[2] George M. Bergman, Two statements about infinite products that are not quite true, pp.35-58 in Groups, Rings and Algebras (Proceedings of a Conference in honor of Donald S. Passman), ed. W. Chin, J. Osterburg and D. Quinn, Contemporary Mathematics, v.420, 2006. abstract. [update]. MR 2007k:16008.
[3] George M. Bergman and Saharon Shelah, Closed subgroups of the infinite symmetric group, Algebra Universalis, 55 (2006) 137-173. DOI. [afterthoughts] MR 2008a:20005.
[6] Yves de Cornulier, Strongly bounded groups and infinite powers of finite groups, Comm. Algebra 34 (2006) 2337-2345. MR 2007c:20098.
[12] Anatole Khelif, Á propos de la propriété de Bergman, C. R. Math. Acad. Sci. Paris 342 (2006) 377-380. MR 2006j:20042.
[23] Vladimir Tolstykh, Infinite-dimensional general linear groups are groups of universally finite width, Sibirsk. Mat. Zh. 47 (2006) 1160-1166; translation in Siberian Math. J. 47 (2006) 950-954. MR 2007j:20069.
[24] Vladimir Tolstykh, On Bergman's property for the automorphism groups of relatively free groups, J. London Math. Soc. (2) 73 (2006) 669--680. MR 2007b:20076.