George M. Bergman, Generating infinite symmetric groups, Bull. London Math. Soc., 38 (2006) 429-440.  MR 2007e:20004.

Updated bibliographic data on references in the paper

[2] George M. Bergman, Two statements about infinite products that are not quite true, pp.35-58 in Groups, Rings and Algebras (Proceedings of a Conference in honor of Donald S. Passman), ed. W. Chin, J. Osterburg and D. Quinn, Contemporary Mathematics, v.420, 2006.  abstract.  [update].  MR 2007k:16008

[3] George M. Bergman and Saharon Shelah, Closed subgroups of the infinite symmetric group, Algebra Universalis, 55 (2006) 137-173.  DOI.  [afterthoughts] MR 2008a:20005

[6] Yves de Cornulier, Strongly bounded groups and infinite powers of finite groups, Comm. Algebra 34 (2006) 2337-2345.  MR 2007c:20098

[12] Anatole Khelif, Á propos de la propriété de Bergman, C. R. Math. Acad. Sci. Paris 342 (2006) 377-380.  MR 2006j:20042

[23] Vladimir Tolstykh, Infinite-dimensional general linear groups are groups of universally finite width, Sibirsk. Mat. Zh. 47 (2006) 1160-1166; translation in Siberian Math. J. 47 (2006) 950-954.  MR 2007j:20069

[24] Vladimir Tolstykh, On Bergman's property for the automorphism groups of relatively free groups, J. London Math. Soc. (2) 73 (2006) 669--680.  MR 2007b:20076

Additional reference

  • M. Droste, C. Holland and G. Ulbrich, On full groups of measure preserving and ergodic transformations with uncountable cofinalities.  Bull. Lond. Math. Soc. 40 (2008) 463--472.  MR 2009g2:37004

    Back to publications-list