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Suppose A, S, and T are semigroups, e: A → S and f : A → T semigroup
homomorphisms, and X a generating set for S. We assume (1) that every element
of S divides some element of e(A), (2) that T is cancellative, (3) that T is
power-cancellative (i.e, xd = yd ⇒ x = y for d > 0), and (4) a further technical
condition, which in particular holds if T admits a semigroup ordering with the
order-type of the natural numbers. We show that there then exists a homomorphism
S → T making a commuting triangle with e and f if and only if for every
relation w(x1 , ... , xn ) = e(a) holding in S, with x1 , ... , xn ∈ X, a ∈ A, and w a
semigroup word, there exist t1 , ... , tn ∈ T satisfying w(t1 , ... , tn ) = f (a).

This leads to an arithmetic criterion for the existence of integer-valued projective
rank functions on rings.

1. Main results.

Semigroups will not be assumed to have neutral element. In the first sentence of the next definition,
S1 denotes the semigroup obtained by adjoining a neutral element to S.

Definition 1. We shall say that an element s divides (or is a divisor of ) an element t in a semigroup S
if t = psq for some p, q ∈ S1.

We shall say that an element s is a weak divisor of a family G of elements of S if there exists some
positive integer m such that sm is a divisor of an element of Gm (i.e., of a product g1 ... gm with
gi ∈ G).

The only excuse for this peculiar definition, and for condition (4) of the next theorem, where it is used,
is that this is what was needed to abstract an argument discovered in the case where T was the additive
semigroup of natural numbers. (Note that if a is a weak divisor of {b} and b a weak divisor of {c},
a need not be a weak divisor of {c}.) In §2 we will look at some simpler hypotheses that imply (4); in
the mean time, the reader may take for granted that (4) holds frequently, e.g., whenever T is a free
semigroup or a free abelian semigroup. Experience may eventually show that one of the simpler
hypotheses to be mentioned covers all cases of interest.
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Theorem 2. Let A, S, and T be semigroups, e : A → S and f : A → T semigroup homomorphisms,
and X a generating set for S. Suppose that

(1) every element of S divides some element of e(A),

(2) T is right and left cancellative (i.e., axb = ayb ⇒ x = y),

(3) T is power cancellative, (xd = yd ⇒ x = y for d > 0),

and

(4)
every finite subset of f (A) ⊆ T has only finitely many weak divisors, and
each of these in turn has only finitely many divisors.

Then there exists a homomorphism S → T making a commuting triangle with the given maps from A
if and only if for every relation w(x1 , ... , xn ) = e(a) holding in S, with x1 , ... , xn ∈ X, a ∈ A, and w a
semigroup word, there exist t1 , ... , tn ∈ T satisfying w(t1 , ... , tn ) = f (a).

Proof. It is clear that a homomorphism S → T is determined by its restriction to X, say τ : X → T,
and that it will form a commuting triangle with A if and only if τ has the property that for every
relation

(5) w(x1 , ... , xn ) = e(a)

holding in S with x1 , ... , xn ∈ X, a ∈ A, one has

(6) w(τ (x1), ... , τ (xn )) = f (a)

in T. We claim that given an arbitrary set-map τ : X → T, the condition

(7) (∀ w, x1 , ... , xn , a) (5) ⇒ (6)

in fact implies that τ is the restriction of such a homomorphism. To get the latter condition, it clearly
suffices to show that given any relation

(8) w1(x1 , ... , xm ) = w2(x1 , ... , xm )

holding in S, the corresponding relation holds between the τ (xi ) in T. Now writing s for the common
value of the two sides of (8), hypothesis (1) says that s divides e(a) for some a ∈ A. Expressing the
right and left factors that carry s to e(a) in terms of the generating set X (using a list of elements of X
extending x1 , ... , xn ), we get

u(x1 , ... , xn ) w1(x1 , ... , xm ) v(x1 , ... , xn ) = u(x1 , ... , xn ) w2(x1 , ... , xm ) v(x1 , ... , xn ) = e(a).

Regarding this as two equations of the form (5), we see that (7) implies that the corresponding equations
(6) hold in T, so by the cancellativity of T, the equation corresponding to (8) also holds in T, as
desired.

Let Σ0 denote the system of semigroup equations (6) in an X-tuple of T-valued unknowns (τ (x))x ∈ X
obtained by replacing the elements x ∈ X in the left-hand sides of all equations (5) holding in S with the
corresponding elements τ (x), and the elements e(a) on the right-hand-sides by the elements f (a) ∈ T.
What we have shown is that homomorphisms S → T making the indicated triangle commute correspond
to solutions in T to the system Σ0 . We shall now assume that there exists no such homomorphism, i.e.,
that Σ0 has no solution, show that Σ0 must then have a finite subset with no solution, and finally
construct a single member of Σ0 with no solution. This will show the ‘‘if’’ direction of the Theorem;
‘‘only if’’ is clear.
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We begin by noting that by condition (1), each x ∈ X is a divisor of some element e(ax ), hence there
is some member of Σ0 , say Ux = f (ax ), such that the word Ux involves the unknown τ (x). For each
x, let us fix one such element of Σ0 , and denote by Tx the set of divisors in T of the element f (ax ).
We see from (4) that each Tx is finite. (We will not use the full strength of (4) till later.) Note that in
any solution in the semigroup T of any subsystem of Σ0 which includes the equation Ux = f (ax ), the
value given to τ (x) must be a member of the finite set Tx .

Let us now take the product set TX = ΠX Tx , and regard it as a compact topological space under the
product of the discrete topologies on the finite factors. The set of solutions in TX to each equation in Σ0
is clearly closed. We have assumed that the intersection over Σ0 of these closed sets is empty, hence by
compactness, the intersection over some finite subset Σ1 ⊆ Σ0 is empty. Let τ (x1), ... , τ (xm ) be the
unknowns occurring in the equations of Σ1 . Thus no choices of values for τ (x1), ... , τ (xm ) in the
respective sets Tx1

, ... , Txm
will satisfy Σ1 . Now let Σ2 be obtained by adjoining to Σ1 the

equations Uxi
= f (ai ) for i = 1, ... , m. Any solution to the latter equations must have τ (x1), ... , τ (xm )

in Tx1
, ... , Txm

respectively. Thus Σ2 is a finite subsystem of Σ0 having no solution.

In passing from Σ1 to Σ2 we may have expanded the set of variables occurring; let us write the
resulting list τ (x1), ... , τ (xn ). We now claim that we can modify Σ2 to get a system Σ3 in this same
set of variables, also with no solution in T, having the additional property that all n variables occur in
every equation. To do this, we go successively through the list of n variables; for each variable τ (xi ),
we find one equation U = f (a) in our system which does involve it, and if some other equations do not,
we multiply each of these on the left by U = f (a). Since we have kept the latter equation in our system,
and since T is cancellative, it is easy to see that a solution to our system after the above modification will
be the same as a solution to the system before modification. Going through all the variables this way, we
get the desired Σ3 .

Let us list the equations comprising Σ3 as Uj = bj ( j = 1, ... , r, bj ∈ f (A)). We shall now construct
from these a single equation

(9) (U1) d1 ... (Ur –1) dr –1 Ur = (b1) d1 ... (br –1) dr –1 br with d1 , ... , dr –1 ≥ 0

having no solution in T. To do this, we must again begin by finding a finite set which limits the possible
values that can be assigned to τ (x1), ... , τ (xn ). Let B denote the set of all products of length ≤ r of
elements of {b1 , ... , br }, and let T0 ⊆ T be the set of all divisors of weak divisors of the finite family
B. This is a finite set by hypothesis (4). Now given any equation of the form (9), if we let dj > 0 be
maximal among the d’s (where we understand dr = 1), then we see that the right-hand side of (9) may be
written (in one way or another) as a product of dj elements of B, and the left-hand-side has (Uj ) dj as
a divisor. Hence in any solution to this equation in T, the value assumed by Uj will be a weak divisor
of the set B, and the value assumed by every τ (xi ) will be a divisor of this value, hence will belong to
T0 .

Any equation of the form (9) belongs to Σ0 , hence to get an equation in Σ0 having no solution in
TX, it suffices to choose (9) having no solution in (T0) n.

By induction on r, we can do this if we can show that we can obtain from the last two equations of the
system Σ3 ,

(10) Ur –1 = br –1 ,

(11) Ur = br ,

a single equation
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(12) (Ur –1) d Ur = (br –1) d br

whose solution-set in (T0) n is precisely the intersection of the solution-sets of (10) and (11). For this, in
turn, it will certainly suffice to show that if a given family of values of τ (x1), ... , τ (xn ) in T0 is not a
solution to both (10) and (11), then there exists at most one value of d for which this family is a solution
to (12). Now given an element of (T0) n at which (10) but not (11) holds, we see that (12) will not hold
for any d, by (2). On the other hand, if (10) does not hold, suppose (12) holds for some value of d, and
let d0 be the least such value. For any higher value d1 , we can write the d1-case of (12) as the product
of the d0-case thereof, which holds, and the (d1 – d0)th power of (10), which by (3) does not hold; hence
this case of (12) fails by (2). We conclude that for all but at most card(T0) n values of d, and so in
particular, for at least one value, the solution set of (12) is the intersection of the solution-sets of (10) and
(11), as claimed. The indicated induction now leads to an equation (9) having empty solution-set,
completing the proof of the Theorem. 1

The original motivation for the above Theorem came from the study of integer-valued projective rank
functions on rings; cf. [2]. Let us apply it to that case.

Corollary 3. Let R be an associative ring, and X a set of finitely generated nonzero projective left
R-modules, such that every finitely generated projective left R-module is isomorphic to a direct sum of
members of X.

Then there exists a projective rank function for R (a function from isomorphism classes of finitely
generated projective left R-modules to natural numbers carrying direct sums of modules to sums of
integers, and R to 1) if and only if whenever one has an isomorphism of modules

(13) (P1) c1 2+ ... 2+ (Pn ) cn =∼ Rc (P1 , ... , Pn ∈ X, c, c1 , ... , cn ≥ 0),

the integer c is a linear combination of c1 , ... , cn , with nonnegative integer coefficients.
This rank function can be taken to be faithful (to carry nonzero projective modules to positive integers)

if and only if whenever (13) holds, the integer c is a linear combination of c1 , ... , cn with positive
integer coefficients.

Proof. To get the first assertion, apply the preceding Theorem taking for S the semigroup of
isomorphism classes of nonzero finitely generated projective R-modules (and mumbling the words needed
to replace these proper classes by genuine sets), for both A and T the additive semigroup N of the
nonnegative integers, for e the map taking 1 to the isomorphism class of the free R-module of rank 1,
and for f the identity map. Condition (1) of the Theorem holds because every finitely generated
projective module is a direct summand in a free module of finite rank; (2) and (3) are obvious, and we see
(4) by noting that in the additive semigroup of nonnegative integers, an element is a ‘‘divisor’’ of another
if and only if it is majorized by that element under the natural ordering of the integers, and is a ‘‘weak
divisor’’ of a family if and only if it is majorized by some member of that family; and every nonnegative
integer majorizes only finitely many others. The criterion of Theorem 2 now assumes the desired form (the
coefficients of this Corollary corresponding to the ti of the Theorem).

The final assertion is obtained by the same argument, using the semigroup of positive integers in place
of the nonnegative integers. 1

In [3], generalized projective rank functions, with values in semigroups (1 ⁄ n)N , are used to study
homomorphisms of R into n × n matrix rings over division rings. The same method as above shows that
R admits such a function if and only if for every equation (13), the integer nc can be written as a linear
combination of the ci with nonnegative (respectively, positive) integer coefficients.

In our proof of Theorem 2, we first showed that the infinite system of equations Σ0 could be replaced
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by a finite system Σ2 without using the full strength of our hypotheses. Hence let us record

Corollary 4 (to proof of Theorem 2). Assume the hypothesis of Theorem 2, but without condition (3)
(power cancellativity), and with (4) weakened to say merely that every element of f (A) has only a finite
number of divisors in T. Then a necessary and sufficient condition for there to exist a homomorphism
S → T making a commuting triangle with the given maps from A is that for every finite family of
relations (5) in a common set of elements of x1 , ... , xn ∈ X holding in S, there exist t1 , ... , tn ∈ T
satisfying the corresponding equations (6) in T. 1

2. Implications and examples.

Condition (4) of our Theorem is messy. What simpler conditions can we give under which this
hypothesis will hold?

A statement which clearly implies (4), and is simpler both in that it does not involve divisors of
divisors, and in that it refers only to T, and not to f (A), is

(4 ′ ) Every finite subset of T has only finitely many weak divisors.

(This is equivalent to (4) holding when A = T and f is the identity map. Incidentally, a change that
would lead to a slight simplification in the formulation of (4) itself, would be to redefine ‘‘weak divisor’’
to mean what we are calling ‘‘divisor of a weak divisor’’ – the latter concept may be more natural than the
one we have defined.)

A much stronger condition, which implies all of (2), (3) and (4 ′ ), is

(14) T admits a total ordering with the property
a < b ⇒ ca < cb and ad < bd for all a, b, c, d ∈ T,

and having the order-type of the natural numbers.

Indeed, the argument by which we showed in the proof of Corollary 4 that (4) held if T was the
semigroup of nonnegative or of positive integers works more generally under the assumption (14), once we
verify that the conditions on the ordering in (14) imply a couple of other properties that were obvious in
those cases. First, if T has an idempotent e, this must be a neutral element. Indeed, given an
idempotent e , if for any a the product ea were < a or > a, then from (14) we would get the same
inequality between e2a and ea, contradicting the idempotence of e; so e is a left neutral element, and
by the symmetric argument it is a right neutral element. Secondly, for all a, b with a not a neutral
element, we have ab > b. For if we had b > ab or b = ab, we would get ab > a2b, respectively
ab = a2b. In the first case, we could go on to get an infinite descending chain b > ab > a2b > a3b ... ,
contradicting our order-type hypothesis, while in the second we would get a2 = a, so by our previous
observation, a would be a neutral element. Again, we similarly have ba > b. Given the latter property,
the argument cited offers no difficulty.

Easy examples of such ordered semigroups are given by the subsemigroups of the additive group of real
numbers generated by increasing sequences of positive numbers having no upper bound, for example {21/2,
31/3, ... , n + n–1, ...}. If we take linearly independent generators, such as the powers of π, the resulting
semigroup is free abelian; thus, free abelian semigroups on countably many generators satisfy (14). The
same is true of free nonabelian semigroups; the interested reader can easily find the appropriate orderings,
but instead of establishing (2)-(4 ′ ) in this way, let us note that (2) and (3) clearly hold, and give another
general principle for establishing (4) and (4 ′ ):
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(15)

If a semigroup T admits a finitely-many-to-one homomorphism to a
semigroup satisfying (4 ′ ), or satisfying (4) with respect to a subsemigroup
f (A), then T itself also satisfies (4 ′ ), respectively satisfies (4) with respect
to the image of f (A) under that homomorphism.

This is immediate. Now the free semigroup on generators x1 , x2 , ... can be mapped to the free
semigroup on one generator x (which we have seen satisfies (4 ′ )) by sending xi to x i, and this map is
finitely-many-to-one, hence this free semigroup satisfies (4 ′ ). The same argument proves that (4) holds for
free semigroups in any semigroup variety not satisfying an identity (∀ x)(xm = xn). (Some of these
varieties have, and some do not have the property that their free semigroups also satisfy (2) and (3).)

The above methods are not directly helpful for uncountable semigroups. However, it is not hard to see
that a semigroup satisfies (4 ′ ) if and only if all of its countable subsemigroups do; hence, all free
semigroups satisfy (4 ′ ).

An example showing that the order-type condition in (4 ′ ) cannot be weakened to ‘‘well-ordered’’ is
given by the additive semigroup T generated by {1 ⁄ 2, 2 ⁄ 3, 3 ⁄ 4, ... , n ⁄ n+1, ... }. Since T is generated
by a set well-ordered under the usual ordering of the real numbers, it is itself well-ordered under this
ordering, [1, Theorem III.2.9, p. 123]. But if p, q are members of this semigroup with p ≤ q, it is not
hard to show that p is a weak divisor of {q}. (For the m in the definition of weak divisor, use a
common denominator of p and q, and remember that since T contains 1 ⁄ 2, it contains all positive
integers.) Hence, the singleton set {1} has infinitely many weak divisors in this semigroup. I do not
know whether there is a counterexample to the conclusion of Theorem 2 for this T.

Let us note record another variant of our Theorem, easily obtained by the same proof

Corollary 5 (to proof of Theorem 2). Suppose in the situation of Theorem 2 that for each x ∈ X we are
given a subset Yx ⊆ T, and that condition (4) is weakened to say that the set of divisors of weak divisors
of any finite subset of f (A) has finite intersection with each Ax . Then the conclusion still holds, if the
homomorphisms S → T referred to are required to carry x into Yx for each x ∈ X, and the solutions
to w(t1 , ... , tn ) = e(a) are likewise required to satisfy ti ∈ Yxi

(i = 1, ... , n). 1

We end with an example where all hypotheses of Theorem 2 are satisfied except (3), but the conclusion
of the Theorem fails. Let S be the subsemigroup of the group (Z2)3 × Z generated by the set X
consisting of the seven elements (α , 1) with α ∈ (Z2)3– {0}. Let T be the subsemigroup of (Z2)2 × Z
similarly generated by the set of three elements (β, 1) (β ∈ (Z2)2– {0}), which we shall call Y. Let A
be the semigroup of positive integers > 1, and map A into both S and T by n → (0, n). Conditions
(1) and (2) are clear, and (4) holds because T has an obvious finitely-many-to-one homomorphism to the
positive integers. We also claim that every relation (5) holding in S yields an equation (6) satisfiable in
T: Assuming (5), we see that either no element of X, or more than one elements of X appear with odd
exponent-sum on the left hand side of that equation. Let us map the set of elements of X with this
property to a set of elements of Y whose first components sum to 0, and map the remaining elements of
X to arbitrary elements of Y; we find that this assignment satisfies (6). However, it is easy to verify that
a homomorphism S → T making a commuting triangle with A would induce a homomorphism (Z2)3 →
(Z2)2 carrying no nonzero element to 0, which is impossible.
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