Von Neumann regular rings with tailor-made ideal lattices
George M. Bergman

An algebraic distribtive lattice L in which the greatest element is compact can be
represented as the ideal lattice of a Neumagunlae algebraR over an abitrary field k
if either (a) @ery element ofL is a (possibly infinite) join of join-irreducible compact
elements, i.e. ifL is the latticeD (P) of lower subsets of a partially ordered d&t or
(known) if (b) every compact element of. is complemented, i.e. it. is the lattice of
ideals of a Boolean ring, or if (d) has only countably mgrcompact elements.

In each case, the rin@R is a direct limit of finite products of full matrix algebras
over k.

[2013 Addendum:l do not plan to publish this note; the main results are@d in Goodearl and Wehrun@] ||

1. Introduction. Recall that an elemerd of a complete latticel is said to be&eompactf whenever a is majorized by the
join of a family of elements of., itis majorized by the join of some finite subfamily thereof. The compact elements of the
subalgebra lattice of an algebra (in the sense ofetsal algebra, with finitary operations) are the finitely generated
subalgebras; thus in such a subalgebra latti@ey e€lement is a (generally infinite) join of compact elemesisy complete
lattice with the latter property is called algebraiclattice.

The lattice of 2-sided ideals of a rirflg is the subalgebra lattice &® as an R, R)-bimodule, so it is an algebraic lattice,
and it clearly has the further property that the greatest element is cortfp&ttis von Neumann gilar, this ideal lattice is
known to be distributie.

We dall here obtain partial coerses to the ah@ dosenation, showing that under wawnf three hypotheses, an algebraic
distributive lattice L whose greatest elemeit is mmpact can be represented as the ideal lattice of a von Neungafer re
ring. Two of the lypotheses (see abstract e#joare genuine restrictions on the structure lof the third is a cardinality
condition.

2. Lower subsets of partially ordered sets.An important subclass of the algebraic disitibe lattices L are those in
which every element is a join gbin-irreducible compact elementsSuch lattices can be characterized up to isomorphism as
the latticesD (P) of lower subsetsf partially ordered set®; i.e. subsetdA such thatp<q A = p JA. Indeed, gien a
partially ordered seP it is immediate thatD (P) is a @mplete distribtive lattice, that the principal lower subsetg 0P O
g<p} (pOP) are the join-irreducible compact elements, and thatyeelement is a join of aafmily of these.Conversely,
given a lattice L in which erery element is a join of join-irreducible compact elements, if weRetlenote the set of these
elements, we obtain a natural isomorphihrg D (P).

We e that the greatest elementDf(P) will be compact if and only ifP has only finitely may maximal elements,
and eery element of P is majorized by one of these.

Given a partially ordered seP with this propertywe dhall construct in the next twsections a von Neumann regular ring
R whose ideal lattice is isomorphic tD (P). Thiswas inspired by hearing of an unpublished result of Handelman, who
constructs such a ring where P has cardinality< (1,4, generalizing in turn a result of Kim and Rousf yho do this
when P is finite.
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3. Constructing R from P. Let P be (as abee) a partially ordered set whose sé&, ,, of maximal elements is finite,
and such thatvery element of P is majorized by a member d&?,,,,. Let k be aiy field.

We dall obtain fromP a st X, and constructR as a certaik-algebra of endomorphisms of thector-spaceV with
basis X.

Let X consist of all stringgpg, Ny, Py, -, Nj, B;] where 120, pg>p; >...>p, OP, pgOP 50 ad nq, ..., 0, are
arbitrary nonngaive integers. (Thelatter could equally well be elements ofyainmfinite set.) For each p 0P, Xp will
denote the set of elements Xf with last componenp.

Given p>q in P, letus erteU for the set of stringdmy, g, .. ,m, qJ] with j=21 and p>qq > ... >g;=3.
These strings are not membersX)f(smce thg don't begn with a member ofP), hut ratherthe things that one catiack
on at the end’of a member opr to get a member oX We shall write this tacking-on operation as juxtaposition, letting
xu denote the member (Xq obtained by tacking onta DXp the terms ofu OU

Let V be thek-vectorspace with basis<. For eachp OP, Vp will denote the subspace with baéf.B The operators
on V which will comprise our algebr& will in fact carry each of the space\ssp into itself; thus this algebr& could
equally be described as a subalgebra of the direct proderctto of the endomorphism algebras of the spaVss and this
is the way | think of it, but it is less cumbersome to speak of an algebra of maps than an algefoaesf of maps.

To constructR, we define for @ery p OP and x, yDXp the operatorfxy v V -V by

fi ) =X,
(1) fy. y(yu) =xu for every u DUp,q (p>qOP),
fx, y(z) =0 for zOX not of the formy or yu.

The set of operator§, y with X, yDXp will be denotedF the full family of operatorsDP F will be written F.

Lemma 1. The set of linear operaterF is linearly independentwer k.
Proof. Given a rontrivial linear combinationr = X Cx, yfx,y (cX,ka), choosefxyy with Cx,y¢ 0 90 as to naximize the

elementp such thatf, yDFp. Theninr(y) OV, the coefficient ofx is ¢, y T z0. O

Lemma 2. The span ofF is a wital subalgeba R d the algeba of endomorphisms o#.
Namely the identity endomorphism &f is gven by

2) 1= 25 0P o 01 P
and composition of operateis described by
fw, xFx, y = fw, y
f. . f =f
3) W, X'Xu, yu™ 'wu, yu
favu, xufx, y = fwvu, yu
fW Xfy ;= 0 in all other cases.

Proof. By calculation from (1).0
4. Properties of R. The next Lemma describe? locally.

Lemma 3. Let Q beany finite subset oP containing P,,,,, and let N be any positive intge. Let XQ n denote the
finite subset ofX consisting of those strings whose componewts fiP alllie in Q, andwhose intger components a
<N.

Then the subakpra RQ n of R spannetly the element$, y with X,y DXQ N IS isomorphic to a finite direct pduct



of full matrix algebras wer k.

Proof. Fgr p0Q let us abbrvaiatg XQ’ N.” X_IO to XQ,N,p‘ Given X’_YDXQ,N,p* define &,y fX’y— fou_, yu where
the sum is wer all u of the form [i,q] with i<N and p>qO0Q. Writing EQ,N,p= {eX’ny,yDXQ'Nlp}, it is easy to
verify from (3) that the elements of this set multiply dikratrix units (in the algebra of square matrices of size
;Zrd (XQ, N, ID)), thatthey havezero product with elements cEQ, N, q for q0Q, g#p, and that DpDQ EQ’ N, p SPans
N
Thus RQ N is the direct productwver p JQ of a family of full matrix algebrast

Since R is the direct limit of these subalgebras as we enl&gand N, we have

Corollary 4. R is von Neumannegular. O

To determine the ideal lattice dR, we begn with

Lemma 5. The ideal RrR ¢nerted by an element OR oontains all elements of the basks occurring with nonzey
coefficient inr.

Proof. Let fx, y DFp be an element occurring with nonzero coefficient jnchosen among such elements so as to minimize
pOP. We all shav that fx,y belongs to RrR; the same conclusion for arbitrary elements occurring with nonzero
coefficient inr follows easily by induction on the number of summands.in

Consider the elemenﬁxlxrfy’yDRrR. One sees from (3) (and the minimality pf that this is a scalar multiple of
f the scalar factor being the sum of the coefficients iof the basis elements

X, y’
fx,y itself
and
(4) those fx',y' -y qu, g>p) for which there ®ists u DUq,p such

that x = x'u, y=y'u.

If the sum of all these coefficients is nonzero, tfRnR contains a nonzero scalar multiple f;(fy and we are doneln
the contrary case, the family of elements (4) must be nonempty; choose such an J;Lellglndﬂl:q SO as to maximizey.
Now let v=[n,p] O Uq, o where n is chosen so thaf,., YV doesnot appear with nonzero coefficient in. (This is
where we use thatt that there are infinitely mapossibilities forn.) Thenthe eIementhY XV rfy,V‘ y will also be a scalar

the scalar coéitient being the coefficient Ofx',y' in r (no other summand im but fx',y’ males a

multiple of f, y
nonzero contribution), and hence nonzero. Thus the ideRl génerated by containsf, y in either cased

It follows that the ideal lattice oR is generated under (generally infinite) joins by the iddafg yR. The information
about these ideals needed to determine this lattice is collected in

Lemma6. () For p OP, dl elements § y DFp generate the same ideal, whigve $all denote l!)
(i) If p<qg in P, then bDIq.

(i) Forany pOP, Ip > pgq Iq.
Proof. (i) It sufices to shw that gven f,

fy, z= fy, whw, xfx 2

(i) Taking fW'x DFq, fy, ZDFp and u DUq, p We have fy, 2= fy,wufw, Xfxu, -

(i) Considerthe action of R on the iwvariant subspaceVpDV. We find from (1) that all elements on have
nontrivial action, but that elements 6{1 with g2 p act trivially. O

x and fy'Z in Fp, the ideal generated b, , contains fy’ »- And indeed,



We aasily deduce
Proposition 7. The lattice of ideals oR is isomorphic to XP), the lattice of lower subsets & O

5. Ideallattices of commutative regular rings. Let us look briefly atommutativaevon Neumann regular rings. The results
we shall describe are doubtless known, but we include them for pevepactiur other results.

If a is a compact element of the ideal lattice of a comnugtatbn Neumann regular rindR, it is generated by an
idempotente, and one sees that-e will generate an ideat such that

allc=1, alc=0.

Given any dement a in a bounded lattice (a lattice with a least elem@ntanda geatest element]l), sucha c is called a
complementf a, and an element having a complement is said to ¢é@mplemented
In ary bounded distributie lattice L, an dementa with a complement induces a direct product decomposition

(5) L 90, a] x[0, c].

It is easy to deduce that in such a lattice complements are unique wierisheand that the complemented elements form
a wblattice which is in fact a Boolean ring. If furthermokeis complete andl is compact, we can deduce from (5) that
evay complemented elemera is also compact.

Returning to the latticeL of ideals of a commutat von Neumann regular ring, in which wevieagen that eery
compact element is complemented, we conclude that the compact elements are precisely the complemented elements, an
that these form a Boolean ring. Every elementa L, being a join of compact elements, will be determined byidbal
of the Boolean ringB comprising those compact elements which it majorizes; mereib is not hard to verify that this is
the only ideal ofB whose join isaL, hencelL can be identified with the lattice of all idealsBf One can also describe
this as the lattice of open subsets of the Stone spaceBIpec(

A Boolean ringB is itself a von Neumann regular ring, so wensely the lattice of ideals of giBoolean ring is the ideal
lattice of a commutate von Neumann regular ring. But we can say more: for feld k the k-algebra R of locally
constantk-valued functions onSpecB) has this same lattice of ideal¢B itself is given by the casek =Z, of this
construction.) Thik-algebraB is generated by the characteristic functions of the open-closed subsgiec), andthe
subalgebra generated byydimite family of these is a finite product of copieslof so R is a direct limit of such product
algebras. Hencas in the preceding section, thouglyeleerately the algebra we lwa found is a direct limit of finite
products of full matrix algebrasver k.

In summary,

Lemma 8. (reference?)Let k bea field. Therthe following conditions on a lattice are equivalent:

() L isisomorphic to the lattice of ideals of a commutative von Neunegplar k-algeba R

(i) L isan dgebraic distributive lattice in whital compact elements amomplemented.

(i) L isisomorphic to the lattice of ideals of a Boolean ring.

(iv) L isisomorphic to the lattice of open subsets of a Stone $pace totally disconnected compact Haustisghce).
Moreoverin (i) the k-algeba R @n always be taken to be a direct limit of a system finite product algdbr ... xk. O

The intersection of the class of lattices characterized here with the class of lattices of thH2(@Jnwith P as in the
preceding section is quite small; for in a lattibgP), anecessary condition for the lower subset generated by an element
p OP to be complemented is that be maximal.Hence if all compact elements are complemented, we Ra= P a
finite set, and the lattice will ke the form 2' for some integem.

max’



6. ldeals of semilattices. In ary complete latticeL, the join of two compact elements is compact, hence the compact
elements form an upper semilattic® (not generally complete)lf L is algebraic, an arbitrary element &f will be a
possibly infinite join of compact elements, hence the join of an upward directed system of compact elements. It is easy to
deduce that. is isomorphic to the latticé (S) of idealsof the semilatticeS containing the least elemer, Anideal in a
semilattice means a lower subset closed under finite joins; the finitely generated ideals are all principal (generated by the join
of ary finite generating set), and correspond bijestyito the elements ofS, while the general ideal is a directed union of
principal ideals.

Any semilattice S is, of course, the direct limit of its finite subsemilattic®'s and in a finite semilattice very element
is a join of join-irreducible elements. The idea of the next ring-theoretic construction is, very rdaghtjtate our first
construction, using instead of the single partially ordered Bethe system of partially ordered sets of nonzero join-
irreducible elements of these finite subsemilatti€&&s going to the limit @er larger and lager S' 0 S. We dhall be able to
bypass some of the complications of that construction, and in partiduprthe intgers n; that we used there, because the
nature of our limit process itself will provide the needed “multiple copedgiur vector space basis elements. Of course, the
new construction will create some complications of itgno | have rot been able tov@rcome the technical difficulties that
would be irvolved in setting up the direct limitver a general directed system; in particylaf making the required diagrams
of algebra maps commuteddence we shall requiré&s to be countable, so that we candakir direct limit over a s/stem
indexed by the natural numbers.

7. Theconstruction. Let L be an algebraic distnittive lattice whose greatest elemeht is compact, and such that the
semilattice S of compact elements df is countable. Let us writ& as the union of a chain of finite subsemilattices,

(6) {0,3=5%0S5,0..
For n=0,1, .., let
P, = {join-irreducible elements 0§}

Here we do not coun as join-irreducible (it is the join of the empty family), so it does not belong yocdrthe P,,.
Obsere that every element of S, will be the join of a subset oP,,.

For n=0 and p OP,, we define the finite set

n!
Xn,p:{[po, P15 Pl Opg2...2p, =p, p OP; (O<i<n)}.
We dall agin use juxtaposition to denote extension of such strings. In this case this will mean that for
[Pgs - +Pn-1] B Xp-1 D and q 0P, with p>q, we will write
Xq: [pO: lpn—ll q] Dxn‘ q

We row form the vector space/,, p on each setX, D and for eachn we write X, = Dp[IP Xh D and V, =
. ’ ! . . n, 't .
Dp oP.. Vi o We cefine R, to be thek-algebra of those endomorphismsgf, which tale each V,, o into itself, i.e. the
n o n, ,
direct product wer p 0P, of the full matrix algebras omard (X, IO) generators. Aasis forR,, consists of the elements

e)(l y (Xa y[lxn, p1 p Dpn)!

defined to carryx to y, and all other elements oX,, to zero.
Finally, we define the linear maps

fn: R, - Ry+1

by



(7) fn(&y) = Zq0p, ;. p2q &q, yg R+

It is straightforward to erify that these maps are homomorphisrnitiey are also one-to-one; this follows from the
obsenation that egery elementp 0P, can be written as a join of elements Bf,;, S0 in particular, p majorizes some
elementq in that set.

For every n=0 and p 0P, let J, b denote the ideal oR, generated by the elementg y with x, yOX, b Thus,
evey ideal of R, can be written uniquely as the sum of some subset of this family of ideals. From the definffjoit tf
easy to see

Lemma 9. For p OP,, q0P,,¢, the ideal of R,; generated by f(J, p) contains J,4 q if and only if p=g. O

We dall take for our ring R the direct limit of the chain of embeddindg. But in order to mag& this ring hae te
properties we want, we must (sorry!) go back to (6), i.e. to our choice of the chain of semilgftides, and impose an
additional condition.To gate this condition, let us, for each natural numbeand each posite integeri < card§,), define
a, ; to be the number of elements &, which are majorized byxactly i elements ofS,. Then by enlarging our
semilattices if necessamnye an clearly achiee a guation where, for eacin,

We annot, by keping S, fixed and enlaing S,,,, decreasethe sequence

® (an'1, 8 2+ 180 card §1)) with respect to lexicographic ordering.

We dhall henceforth assume (8). The purpose of this peculiar requirement & i gi

Lemma 10. Let p;, p, S, and q0OP, ¢, and suppose that ;plip, 2. Then either p=q or p, 2 q.

Proof. From the distribtivity of L we see that inL, q= (p;0q) O(p,0q). We want to shw that one of these meets
equalsqg. Assume the contraryNow the intersectionsp, (g and p, g may not be compact i, but by the assumption

of algebraicity thg will be joins of families of compact elements. Using the compactness, ofve deduce that there will
exist elementsr, < p;0q and r, < p,0qg which still satisfy r; Or, = g, given by joins of finite subfamilies of those
families of compact elements, and hence themselves compact. IkteredeS,,; by adjoining r; and r,, then the
resulting semilattice has maw join-irreducibleelements except perhaps these elements theessetorewver, q has ceased

to be join-irreducible.Now r; and r, are each majorized byoreelements ofS, than q was (because one of them is
majorized by p; and the other byp,), hencewe hae reduced the number of join-irreducible elements majorized by the
number of members o§, that majorizedq, while possibly increasing only the numbers majorized byelafamilies. This
contradicts (8), proving the Lemma.

This allows us to generalize Lemma 9 to

Lemma 11. For m<n, p0OP,
p=q.

m: 0P, the ideal of R, generated by fn—l"'fm(‘Jm,p) contains A,q if and only if

Proof. “Only if” i s draightforward, because the magfs take dements e, ,, such thatx and y have last component
p OL only to sums of elements for which the corresponding elemeht isf sb ).

To get the cowmerse, supposep=q and assume induesly that the ideal ofR,_; generated by the image OTm,p
contains eery J,_q  (r OP,_4) suchthatp=r. Now in the semilatticeS,_;, the elementp is a join of join-irreducible
elementsr OP,,_, hence this join majorizeg in §,, hence by the preceding Lemma, one sudhP,_, majorizesd.
By our inductve assumption the ideal generated by the imagequpfp contains J and by Lemma the ideal
generated by the image dﬁ—l,r contains\]n, q giving the desired conclusiom

n-1r’

We ow let R denote the direct limit of the chain of embeddirfgs



Lemma 12. Let m,n be natural numbes, p, ..., Py aP,
image d J
in L.

and q, ...,q, OP,. Then the ideal ofR geneated by the
if and only if [lp; > qu

m:

contains the ideal@nerated by the imge d J,, aq +..+ 4,

m:P1+ +Jm’qu
Proof. Suppose the ideal 0R generated by the image df, , + ... +J, contains the ideal generated by the image of
‘Jn, +...+ Jn, . Since these ideals are finitely generat,ch}, the same inclusion must hold between their inRge®in
some intger N, which we can taé geater than bothm and n. We can deduce from the preceding Lemma (and the
“ Boolean’ nature of addition of ideals in a product of matrix ringerca field) that gery r [Py, which is majorized by
some is also majorized by som@;. But each Qi is a join of join-irreducible elements [Py, and by the abee
obsenation each of these elementsis majorized by somep;, so each 0 is majorized by Dpi; hence so iquJ-, as
required.

Corversely, suppose Dpi > qu, and let us tak any N>m,n. Then {p;} 0 S§_4, hence by Lemma0, the set of
elements of Py, majorized by Dpi is the union of the sets majorized by the sepamfts. Combining this with the
analogous characterization of the union of the sets of elemerRg aiajorized by theqj 's, we mnclude that the former
union contains the latteHence from the characterization in the preceding Lemma of the ided® ofienerated by the

images of theJm, n and Jn,q , we get the desired inclusion of sums of ideats.

It follows that the semilattice of finitely generated idealdRofs isomorphic to the semilattic8 of all compact elements
of L. This in turn implies

Proposition 13. The ideal lattice ofR is isomorphic to L.0

8. RemarksThe existence of such a von Neumann regular fhgvas proved by Kim and Roushd] under the additional
hypothesis thatL was the ideal lattice of a countable distritve lattice. Thisis equvalent to requiring that the upper
semilattice S of compact elements be closed under finite meets; if we had assumed that, we \etkehaour S, to be
distributive lattices themsebs. Itwas to gt around the fact that thevere not that we imposed condition (8) on these
semilattices, leading to Lemma 10, which establishes a relation between sec&sshat a finite distribitive lattice has
with respect to itself.

Like Kim and Roush, | had to put a countability hypothesisSnlIf we drop this hypothesis, there is a reasonable
candidate for a directed partially ordered sedravhich to perform our limit construction, namely (assuming for simplicity
that L is infinite) the set of all finite subsemilattices 8fcontaining 0 and 1, orderdsy writing S'<S" if S' is a
proper subsemilattice 08", and the satisfy the analog of condition (8). The problemweaer, is what to use for the sets
Xg, and for analogs of the‘extensions” xulX,.,; of elements x[UX,,, which we used in defining our ring
homomorphismsf,, .

9. Remarkson infinite distrib utivity. It is interesting to consider the three classes of algebraic distgbattices we hee
looked it in terms of the infinite meet-distributivity condition

9) 0 @0b) =a0( b).

This condition is satisfied foall a and b; in a lattice of the formD (P), sincein such a lattice arbitrary joins and
meets are gen by wions and intersections of subsetskf In the lattice of open subsets of a Stone spécecondition (9)
does not hold in generalf x is a non-isolated point(b;) the set of all open neighborhoods xf and a the open set
X—{x}, then all of the joins on the left-hand side of (9) eg¥al hence so does their meet, while the meet on the right is the
interior of {x}, hence emptyso he right-hand join equal&. Howeve, in any complete distrintive lattice, (9) holds
wheneer a is complemented (Use the decomposition (5).) Hence in the lattice of open subsets of a Stone space, we can
say that it holds whemer a is compact

Even this result for compact elements does not hold in lattices of the sort considered in the precedingCserstider,



for instance, the latticd. of ideals of the ring of ingers Z. This is certainly an algebraic lattice, and easily seen to be
distributve. BecauseZ has ascending chain conditiorves/ element of L is compact, andL is countable.However,
letting a be the ideal2Z and b; the ideal 3'Z, we e that on the left-hand side of (9) each join is the unit ideal, so the
left hand side is the unit ideal, while on the right the meet is zero, so we get tha.ideal

Since it is difficult to picture the algebra associated to this lattice by our construction, let mevalao eyplicit von
Neumann regular ring for which (9ifs for compacta. Let k be aly field, andR thek-algebra of all sequences ok2
matrices wer k which are gentually constant, and whos&eatual value is diagonal (with not necessarily equal diagonal
entries scalar)Let a denote the ideal of those sequences of matrices whestial scalar value ha8 asits (2,2) entry
and b; the ideal of sequences whosergual scalar values hia 0 & their (1,1) entryand which hae zro forall entries
in all terms up to théth. Thereader can easilyduate the tw ddes of (9) and see that again the left hand side is the unit
ideal while the right hand side &.

On the other hand, the infinite join-distributivity condition
(10) 0 @adb)=a0(l by),

holds in ay agebraic distriltive lattice. (Ideaof proof: If not, tale a @mpact element majorized by the right hand sigte b
not by the left.)
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