconcludes, “Hence, by induction, it is true for alt , and goes on
to use the fact in question. Note the words “assume indiigti, which signal that Mathematical Induction is
going to be used.

Finally, if the situation is complicated enough (or if one is learning the use of induction, and needg to sho
that one understands it), one may explicitly, s&or eachn, let P(n) be the statement that 7.. One then
gives an agument showing thatP (1) is true, and an argument showing thBtk) implies P(k+1), and
concludes, “Hence, by Mathematical Inductidd(n) is true for all n” .

4. Variants.

There are manslight variants to the version of the Principle of Mathematical Induction stateg.abo

The statement | aye started withn = 1. Clearly, the same reasoning would apply if we had a family of
statementsP (n) starting with n=0, and we preed that P (0) held,and that eacH (k) implied P (k+1): we
could then conclude tha® (n) held for all n = 0. Insome situations we might want to start with still another
integer ng, and our conclusion would be tha(n) held for all n>ngy. (But 1 and O aréghe commonest
cases.)

These slightly modified versions of induction can bevgadrom the version | gve For instance, if we are
given gatementsP (n) for all n>0 as eove, we muld define ne statementsQ (1), Q(2), ... by lettingQ(n)
be P(n—1). Thenour original \ersion of induction, applied to the statemeg¢n), yieldsthe desired result
about P (0),P(2), ....

Sometimes one may onlyvafinitely mary statements, say (1), P(2), ..., P(N) for someN. In that case,
if one can pree P(1), andshawv that P (k) implies P(k+1) for 1<k <N, then one can conclude that all of
P(1), P(2), ...,P(N) are true.



In another direction, the use of the distinct symbalsand k in the formulation of the Principle of
Mathematical Induction is common, but not really necesskirgilows one to talk aboutthe casen = k” and
“the casen = k+1"; but one can equally well formulate condition (ii) of that statement as, “for all pesiti
integersn, P(n) implies P (n+1)”, without switching to the lettek.

Note that the Principle of Mathematical Induction is specific to thgense Itis not true, for instance, that
given a family of statementsP (x), onefor eachreal number x, such that P(1) istrue and P(x) implies
P(x+1) for all x, we can conclude thaP (x) holds for all real numberg 1. (For instance, the statement ‘is
an integef’has those properties, yet is not true for all real numikerd.)

In a systematic delopment of the properties of the igars, certain axioms about their ordering and
arithmetic are introduced, and the Principle of Mathematical Induction is deduced from (lhg®eld like
know more about this, ask me at office hours.) Some other sets, which satisfy some but not all of the properties of
the integers, satisfy interesting variants of the Principle of Mathematical Induction.

One important variation on the method of Mathematical Induction, whielin agpplies to the posit
integers, and which can be peal from the usual form of Mathematical Induction, is called Complete Induction.
Here we agin deal with statement® (1), P(2), ..., P(n), ...; but rather than having to dedud¢e(k+1) from
P (k) aone, as in condition (ii) alve, we ae allowed to use all oP (1), ... P(k) in proving P(k+1). |won't
discuss it in detail here, but you can expect to see it in future math courses.

5. Circular reasoning?

A Teaching Assistant once described to me her experience teaching Mathematical Induction in first-year
calculus. Berkley was on the Quarter System then, so the courses were Math 1A-1ByiCA, when you gie
an example of Mathematical Induction, some student is sure ttBsayteacheryou must be making a mistak
You're assuming what you're trying to pey’ Then, in 1B, when you come to Mathematical Induction, someone
will again say‘Somethings wrong. You're assuming what you're trying to pes Finally, in 1C when you come
to induction, thg say, ‘Why are you spending time on this®e know it already!” ”
Well - when we “assumeP (k)" in a proof by induction, are we, or aréme, assuming what we are trying to

prove?
First note that we are noassuming” P (k) in the sense of taking for granted that it is trigather we ae
saying, “If it is true ..”, and seeing what consequences thaulMl hare. Moreover, we ae not arguing that

P (k) implies P(k), whichwould be trvial, and the use of which to establish thatRln) hold would indeed
be circular reasoningRather we ae showing thatP (k) implies P (k+1). If this is so, and ifP(1) istrue, then
we can correctly conclude by a “domiheffect that allP (n) are true.

6. Errorsto watch out for.

There are sexal errors | hge £en among students learning to use Mathematical Induction.

The first is to check a result for= 1, forn =2, and maybe for a f& more values, find that it is true in these
cases, and sayTherefore, by induction, it is true for alh”. This is not valid unless one can come up with a
precise argument showing withe truth of the statement for each valuerof(not only those one has chech
implies its truth for the next value.

Second, a student will sometimes formulate a condiBgk), prove P (1), andthen say'By Mathematical
Induction, P (k) implies P(k+1), hence P(n) is true for all n”. Such a student has gotten it backds:
Mathematical Induction does not tell us tHatk) implies P (k+1); rather it says thatf, using facts about the
subject in question, we can shthat P (k) implies P(k+1), andthat P(1) istrue,thenwe can conclude that
P(n) holds for all n.

Students sometimes get the idea thgtrasult that is to be pved for all n should be preed by induction.



Mathematical Induction is refant in cases where there is a natural connection (other than analogy) between the
statement for one value of and the statement for thexte Thisis so for equations (1) and (3) aleokecause
the sum ofn+1 terms is obtained from the sum af terms by adding on the next term, and for (5) because the
(n+1)-st dervative is dotained by differentiating the-th dervative. An example where Mathematical Induction
is not releant is if one is asked to pve that for every positve integern one has(ns)3 =n°. The operation of
cubing n+1 does not build on the operation of cubing

Here, finally is a knd of error that does not come up often, but which makes an interesting brain-teiaser
well-known “‘proof” that all horses ha the same color:

Let P(n) be the statement that irvery set of n horses, all the horsesveathe same colorClearly P (1) is
true. Nav suppose inductiely that P (k) is true, for some posite integer k. Given any st of k+1 horses, we
can write it as the union of wsets of k horses, hang k—1 horses in common. By our indue#i assumption,
all the horses in the first setvegaome common colorC;, and all the horses in the second setehaome
common colorC,. But the k=1 horses that the twsets hae in common are simultaneously of col@,; and
of color C,; so C; =C,; soour k+1 horses all hee the same colocompleting our inductie roof.

Can you find the fallacy?



