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THE CONDITION (∃x1, . . . , xn) A = x1A+ · · ·+ xnA IN NONASSOCIATIVE ALGEBRAS,
AND BASE-CHANGE

GEORGE M. BERGMAN

Abstract. To any not-necessarily-associative finite-dimensional algebra A over a field k such that AA =

A, i.e., such that every element may be written as a sum of products, we can associate the least integer n

such that A can be written x1A+ · · ·+xnA for x1, . . . , xn ∈ A. If k is infinite, this invariant is unchanged
under extension of base field. There are counterexamples if k is finite, or A infinite-dimensional.

The results in this write-up are “orphans”. Originally, this was to be part of a note with N. Nahlus in
which, using the structure theory of finite-dimensional simple Lie algebras L over an algebraically closed
field of characteristic 0, it would be shown that every such L contains elements x1 and x2 such that

(1) L = [x1, L] + [x2, L],

and it would then be deduced, with the help of the proposition in §1 below, that the same is true of finite-
dimensional simple Lie algebras over any field of characteristic 0. The consequence that every element of
such a Lie algebra is a sum of two brackets was to be used in [1] and [2] in proving a result on homomorphic
images of infinite direct products of such Lie algebras.

Subsequently, we learned of the result of [3], that every finite-dimensional simple Lie algebra over an
algebraically closed field of characteristic not 2 or 3 is generated as an algebra by two elements. By
a method having some features in common with that of §1 below, we were able to show from this that
([1, Theorem 26]) every finite-dimensional simple Lie algebra L over any infinite field of characteristic not 2
or 3 can be written as in (1) (though not every such algebra is generated by two elements ([1, Lemma 38])).

Despite this change of plans, the results of §1 below, simpler than the arguments we now use to prove
[1, Theorem 26], seem worth recording, along with counterexamples to some modified statements. Hence
this note. At present, I have no plans of submitting it for publication.

Results by Nahlus on particular elements x1 and x2 satisfying (1) in a finite-dimensional split simple
Lie algebra over a field of characteristic 0, and related matters, are similarly recorded in [4].

The idea of §1 below is well-known in the study of Lie algebras: one proves that the set of elements, or
tuples of elements, of a finite-dimensional Lie algebra, that have some property is Zariski open; one shows
that the set of points with that property having coordinates in the algebraic closure of the base field is
nonempty; and one concludes that the set of points with that property over the original base field is also
nonempty. What is not necessarily easy to guess is which properties it will be possible to treat in this way.
For instance, in a general nonassociative algebra, the property that every element can be written as a sum of
n products does not carry over from an extension field to a smaller field; nor vice versa. (For counterexamples
see [1, §12.5].) But we shall see below that the property that there exist n elements x1, . . . , xn such that
A = x1A+ · · ·+ xnA does.

For the reader already familiar with the general technique, the interesting material here may be the
examples in §2.2 and §2.3.

1. Linear maps and base change.

I will not assume familiarity with the Zariski topology; we will obtain our results from first principles,
starting with
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Lemma 1. Let k be an infinite field, p, q and r natural numbers, and

(2) f : kp × kq → kr

a map which is polynomial as a function of the arguments in kp, and linear in the arguments in kq. Let K
be any extension field of k, and let

(3) fK : Kp ×Kq → Kr

be the extension of f given by the same polynomial expressions.
If there exists an x ∈ Kp such that the induced linear map fK(x,−) : Kq → Kr is surjective, then there

also exists x′ ∈ kp such that the linear map f(x′,−) : kq → kr is surjective. (The converse is also true,
even without the condition that k be infinite.)

Proof. Since f is linear in the arguments in kq, we can get from f a matrix-valued function

(4) F : kp → Mr×q(k),

such that for a ∈ kp, b ∈ kq,
(5) F (a) b = f(a, b).

Since f is polynomial in the argument from kp, (4) will also be a polynomial map.
For x ∈ kp, f(x,−) is surjective if and only if F (x) is a matrix of rank r, i.e., if and only if one of its

r × r minors is nonzero. Such a minor is given by a polynomial in the coordinates of x, so since k is an
infinite field, the condition that there exist an x for which that minor has nonzero value is equivalent to the
condition that the expression for that minor be a nonzero polynomial in the entries of x.

Now fK is given by the same polynomials as f, so it determines the same system of determinantal-minor
polynomials. This immediately yields our main assertion, and the converse of that result. To see that that
converse holds without the assumption that k be infinite, note that a point of kp where a polynomial is
nonzero is also a point of Kp where that polynomial is nonzero. �

In the above lemma, we allowed f to be polynomial in kp rather than specifying that it be linear, because
the proof worked as well under that general hypothesis. In the next two results, for simplicity of statement,
we forgo that extra generality; but at the end of this section we will comment briefly on consequences we
can get using the greater generality of Lemma 1.

Corollary 2. Let k be an infinite field, let A, B and C be finite-dimensional k-vector-spaces, and let

(6) m : A×B → C

be a bilinear map. Let K be any extension field of k, let AK = A ⊗k K, BK = B ⊗k K, CK = C ⊗k K,
and let

(7) mK : AK ×BK → CK

be the map arising from (6) by extension of scalars.
Then if, for a given natural number n, there exist a1, . . . , an ∈ AK such that

(8) mK(a1, BK) + . . . + mK(an, BK) = CK ,

then there also exist a′1, . . . , a
′
n ∈ A such that

(9) m(a′1, B) + . . . + m(a′n, B) = C.

(The converse is true without the condition that k be infinite.)

Proof. Given n, let

(10) f : An ×Bn → C

be defined by

(11) f(a1, . . . , an; b1, . . . , bn) = m(a1, b1) + . . . + m(an, bn).

This will be linear (hence polynomial) in the argument from An, and also linear in the argument from Bn.
If we choose coordinates using any k-bases of An, Bn and C, the preceding lemma immediately gives the
asserted result. �
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In particular, we have

Proposition 3. Let k be an infinite field, A a finite-dimensional not-necessarily-associative k-algebra (a
finite-dimensional k-vector-space given with a bilinear map A×A→ A), and n a natural number.

Then for any extension field K of k, writing AK for the algebra A⊗kK, if there exist x1, . . . , xn ∈ AK
such that

(12) x1AK + · · ·+ xnAK = AK ,

then there also exist x′1, . . . , x
′
n ∈ A such that

(13) x′1A+ · · ·+ x′nA = A.

(The converse is true without the condition that k be infinite.)
In other words, if A = AA, then the least n for which A has such an n-tuple of elements is invariant

under base-change. �

Lemma 1 can actually be used to get invariance statements for a much wider variety of conditions on a
finite-dimensional algebra A than the existence of x1, . . . , xn satisfying A = x1A + · · · + xnA. For a few
random examples, we get the corresponding results for conditions such as

(14) There exist xi, yi, zi (i = 1, . . . , n) such that A = (x1A)(y1z1) + · · ·+ (xnA)(ynzn).

(15) There exist xi (i = 1, . . . , n) such that A = (x1A)(x1x1) + · · ·+ (xnA)(xnxn).

(16) There exist xi, yi (i = 1, . . . , n) such that, writing {a, x, y} for a(xy)− (ax)y,
one has A = {A, x1, y1}+ · · ·+ {A, xn, yn}.

(17) There exists x ∈ A such that A = Ax+ (Ax)x+ ((Ax)x)x+ · · ·+ ((. . . (Ax) . . . )x)x (n terms).

The key point is that in each of these formulas, once the xm etc. are fixed, the expression is linear in the
remaining A-valued variables. Proposition 3 is likely to be the most useful case, and I felt it would be most
transparent to formulate that case explicitly, then note that cases like (14)-(17) can be gotten from Lemma 1
if needed. One can likewise get the generalization of Proposition 3, applicable to not necessarily idempotent
algebras A, in which the right-hand sides of (12) and (13) are replaced by AKAK and AA respectively;
and similarly generalize the results based on (14)-(17).

2. Some counterexamples.

2.1. Left versus right. The statement of Proposition 3 is asymmetric, in that the fixed elements xi appear
to the left of the A’s. Of course, by an obvious symmetry argument, that result implies its left-right dual.
Let us give a quick example showing that for an algebra A, the number of summands needed on the right
can be very different from the number needed on the left; then a variant example, showing that both these
numbers can be equal, but be much larger than the least n such that every element of A is a sum of n
products (called in [1] the “idempotence rank” of A).

Let k be a field, n a natural number, and A the (associative, nonunital) subalgebra of the n×n matrix
algebra Mn(k) spanned by e11, e21, . . . , en1. Thus, the multiplication of A is given by

(18) ei1 ej1 =
{
ei1 if j = 1
0 otherwise.

We see that for each x ∈ A,
(19) xA = x (ke11) = k x.

Hence, if we wish to span A using summands xA, we need dimk(A) = n of these. On the other hand, e11
is a right unit for A, so the one term Ae11 gives all of A.

In this example, every element can be written as a single product. If we take the direct product of this
algebra and its opposite, we see that that is still the case, but that to get all of A as a sum of terms xA,
or Ax, or even a mixture of both, n summands are still needed.
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2.2. The need for k to be infinite. I do not know any Lie or associative examples showing the need for
k to be infinite in Proposition 3; but here is a class of non-Lie, nonassociative examples.

Let k be any field, d a positive integer, and

(20) A = the k-vector-space of matrices with zero main diagonal ⊆ Md(k).

Let f : A → Md(k) be a map which takes each matrix x ∈ A to a diagonal matrix f(x), by assigning to
each position on the diagonal the entry found in some fixed corresponding position in x, with no position
used more than once, and with all the diagonal positions in x considered “the same position” (since they
all have the same value, 0. Thus, these are not used more than once, if at all.) For instance, we might take

(21) f(a) =
∑d
i=1 ei1 a eii, which moves the entries in the first row of a onto the diagonal, and

ignores all other entries,
or

(22) f(a) =
∑d
i=1 eii a ei+1,i, which moves each ai,i+1 to the (i, i) position. Here we take arithmetic

of subscripts to be modulo d, so that for i = d, the symbol ei+1,i means e1d.

Given any such f, we may define an algebra structure on A by letting

(23) a ∗ b = f(a) b− b f(a).

By the familiar description of the commutator of a diagonal matrix and an arbitrary matrix, the (i, j) entry
of a ∗ b arises by multiplying the (i, j) entry of b by the difference between the i-th and j-th diagonal
entries of f(a). (In particular, a ∗ b is indeed A-valued.)

Now if card(k) ≥ d, we can choose an x ∈ A such that the entries of x at the d positions used by the
function f are distinct. For such an x, f(x) has distinct diagonal entries, so the linear map x ∗− : A→ A
is bijective, giving A = x ∗ A. Conversely, if card(k) < d, then for any x ∈ A, f(x) must have at least
two equal diagonal entries, say the i-th and the j-th (i 6= j), whence x ∗ A will contain no elements with
nonzero (i, j) entry. Thus, if k ⊆ K are fields with card(k) < d ≤ card(k), the algebra A constructed as
above from K satisfies the condition of Proposition 3 with n = 1, but the algebra constructed from k does
not.

More generally, given n ≥ 1, it is not hard to verify that the necessary and sufficient condition for there
to exist x1, . . . , xn with A = x1 ∗A+ · · ·+ xn ∗A is

(24) card(k)n ≥ d.

So by taking d sufficiently large compared with card(k), one can make the smallest acceptable n arbi-
trarily large; and then, by passing to a large enough extension field K, bring that number down to 1.

2.3. The need for A to be finite-dimensional. In §1 we assumed our vector spaces and algebras finite-
dimensional so that we could argue using determinants. Let us show that the results of that section fail
without that assumption.

Our constructions will use properties of Dedekind domains; but we will accompany them by a particular
example for which we will verify the properties used; so familiarity with the definition and theory of Dedekind
domains, though helpful, will not be needed.

Here are the general data we will use to build our examples:

(25)

Let k be an infinite field, and D a k-algebra which is a Dedekind domain but not a principal
ideal domain, but which becomes a principal ideal domain DK on extension of scalars to some
overfield K of k. Let I be a nonprincipal ideal of D, and x a generator of the induced ideal
IK = DKI of the principal ideal domain DK .

For an explicit example, let k = R, let D be the ring R [sin t, cos t] of trigonometric polynomials, and
let I ⊆ D be the ideal of elements vanishing at t = 0. To see that I is not principal, note that if a
trigonometric polynomial f(t) has a simple zero at t = 0, then it changes sign there; hence by periodicity,
it has opposite signs at 0+ and 2π−, hence it must have a zero at some θ in the open interval (0, 2π).
Thus, the ideal generated by f(t) cannot contain elements of I with no zero at θ (such as 1− cos t). On
the other hand, if f(t) has a multiple zero at t = 0, the ideal it generates cannot contain elements of I
with a simple zero there (such as sin t). So no single element generates I.

However, when we extend scalars to C, we see that

(26) DC = C [sin t, cos t] = C [eit, e−it] ∼= C [z, z−1]
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is generated over C by a transcendental element and its inverse. It is thus a localization of the principal
ideal domain C [z], and so is itself a principal ideal domain.

Thus, the extension IC ⊆ DC of the above nonprincipal ideal I must be principal; let us find a generator
for it. We know that a nonzero ideal of C [z] is determined by the locations and multiplicities of the common
zeroes in C of its elements; hence the same will be true of a nonzero ideal of C [z, z−1], with the stipulation
that the locations be at nonzero values of z. Elements of I have zeroes at t = 0, hence at eit = 1, i.e.,
z = 1, and some elements of I (such as sin t) have simple zeroes there, while others (such as 1−cos t) have
no zeroes anywhere else. Hence IC must consist of all elements of C [z, z−1] having a zero of multiplicity
≥ 1 at z = 1; so we can take 1−z for the generator x in (25). It is easily deduced that I itself is generated
over D by the real and imaginary parts of 1− z = 1− eit, namely 1− cos t and − sin t.

In the general situation of (25), let us now take for the k-bilinear map (6) the multiplication of D,
restricted to give a map

(27) I × D → I.

We see that this will be surjective, and that for x1, . . . , xn ∈ I, we will have m(x1, D) + · · ·+m(xn, D) = I
if and only if x1, . . . , xn generate I as an ideal of D. It is known that any ideal of a Dedekind domain can
be generated by two elements (e.g., for the I of our above example, 1−cos t and sin t). So the least integer
n as in (9) is 2, while the least value as in (8) is 1. This gives the desired contradiction to the analog of
Corollary 2.

Can we get an algebra out of the above?
A quick-and-dirty way to do so is to note that D and I have the same dimension over k, hence there

exists a k-vector-space isomorphism g : D ∼= I. We can thus turn (27) into a multiplication ∗ : I × I → I
by defining

(28) a ∗ b = a g(b).

It is immediate that this multiplication and its extension to K give a counterexample to the conclusion of
Proposition 3. But if we want to do any explicit computations, e.g., test this algebra for one or another
identity, we cannot do so without a formula for g.

A more complicated, but more concrete construction uses the fact that any nonzero ideal I of a Dedekind
domain has an inverse as a fractional ideal; that is, there is a (unique) finitely generated D-submodule I−1

of the field of fractions of D such that

(29) I I−1 = D.

In the trigonometric polynomial case, this consists of the rational functions in sin t and cos t having at
most a simple pole at 0, and no poles on the complex plane other than at 0 and its translates by multiple
of 2π. Another way to get this object is to first verify that within D, the product ideal I I is principal:

(30) I I = (1− cos t)D.

Hence, defining I−1 = (1 − cos t)−1I, one has (29). One finds that I−1 is generated as a D-module by
the elements (sin t)/(1 − cos t) = cot(t/2) and (1 − cos t)/(1 − cos t) = 1. (In the language of Dedekind
domains, (30) shows that I yields an element of order 2 in the ideal class group of D.)

Now back to the general situation of (25). Let

(31) A = I−1 ×D × I,
and define a multiplication A×A→ A by

(32) (x(−1), x(0), x(1)) (y(−1), y(0), y(1)) = (x(−1)y(0), x(1)y(−1), x(0)y(1)).

It is easy to see that under this multiplication, AA = A. (E.g., to verify that one gets every element of
I−1 in the first position as a sum of products, one uses the fact that I−1D = I−1; and similarly for the
other positions.) One sees that necessary and sufficient conditions for an element a = (a(−1), a(0), a(1)) to
satisfy aA = A are that a(−1) be a generator of I−1, a(0) a generator of D, and a(1) a generator of I, as
D-modules. Thus, after extension of scalars to K, there will exist such a generator; but in A itself, there
will not.

(I do not know any important identities satisfied by the above algebra A; it is not associative or Lie. It is
a D-algebra in an obvious way, and is an order in the 3-dimensional algebra AL over the field of fractions L
of D, which can be described as L3 with multiplication again given by (32). Because AL is 3-dimensional,
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it has the property that if we let 〈a1, a2, a3, a4〉 denote any bracketing of the formal product a1 a2 a3 a4,
AL satisfies the identity

∑
π∈S4

(−1)π 〈aπ(1), aπ(2), aπ(3), aπ(4)〉 = 0. One also sees that the decomposition
of A into summands A(−1) = I−1, A(0) = D, A(1) = I is a Z-grading.)

3. Questions.

The examples constructed in §2.2 and §2.3 above were neither Lie nor associative, suggesting part (a) of
the question below.

Question. (a) Can one find Lie or associative algebras showing the properties of the examples in §2.2
or §2.3? I.e., are there Lie or (nonunital) associative algebras which are either finite-dimensional over
a finite field, or infinite-dimensional over an infinite field (or, if neither is possible, which are infinite-
dimensional over a finite field), such that the number of fixed elements x1, . . . , xn needed to write the whole
algebra as x1A+ · · ·+ xnA changes under extension of base field? (Cf. [1, Question 45(a)].)

(b) Do there exist infinite-dimensional idempotent algebras A over infinite fields such that the above
number changes by more than 1 under some extension of base field? (Cf. the example of §2.3 above, and
also [1, §12.5 and Question 45(b)].)

As noted, any associative algebra as in part (a) above must be nonunital, since in a unital algebra, every
element is a single product. In the infinite-dimensional case of (a), and in (b), “the number of fixed elements
needed” could be infinite, but in that case, it is not hard to show that it is unaffected by base change, so
the real question is for the case where (as in our Dedekind-domain-based example) it is finite.

We would have the example asked for in (b) if we could find an algebra, perhaps commutative, over a
field k, with an ideal I that required > 2 generators, but became principal on extension of scalars to an
overfield K of k.

References

[1] George M. Bergman and Nazih Nahlus, Homomorphisms on infinite direct product algebras, especially Lie algebras,
preprint, 32 pp., August 2009, readable at http://math.berkeley.edu/∼gbergman/papers .

[2] —, Linear maps on kI , and homomorphic images of infinite direct product algebras, preprint, 12pp., August 2009, readable

at http://math.berkeley.edu/∼gbergman/papers .
[3] Jean-Marie Bois, Generators of simple Lie algebras in arbitrary characteristics, Mathematische Zeitschrift 262 (2009)

715-741. http://arxiv.org/pdf/0708.1711.

[4] Nazih Nahlus, On L = [L, a] + [L, b] and x = [a, b] in split simple Lie algebras, to be written, title tentative.

(G. Bergman) University of California, Berkeley, CA 94720-3840, USA

E-mail address: gbergman@math.berkeley.edu


