
The question considered here isn’t terribly important, but you may
find the counterexample interesting. No present plans of publishing
this. Comments welcomed as always.

When Cpt has products that are not products in C

George M. Bergman

If C is a category having a final object F , then Cpt, the category of ‘‘pointed’’ objects of C , has
for objects all pairs (ε, X ) where X is an object of C and ε a morphism F → X , and has for
morphisms all morphisms of second components which make commuting triangles with F . It is easy to
verify that if (εi , Xi ) (i ∈ I ) are objects of Cpt, and the objects Xi have a product I

..
I Xi in C , then,

writing ε for the morphism F → I
..
I Xi induced by the εi , the pair (ε, I

..
I Xi ) will be a product of the

objects (εi , Xi ) in Cpt.
Suppose, on the other hand, that we know that the objects (εi , Xi ) have a product (ε, X ) in Cpt.

Must X be a product of the Xi in C ? From the preceding observation this will be so if and only if the
Xi have a product in C , but a little reflection produces no reason to expect that such a product must
exist. However, a counterexample was unexpectedly difficult to find. I shall develop below a rather
curious counterexample, then show how, with hindsight, one can get a less exotic one.

We begin with the following general construction. Suppose A is an abelian monoid. We define a
category SetA whose objects are sets S given with maps p: S → A (which for brevity will not be
shown in writing these objects), and in which a morphism f : S → T in SetA means a finitely-many-to-
one set map f : S → T such that

(1) for all t ∈ T , Σf (s) = t p(s) = p(t ).

It is immediate that set-theoretic composition of maps makes this a category.
We shall be interested in objects of SetA with finite underlying sets. The full subcategory of SetA

consisting of these objects is not in general connected; its connected components are the full subcategories
SetA, a (a ∈ A ) composed of all objects S satisfying ΣS p(s) = a. Each such component has a final
object, Fa , a one-element set such that p takes the one element to a.

Now take for A the group Z2 . If s is an element of an object S of SetZ2
, we shall call p(s) the

parity of s, and call s even or odd according as p(s) is 0 or 1. Let C be the full subcategory of
SetZ2 , 0 consisting of those objects all of whose members have the same parity. In other words, an object

of C consists either of an arbitrary finite number of even elements, or of an even number of odd
elements.

We see that C has a final object F0 , consisting of a single even element. This admits morphisms
only to objects of C which have even elements; by choice of C such objects consist entirely of even
elements. It is easy to deduce that Cpt is isomorphic to the category of pointed finite sets, which of
course has finite products. We claim, however, that these do not constitute products of these same objects
.......................................................................................

This work was done while the author was partly supported by NSF contract DMS 85-02330.
25/5/10: I’ve updated this in two trivial ways: using the word ‘‘monoid’’, which at the time I insisted on
calling ‘‘semigroup with neutral element’’, and updating my e-mail address at the end.



- 2 -

in C . For example, let X be the object of Cpt consisting of two even elements x and y, with x the
basepoint (the image of the unique element of F0 under the map ε). The product in Cpt of two copies
of X is their set-theoretic product W , with all four elements even, and (x, x) as basepoint. Now let Y
be an object of C consisting of four odd points, s, t, u, v, and define morphisms f, g: Y → X , letting
the first take s and t to x, and take u and v to y, while the second takes s and u to x, and
takes t and v to y. If W with its two projections to X were the product of two copies of X in C ,
we would have a morphism Y → W carrying each of s, t, u, v to a distinct element of W ; but this map
would not satisfy (1). So we have obtained the desired counterexample.

(Does anyone know whether the construction SetZ2
has been used anywhere else?)

The key properties that made this work are that the full subcategory of C consisting of objects
admitting pointed structures has finite products, but that outside of this category, there is an object Y such
that the set-valued functor C (Y , –) does not respect those products. With this observation in mind one
can find a simpler example. Let C be the category obtained from Set by adjoining one additional object
Y , setting C (Y, Y ) = {IdY } and C (X, Y ) = ∅ , for X ∈ Ob(Set ), but defining C (Y, X ) to be the set
of all nonempty subsets of X (or if we prefer, the set of all one- and two-element subsets of X ), and
letting composition with any f ∈ Set (X, X ′ ) carry X0 ∈ C (Y, X ) to the image-set f (X0) ∈ C (Y, X ′ ).
It is straightforward to verify that this makes C a category, which has for final object the final object of
Set . The full subcategory of C consisting of elements admitting pointed structures, i.e., the nonempty
objects of Set ⊆ C , has small products; but C (Y , –) does not respect these products.

Incidentally, returning for a moment to the definition of the categories SetA , let us note (though this
is irrelevant to our examples) that one can, if one likes, weaken the condition that all morphisms be
finitely-many-to-one on underlying sets. On first sight, it might appear that we could replace it by the
condition that for each t ∈ T , we have p(s) = 0 for all but finitely many elements s ∈ f–1(t ), since this
allows us to make sense of (1). However, this condition is not respected by composition of set-maps. A
condition that does respect composition, and generalizes the conjunction of ‘‘finitely-many-to-one’’ and (1),
is

(2) For all t ∈ T , there exists a way of partitioning f–1(t ) into finite subsets,
such that for all but one of these subsets, the sum of p(s) over the
elements of the subset is 0, while the sum over the one remaining subset
equals p(t ).

I have no idea what if anything this construction may be good for, however.
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