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Why do we have three sorts of adjunctions?

George M. Bergman

The three sorts of pairs of adjoint functors (covariant, contravariant right, and
contravariant left) arise as a double coset space H D4 ⁄ K, where D4 is the
dihedral group of order 8, and H and K are certain 2-element subgroups.

1. It is well-known that adjunctions come in three flavors: covariant adjunctions (involving one left and
one right adjoint functor), contravariant right adjunctions (where both contravariant functors play the same
role), and contravariant left adjunctions (ditto). Ultimately, of course, these are the same phenomenon,
differently labeled. If we start with the description of a covariant adjunction,

(1) C
U→←
F

D

where U is the right and F the left adjoint, then the sorts of relabeling that we can apply are to replace
C and/or D by its opposite, and/or to interchange the roles of C and D . Thus, the four category-
names C , D , Cop, Dop may be permuted in all ways that respect the correspondence between opposite
categories. If we arrange these symbols in a square with opposite categories at antipodal vertices,

(2)

C D

Dop Cop

then the above relabelings constitute the symmetry group, D4 , of that square.
Note that if in (1) we replace each of C and D by its opposite (and regard our two functors, which

now connect Cop and Dop, as functors between C and D), then the resulting structure is again a
covariant adjunction between C and D , but their roles have been reversed: C is now the domain of the
left adjunction and D of the right adjunction. Hence, if we combine this relabeling with the relabeling
that interchanges C and D (adjusting the names of U and F accordingly), we get exactly the original
description of a covariant adjunction. (It does not matter whether we interchange C and D before or
after replacing them by their opposites, since the operation of replacing both categories by their opposites,
the 180° rotation of (2), is in the center of D4 .)

Within D4 , the above composite operation is the reflection of (2) through its horizontal axis of
symmetry; and the subgroup K that it generates is in fact the isotropy subgroup of the description (1) of
an adjoint pair. Thus, the set of descriptions of adjunctions obtained by applying D4 to (1) can be
identified with the 4-element set D4 ⁄ K.

However, once we have applied some element of D4 to (1), and gotten a description of a type of
adjunction, we really do not care which category is called C and which is called D – those symbols are
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just stand-ins for whatever category-names we will use in our applications of the concept. Hence if we
write H for the 2-element group whose nonidentity element interchanges C and D , i.e., reflects (2)
about its vertical axis, then distinct concepts we are interested in form the orbit space H D4 ⁄ K.

Now H interchanges one pair of elements of D4 ⁄ K (namely, the element corresponding to (1), and
the element corresponding to same diagram with C and D transposed), but fixes each of the other two
elements (corresponding to the two sorts of contravariant adjunctions). So the orbit space has cardinality
3, explaining the three sorts of adjunction. In particular, though a coset-space G ⁄ K of a finite group
must have cardinality dividing the order of G, we see that this is not true of a double coset space
H G ⁄ K, since the orbits of H, which are collapsed to single points, can have different cardinalities.

To see group-theoretically how this happens in our particular case, note that if we take an element
g K ∈ D4 ⁄ K such that g does not normalize K, then g must conjugate K to H. (Reflection about the
horizontal and vertical axes can only be conjugated to one another.) So g K = H g, which is fixed under
the left action of H. On the other hand, for g normalizing K we have g K = K g, which is not fixed
under H, hence belongs to a 2-element orbit.

(As noted in [1], nontrivial contravariant left adjunctions among varieties of algebras are rare. But this
rarity is irrelevant to the abstract taxonomy of adjunctions.)

2. There is a certain amount of arbitrariness in the choice to consider phenomena ‘‘the same’’ if and
only if they can be obtained from one another by permuting our unsuperscripted category-names. As
observed in the second sentence of this note, from a wider perspective all of these sorts of adjunctions are
essentially the same. This viewpoint corresponds to allowing the replacement of C and D by their
opposites as well as each other in deciding what phenomena we will put under one hat, and leads to the
1-element orbit space D4 D4 ⁄ K. This corresponds to the approach of Mac Lane [3, §IV.2].

In the opposite direction, we might, in some situation, want to think of adjunctions in terms of the
‘‘first’’ and ‘‘second’’ categories involved, i.e., not divide out by H. This, as noted, gives four kinds of
adjunctions, corresponding to the set D4 ⁄ K.

In still other situations we might, for some reason, choose to identify types of adjunctions that could be
obtained from one another by replacing both categories simultaneously by their opposites, but not by so
replacing just one. This corresponds to the action of the center Z of D4 , giving us the 2-element orbit
space Z D4 ⁄ K =∼ Z H D4 ⁄ K , which simply classifies adjunctions as covariant or contravariant.

3. Can our description of the orbit of (1) under D4 as D4 ⁄ K be visualized in terms of the picture (2)?
In that picture, there are indeed entities having K as their isotropy group: either of the two vertical lines.
Thus, if we associate the description (1) with, say, the left-hand vertical line of (2), we get an isomorphism
of D4 -sets between the orbit of (1) and the edge-set of (2). Can we interpret this isomorphism?

Recall that an adjunction (1) can be characterized as an isomorphism of bifunctors

(3) C(F ( – ), – ) =∼ D( – , U ( – )) as functors Dop × C → Set .

Similarly, the adjunction we get by reversing the roles of C and D in (1) corresponds to a bifunctor
Cop × D → Set , while a contravariant right adjunction corresponds to a bifunctor Cop × Dop → Set , and
a contravariant left adjunction to a bifunctor C × D → Set . Thus, each sort of adjunction corresponds to a
bifunctor on a pair of categories – and the pairs in question are precisely those labeled by the two ends of
one or another edge of (2). This yields the indicated isomorphism of D4 -sets.

4. What sort of natural symmetries does the double coset space H D4 ⁄ K have?
It is well-known that for any group G and subgroup K, the set G ⁄ K has a structure of G-set; i.e.,

an action of G on the left. A fact not as well known to non-specialists, but easy to verify, is that it has
an action of NG (K ), the normalizer of K in G, on the right; or better, an action of NG (K ) ⁄ K, since
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right multiplication by elements of K fixes all points. This right action commutes with the left action
of G; indeed, NG (K ) ⁄ K is the automorphism group of the G-set G ⁄ K.

Similarly, given a group G and two subgroups H and K, the double coset space H G ⁄ K has both
a right action of NG (K ) ⁄ K and a left action of NG (H ) ⁄ H, which commute with one another.

In the case we are interested in, where G = D4 and H and K are the 2-element subgroups noted
above, the normalizers of these subgroups are H Z and K Z respectively, where Z is the center of D4 .
(For H Z and K Z clearly normalize H and K, and they each have order 4, hence are maximal proper
subgroups of D4 ; so, since neither H nor K is normal, these must be their normalizers.) The induced
actions on H D4 ⁄ K are both, therefore, the action of Z, which interchanges the two sorts of
contravariant adjunction, and fixes covariant adjunction.

5. Appendix. Since introductory discussions of coset-spaces G ⁄ K do not generally mention the right
action of NG (K ) ⁄ K, I will give a couple of examples.

First, let G = S5 , and let K = D5 < A5 , the symmetry group of the regular pentagon with vertices
labeled consecutively 1, 2, 3, 4, 5, or equivalently, of the undirected 5-vertex cyclic graph with vertices
again so labeled. The set G ⁄ K can then be identified with the set of all structures of undirected cyclic
graph on {1, 2, 3, 4, 5}, with S5 acting by permuting those vertices. One finds that K has index 2 in
its normalizer, and that the nonidentity element of NG (K ) ⁄ K acts on the above set of graphs by sending
the cyclic graph with successive vertices p1 , p2 , p3 , p4 , p5 to the cyclic graph with successive vertices
p1 , p3 , p5 , p2 , p4 , i.e., with the original edges erased, and new edges drawn between what were
previously alternate vertices.

Next, suppose that G is the group of proper motions (orientation-preserving symmetries) of the
3-cube, isomorphic to S4 , and that K is the isotropy group of one vertex . Since NG (K ) ⁄ K is the
automorphism group of the 8-element G-set G ⁄ K, it will carry to all vertices having the same
isotropy group. These are just and its antipodal vertex, and we find that NG (K ) ⁄ K is Z2 , acting by
central reflection. Together with G, this generates the group S4 × Z2 of all motions, proper and
improper, of the cube. The same thing happens if we take the same G, but let K be the isotropy group
of any of the 6 faces of the cube, or of any of its 12 edges, since each face or edge has an antipodal
face or edge, which is the only one with the same isotropy group.

On the other hand, the group of proper motions of the cube also acts faithfully on the set of 4 solid
diagonals (as their full group of permutations); and if we take for K the isotropy group of one of these,
which will be S3 < S4 , we find that it is its own normalizer; so here the automorphism group
NG (K ) ⁄ K, and hence its action, are trivial.

At the opposite extreme, if we let K be the isotropy group of a half-edge (the segment from the center
of an edge to one of its vertices), then K is trivial, so NG (K ) ⁄ K = G, and the induced action on the set
of half-edges is by S4 × S4 . Here the second factor does not act by isometries of the cube; e.g., a typical
element is the map sending every half-edge to the other half of the same edge, which in particular sends
the three half-edges adjacent to any vertex to non-adjacent half-edges.
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