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SOME FRUSTRATING QUESTIONS ON

DIMENSIONS OF PRODUCTS OF POSETS

GEORGE M. BERGMAN

Abstract. Definitions, in particular that of the dimension of a poset, and examples, are recalled. For a

subposet P of a direct product of d > 0 chains, and an integer n > 0, a condition is developed which
implies that for any family of n chains (Tj)j∈n, one has dim(P ×

∏
j∈n Tj) ≤ d. Applications are noted.

Open questions, old and new, on dimensions of product posets are noted, and some numerical invariants
of posets that seem useful for studying these questions are developed.

In a final section (independent of the other results), we note that by a result of model theory, an infinite
poset P will have finite dimension d if and only if d is the supremum of the dimensions of its finite

subposets.

1. Definitions and examples

We assume the reader familiar with the definition of a partially ordered set, for which we will use the short
term poset, and of the special case of a totally ordered set, also called a chain. We will formally consider a
poset P to be an ordered pair (|P |, ≤P ), where |P | is the underlying set and ≤ the order relation; but
when there no danger of ambiguity, we shall write p ∈ P to mean p ∈ |P |, and ≤ for ≤P .

Posets will always be understood to be nonempty.
We will write x ≥ y, x ≥P y, etc., for y ≤ x, y ≤P x, etc., and will use <, <P , >, >P , etc. for

the conjunctions of the relations ≤ etc. with the relation 6= . We shall use � for the negation of ≤, and
likewise � for the negation of ≥, etc..

Recall that a set-map f : P → Q between posets is called isotone if

(1.1) p ≤ p′ =⇒ f(p) ≤ f(p′) for all p, p′ ∈ P,
and is called an embedding if it is isotone, and also satisfies

(1.2) p � p′ =⇒ f(p) � f(p′) for all p, p′ ∈ P.
Clearly, an embedding of posets is one-to-one; but a one-to-one isotone map need not be an embedding.

A linearization of a partial ordering ≤ on a set X means a total ordering ≤′ on X which extends
≤, in the sense that for x, y ∈ X, if x ≤ y then x ≤′ y; in other words, such that the identity map of
X is an isotone map (X, ≤) → (X, ≤′). It is easy to verify that every partial ordering on a set admits a
linearization, and in fact that

(1.3) Every partial ordering ≤ on a set X is (as a set of ordered pairs) the intersection of its
linearizations.

(Idea of proof: Given x, y ∈ X such that x � y, show that there is a strengthening ≤′ of ≤ such that
x >′ y. Iterating this process infinitely many times if necessary, we get a linearization of ≤ . Moreover, by
our choice of the pair with x � y that we start with, we can insure that any prechosen order-relation that
does not hold under ≤ fails to hold in our linearization. Hence looking at all linearizations, we have (1.3).)

By the product P×Q of two posets P and Q one understands the poset whose underlying set is |P |×|Q|,
ordered so that (p, q) ≤ (p′, q′) if and only if p ≤ p′ and q ≤ q′; and analogously for products of larger
families of posets. (These are in fact products in the category of posets and isotone maps, though we shall
not use category-theoretic language in this note.) Thus (1.3) says that every poset P embeds in the product
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of the chains obtained from P using all linearizations of ≤P . Occasionally, I shall refer to a product of
posets as their ‘direct product’, when this seems desirable for clarity.

We now come to the concept we will be studying in this note.

Definition 1.1. The dimension dim(P ) of a poset P is the least cardinal κ such that
(i) the relation ≤P is an intersection of κ total orderings on |P |,

equivalently, such that
(ii) P is embeddable in a product of κ totally ordered sets.

In the above definition, the implication (i) =⇒ (ii) is clear. To get (ii) =⇒ (i) (= [16, Theorem 10.4.2])
first consider any isotone map f : P → T where T is a totally ordered set. For each t ∈ T, regard the
inverse image of t in P as a subposet, and choose a linearization ≤t of the partial ordering of that subposet.
We can now strengthen ≤P to a linear ordering ≤′ of |P | by making p ≤′ q if either f(p) <T f(q), or
f(p) = f(q) and p ≤f(p) q. Thus, given an embedding of P in a product of κ posets Tα, if we construct as
above from each of the projections f(α) : P → Tα a linearization ≤′α of ≤P , we see that the intersection
of these linearizations will again be the partial ordering ≤P .

We understand the product of the empty family of sets to be a singleton. Thus a poset has dimension 0
if and only if its underlying set is a singleton.

In the literature on dimensions of posets, condition (i) above is generally the preferred definition; but here
we will more often use (ii).

This note will focus almost entirely on finite-dimensional posets, though we will allow underlying sets of
these posets to be infinite. In indexing finite families of maps etc., we will follow the set-theorists’ convention,

(1.4) For n a natural number, n = {0, . . . , n− 1}.
For positive integers n, two important examples of posets of dimension n are:

(1.5)
The n-cube 2n, i.e., the n-fold direct product 2×· · ·×2, where 2 denotes the poset {0, 1} with
the ordering 0 < 1,

and, for n ≥ 2,

(1.6)
The “standard example” Sn, whose underlying set consists of 2n elements
{a0, . . . , an−1, b0, . . . , bn−1}, with the ordering that makes each ai less than every bj
other than bi, and with no other order-relations among these 2n elements.

For n ≥ 3, Sn can be identified with a subposet of 2n, by identifying each ai with the n-tuple that
has value 1 in the i-th coordinate and 0 elsewhere, and each bi with the n-tuple that has value 0 in the
i-th coordinate and 1 elsewhere. (Sn is sometimes called the “crown” of dimension n. This nicely fits the
appearance of the diagram when n = 3, but not so nicely for higher n.)

To see that (1.5) and (1.6) both have dimension n, note first the inequalities

(1.7) dim(Sn) ≤ dim(2n) ≤ n,

which are clear in view of the representation of Sn as a subposet of 2n, and of 2n as a direct product of
n chains. So it will suffice to show that the ordering on Sn is not an intersection of fewer than n total
orderings.

To see this, consider any family of total orderings of |Sn| whose intersection is the ordering of Sn. Note
that for each i ∈ n, since ai � bi in Sn, that family of total orders must have at least one member ≤i
such that ai >i bi. I claim these orderings ≤i must be distinct. Indeed, if for some i 6= j, ≤i is the
same as ≤j , let us call their common value ≤i,j . Interchanging the roles of i and j if necessary, we
may assume aj >i,j ai. Then aj >i,j ai >i,j bi, hence under the intersection of our family of orderings,
aj � bi, contradicting the definition of Sn. So the orderings ≤i (i ∈ n) in our family are indeed distinct,
so dim(Sn) ≥ n, so by (1.7), both (1.5) and (1.6) indeed describe posets of dimension n.

For another class of examples of dimensions of posets, recall that a poset P in which every pair of distinct
elements is incomparable is called an antichain. We claim that

(1.8) Every antichain P with more than one element has dimension 2.

Indeed, if one chooses any total ordering of |P |, then the intersection of that ordering and the opposite
ordering is the antichain ordering, so dim(P ) ≤ 2; and since |P | has more than one element, no single linear
ordering makes it an antichain.

We remark that under an isotone bijection of posets which is not an isomorphism, the dimension may
increase, decrease, or remain unchanged. For instance, starting with an antichain of 8 points, a bijection
onto the poset 23 is an isotone map that increases the dimension from 2 to 3, while a linearization decreases
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the latter dimension from 3 to 1. On the other hand, a bijection from a 4-element antichain to the poset
22 is isotone and leaves the dimension, 2, unchanged.

Let us note one more elementary poset construction (a generalization of one we applied to chains in
proving the equivalence of the two conditions in Definition 1.1). Given a poset P, and for each p ∈ P a
poset Qp, we may define the set

(1.9) |
∑
P Qp| = {(p, q) | p ∈ P, q ∈ Qp},

and partially order this lexicographically; that is, by defining

(1.10) (p, q) ≤ (p′, q′) if and only if either p <P p
′, or p = p′ and q ≤Qp q

′.

It is not hard to verify that for this construction,

(1.11) dim(
∑
P Qp) is the supremum of {dim(P )} ∪ {dim(Qp) | p ∈ P}.

In the verification, one takes a representation for P as in Definition 1.1(i), and representations of the
Qp as in Definition 1.1(ii) (which may, but do not need to satisfy the stronger condition (i)). By repeating
mappings if necessary, one can assume that the number of chains used in each of these representations is the
supremum indicated above. One can then easily combine these to get an embedding of

∑
P Qp in a product

of that number of chains.

2. Our main result, and some consequences

To lead up to our main result, let us first note that for any two posets P and Q (which, we recall, are
required to be nonempty), we must have

(2.1) max(dim(P ), dim(Q)) ≤ dim(P ×Q) ≤ dim(P ) + dim(Q).

The properties of vector-space dimension suggest that the second inequality should be equality; but the
two concepts of dimension are not alike in that respect. To see an interesting way that equality can fail,
consider a poset P of dimension d, represented as a subposet of a product of d chains, P ⊆

∏
i∈d Ti, and

consider a nontrivial chain C. Suppose that for each i we let T ∗i = Ti × C, ordered lexicographically –
intuitively, the chain gotten from Ti by replacing each element t by a miniature copy of C. It is easy to see
that the map f : P × C →

∏
i∈d T

∗
i taking ((p0, . . . , pd−1), c) to ((p0, c), . . . , (pd−1, c)) is one-to-one and

isotone. Can it fail to be an embedding?
In general, yes. If p < p′ in P and c > c′ in C, then in the product poset P × C, the elements (p, c)

and (p′, c′) are by definition incomparable; but if it happens that for all i, we have pi < p′i, then under the
ordering described above, f(p, c) < f(p′, c′); so their images are not incomparable.

However, if the subposet P ⊆
∏
i∈d Ti has the property that whenever two elements p, p′ satisfy p < p′,

the elements p, p′ ∈
∏
i∈d Ti agree in at least one coordinate, then looking at that coordinate, we see that

we do get incomparability between the indicated elements of f(P ×C); so f is an embedding, so we indeed
have dim(P × C) = d = dim(P ).

The condition that every pair of comparable elements of P ⊆
∏
i∈d Ti agree in at least one coordinate

may seem unnatural, but for d ≥ 3 it is easy to see that it holds in the poset Sd, regarded as a subposet
of 2d (sentence following (1.6)).

In fact, more is true there: Every such pair of elements ai < bj agree in one coordinate where their
common value is 0 (the j-th), and one where their common value is 1 (the i-th); and the above construction
can be adapted to show, as a consequence, that taking the product of Sd with two chains does not increase
its dimension.

The next result gives this argument in detail for a still more general situation, that applies to products
of P with possibly more than two chains. Note, however, that in that theorem, d is not assumed to be
the dimension of P (as it is in the above example), but simply an integer such that P is a subposet of a
product of d chains with certain properties.

Theorem 2.1. Let d and n be nonnegative integers, (Ti)i∈d a d-tuple of chains, which for notational
convenience we will assume pairwise disjoint, P a subposet of

∏
i∈d Ti, and (Mj)j∈n an n-tuple of pairwise

disjoint subsets of
⋃
i∈d Ti. such that

(2.2)
For every comparable pair of elements p ≤ p′ in P, and every j ∈ n, there exists i ∈ d such
that the i-th coordinates of p and p′ are equal, and their common value is a member of Mj .

Then for any n-tuple of chains (Cj)j∈n we have

(2.3) dim(P ×
∏
j∈n Cj) ≤ d.
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Proof. For notational simplicity, we may assume all the Cj are equal to a common chain C, and that⋃
j∈nMj =

⋃
i∈d Ti. Indeed, given structures as in the statement of the theorem, we may embed all the

Cj in a common chain C, and if we prove (2.3) with the Cj all replaced by C, this will imply the same
inequality for the original choices of Cj . Likewise, if we enlarge some of the Mj (still keeping them disjoint)
so that their union becomes the whole set

⋃
i∈d Ti, then the hypothesis about comparable pairs of elements

p ≤ p′ that was assumed for the original choices of Mj remains true.
To obtain (2.3), we need an embedding of the poset on the left-hand side, which we can now write P×Cn,

in a product of d chains T ′i (i ∈ d). For this purpose we define

(2.4) T ′i = Ti n C, the set-theoretic product of Ti and C ordered lexicographically, i.e., so that

(2.5) (t, c) ≤ (t′, c′) if and only if t < t′, or t = t′ and c ≤ c′.
Also, since the Mj (j ∈ n) partition

⋃
i∈d Ti, we can set the notation

(2.6) For each t ∈
⋃
i∈d Ti, m(t) ∈ n will denote the unique value such that t ∈Mm(t).

We now define a map f : P × Cn →
∏
i∈d T

′
i as follows.

(2.7)
For p = (pi)i∈d ∈ P ⊆

∏
i∈d Ti, and c = (cj)j∈n ∈ Cn, let f(p, c) be the element of

∏
i∈d T

′
i

whose i-th coordinate is (pi, cm(pi)) for each i ∈ d.
We wish to show that f is an embedding of posets.

First, f is isotone, i.e.,

(2.8) If (p, c) ≤ (p′, c′) in P × Cn, then f(p, c) ≤ f(p′, c′) in
∏
i∈d T

′
i .

This follows easily from (2.5) and (2.7).
To complete the proof that f is an embedding, we need to show that

(2.9) If (p, c) � (p′, c′), then f(p, c) � f(p′, c′).

This breaks down into two cases. Suppose first that

(2.10) p � p′.

In that case, for some i we have pi � p′i, i.e., pi > p′i, and looking at the i-th coordinates of f(p, c) and
f(p′, c′), namely (pi, cm(pi)) and (p′i, c

′
m(pi)

), we see from the lexicographic ordering of T ′i that the former

is > the latter, giving the conclusion of (2.9). If, on the other hand,

(2.11) p ≤ p′, but c � c′,

then in view of the second inequality above, we may choose a j ∈ n such that

(2.12) cj > c′j .

Now by the first inequality of (2.11) and the hypothesis (2.2), there is some i ∈ d such that

(2.13) pi = p′i ∈Mm(j).

Note that by (2.7),

(2.14) f(p, c) and f(p′, c′) have i-th terms (pi, cj) and (p′i, c
′
j) respectively.

Since the Ti-coordinates of the above two i-th terms are the same by (2.13), the order-relation between
them is that of the C-coordinates, which satisfy (2.12). This completes the proof of (2.9), as required. �

Remark: I came up with the above result after pondering [4], which showed by an explicit construction
that dim(S3 × 2× 2) = 3, i.e., is equal to dim(S3). The next corollary includes that case.

Corollary 2.2. Suppose d ≥ 2 and (Ti)i∈d is a family of chains, each having a least element 0i and a
greatest element 1i, and P is a subposet of

∏
i∈d Ti consisting of elements each of which has at least one

coordinate of the form 0i and at least one of the form 1i′ . Then for any two chains C0 and C1, we have

(2.15) dim(P × C0 × C1) ≤ d.

In particular, if d ≥ 3 and P is any subposet of 2d \{0, 1}, containing the subposet Sd (e.g., if P = Sd),
then for any two chains C0 and C1,

(2.16) dim(P × C0 × C1) = d = dim(P ).
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Proof. In the context of the first assertion, given p ≤ p′ ∈ P, since p has at least one coordinate of the form
1i, p

′ ≥ p must also have 1i as its i-th coordinate; and similarly, since p′ has a coordinate 0i′ , p must agree
with p′ in that coordinate. Applying Theorem 2.1 with n = 2, M0 = {0i | i ∈ d} and M1 = {1i | i ∈ d},
we get (2.15).

The second statement follows because when each Ti is the 2-element set {0i, 1i}, the exclusion of 0
and 1 from P forces every element to have at least one coordinate of the form 1i and one of the form
0i′ ; and the assumption that P contains Sd, which we saw following (1.6) has dimension d, turns the
inequality (2.15) into equality. �

If, instead of assuming that every element has at least one 0-coordinate and at least one 1-coordinate, we
only assume one of these conditions, it is easy to check that the analogous reasoning gives a conclusion half
as strong:

Corollary 2.3. Suppose d ≥ 1, and (Ti)i∈d is a family of chains each having a least element, 0i, and P
is a subposet of

∏
i∈d Ti consisting of elements each of which has at least one coordinate of the form 0i.

Then for any chain C we have

(2.17) dim(P × C) ≤ d.

In particular, if P is any subposet of 2d \ {1} containing the subposet Sd (e.g., if P = Sd ∪ {0}) then
for any chain C we have

(2.18) dim(P × C) = d = dim(P ).

The analogous statements hold with least elements 0i and 0 everywhere replaced by greatest elements 1i
and 1. �

To get examples of Theorem 2.1 with n > 2, we shall use a different way of choosing n subsets Mj of⋃
i∈d Ti, based on the subscript i rather than the distinction between greatest and least elements of Ti.
We will need a bit more notation. For every positive integer d and every pair of integers a, b with

0 ≤ a < b ≤ d,

(2.19) Let P a, bd denote the subset of 2d consisting of those elements in which the number of coordinates
of the form 1i is either a or b.

(Thus, for d ≥ 3, Sd = P 1,d−1
d .)

Then we have

Corollary 2.4. For every positive integer d, every integer a with 0 ≤ a ≤ d − 1, and every family of
chains (Cj)j∈n with

(2.20) n ≤ d/2,

we have, in the notation of (2.19),

(2.21) dim(P a, a+1
d ×

∏
j∈n Cj) ≤ d.

Proof. Let us define subsets M0, . . . ,Mn−1 of
⋃
i∈d {0i, 1i} by

(2.22) Mj = {02j , 12j , 02j+1, 12j+1}.
Condition (2.20) guarantees that all of the Mj are contained in

⋃
i∈d{0i, 1i}.

Now if p ≤ p′ are elements of P a ,a+1
d , then since the cardinalities of the subsets of d on which they

assume values of the form 1i differ by at most 1, they must agree in all but at most one coordinate. Since
each Mj contains both 0i and 1i for two values of i, one of those values of i must have the property
that p and p′ agree on the i-th coordinate. Hence these subsets Mj satisfy the hypotheses of Theorem 2.1,
completing the proof. �

If the posets P a ,a+1
d ⊆ 2d had, like Sd, dimension d, then the above result would show that for every n,

there exist finite posets that don’t change their dimension on taking a direct product with n chains. However,
such subposets of 2d generally have dimension less than d. There are many results in the literature obtaining
bounds on the dimensions of subposets of 2d; cf. [5], [8], [9, Theorems III and V], [10, Theorem 7.1], [12],
[13, Theorems 7, 10, 12, 13], and [18, Theorem 2]. Let us obtain one such result here, as another consequence
of Theorem 2.1. (In the statement and proof, we shall not need to look at the disjoint union of the factors of
2d, hence we shall not, as in the preceding corollaries, treat these as disjoint sets {0i, 1i}, but as the same
set 2 = {0, 1}.)
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Corollary 2.5. Let d be a positive integer, define

(2.23) P
[2, d−2]
d = {p ∈ 2n | 2 ≤ card({i | pi = 1}) ≤ d−2 }.

and let

(2.24) P = P
[2, d−2]
d \ {(0, . . . , 0, 1, 1), (1, . . . , 1, 0, 0)}

(where by (0, . . . , 0, 1, 1) we mean the d-tuple whose first d−2 coordinates are 0 and whose last 2 coordinates
are 1, and by (1, . . . , 1, 0, 0), the same with the roles of 0 and 1 reversed). Then

(2.25) dim(P ) ≤ d− 2.

Hence the same upper bound holds for the dimension of any subposet of P ; in particular, for any poset

of the form P a, bd (see (2.19)) with 3 ≤ a < b ≤ d− 3.

Proof. I claim that as a subset of 2d,

(2.26) P ⊆ P
[1, d−3]
d−2 × 2× 2;

in other words, that the first d− 2 coordinates of every element p ∈ P contain at least one 1 and at least
one 0. To see the former condition, note that by (2.23), p itself must have at least two coordinates 1. If
none of these were among the first d− 2 coordinates, this would force p = (0, . . . , 0, 1, 1), but that element
is excluded in (2.24). The second condition follows in the same way.

Now by Corollary 2.2, with d − 2 in place of d, and each Ti taken to be 2, we see that the direct
product on the right-hand side of (2.26) has dimension ≤ d − 2, hence the same is true of its subposet P,
proving (2.25)

The final sentence of the corollary follows immediately. �

3. An old result, and questions old and new

Having seen that dimension of posets is not in general additive on direct products, it is striking that in
an important class of cases, it is. The theorem below was proved, for products over index sets of arbitrary
cardinality, in K. Baker’s unpublished undergraduate thesis [1]. That proof is summarized in [10] for pairwise
products (from which the case of arbitrary finite products follows), and assuming the dimensions finite. I
give below a version of the proof (also for pairwise products of finite-dimensional posets) which I find easier
to follow.

Theorem 3.1. ([1, p.9, Property 3], [10, p.179, last 11 lines]) Let P and Q be finite-dimensional posets,
each having a least element 0 and a greatest element 1. Then

(3.1) dim(P × Q) = dim(P ) + dim(Q).

Proof. Clearly ≤ holds in (3.1), so it suffices to show ≥ . For this we shall use version (i) of Definition 1.1,
and show that if we have an expression for the partial order of P ×Q as an intersection of

(3.2) n total orderings, ≤0, . . . , ≤n−1, on |P × Q|,
then we can split that family into two disjoint subsets, such that a certain natural map of P into the product
of chains determined by one of those subsets is an embedding, as is a map of Q into the product determined
by the other. Thus the former subset must consist of ≥ dim(P ) orderings, and the latter of ≥ dim(Q)
orderings, so n ≥ dim(P ) + dim(Q), as claimed.

The trick to finding this partition is to look at the relative order, under each of the orderings (3.2), of
the elements (0P , 1Q) and (1P , 0Q) of |P ×Q|. Reindexing those n orderings if necessary, we may assume
that for some m ≤ n,
(3.3) (0P , 1Q) <i (1P , 0Q) for 0 ≤ i < m, while (1P , 0Q) <i (0P , 1Q) for m ≤ i < n.

Let us now show that the map

(3.4) P → (|P ×Q|, ≤0)× · · · × (|P ×Q|, ≤m−1) given by p 7→ ((p, 0Q), . . . , (p, 0Q))

is an embedding. Since (3.4) is clearly isotone, it remains to show that if p, p′ ∈ P satisfy

(3.5) p � p′,

then the corresponding condition holds on the images of p and p′ under (3.4).
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To get this, note that under the product ordering on P × Q, the relation (3.5) implies that (p, 0Q) �
(p′, 1Q). Hence we can find some i such that

(3.6) (p, 0Q) �i (p′, 1Q).

Now if i ≥ m, we would have (p, 0Q) ≤i (1P , 0Q) <i (0P , 1Q) ≤i (p′, 1Q), contradicting (3.6); so i < m.
Since (3.6) implies (p, 0Q) �i (p′, 0Q), this completes the proof that (3.4) respects �, hence is an embedding.
The analogous argument shows that the map Q → (|P ×Q|,≤m)× · · · × (|P ×Q|,≤n−1) given by q 7→
((0P , q), . . . , (0P , q)) likewise gives an embedding of Q. As noted in the first paragraph, this proves (3.1). �

Though we have seen that (3.1) does not hold without the assumptions that P and Q have upper and
lower bounds, the deviations from equality in all known examples are ≤ 2, leading to the longstanding open
question:

Question 3.2. (i) If P and Q are finite-dimensional posets, must dim(P ×Q) ≥ dim(P ) + dim(Q)− 2 ?
In particular,

(ii) If P is a finite-dimensional poset, and n a positive integer such that dim(P × 2n) = dim(P ), must
n ≤ 2 ?

In [10, last line of p.179 and top line of p.180] it was conjectured that dim(P ) + dim(Q) can exceed
dim(P ×Q) by at most the number of members of the set {P, Q} that do not have both a greatest and least
element. Thus, the case where that number is 0 is Theorem 3.1, while the case where there is no restriction
on P or Q corresponds to Question 3.2(i) above. The case of that conjecture where that number is 1,
however, turned out to be false: from Corollary 2.2 we see that for any n ≥ 3, dim(Sn × 22) = dim(Sn), so
dim(Sn) + dim(22) exceeds dim(Sn×22) = dim(Sn) by 2, though 22 has both greatest and least elements.

However, one might ask about different intermediate cases between those of Theorem 3.1 and Ques-
tion 3.2(i), suggested by Corollary 2.3, and noted in Question 3.3 below. C. Lin [13] poses part (iii) of that
question, though Theorems 10 and 11 of that paper suggest the stronger implications of parts (i) and (ii).

Question 3.3. (i) If P and Q are finite-dimensional posets such that P has a least element and Q has
a greatest element, must dim(P ×Q) ≥ dim(P ) + dim(Q)− 1 ?

(ii) If P and Q are finite-dimensional posets each of which has a least element, or each of which has a
greatest element, must dim(P ×Q) ≥ dim(P ) + dim(Q)− 1 ?

And finally, a possible implication weaker than either of the above two:
(iii) [13, p.80] If P and Q are finite-dimensional posets such that P has a least or a greatest element,

and Q has both, must dim(P ×Q) ≥ dim(P ) + dim(Q)− 1 ?

Turning back to Question 3.2, I wondered whether the result of Theorem 3.1, where no dimensionality
was lost in forming a product of posets, could be related to the hypothesis that the sets of minimal and of
maximal elements of each factor were singletons, and hence had dimension 0. If so, could one use the fact
that for arbitrary finite P and Q the sets of minimal and maximal elements are antichains, hence have
dimension ≤ 2, to get a positive answer to Question 3.2 for finite posets? But I see no way to adapt the
proof of Theorem 3.1.

Moving on to other questions, recall that in Theorem 2.1, the result did not depend on the lengths of the
chains Cj . This suggests

Question 3.4. (Cf. [15], [17, Conjecture 1]) If P is a finite-dimensional poset, and C any chain of more
than one element, must dim(P × C) = dim(P × 2) ?

The next question at first seemed “obviously” to have an affirmative answer; but I see no argument
proving it.

Question 3.5. If P is a finite-dimensional poset, and dim(P × 2) = dim(P ) + 1, must dim(P × 2× 2) =
dim(P ) + 2 ?

Much more generally (but much more vaguely), we may ask

Question 3.6. Given finite-dimensional posets P0, P1, P2, if we know their dimensions, and those of
P0 ×P1, P0 ×P2 and P1 ×P2, what can we say about dim(P0 ×P1 ×P2) ? (Anything more than that it is
greater than or equal to the dimensions of each of the pairwise products, and less than or equal to the values
of dim(Pi × Pj) + dim(Pk) for {i, j, k} = {0, 1, 2} ? )
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One example of “misbehavior” on this front: Suppose P is an antichain of more than one element, and
P ′ = P × 2. Now P, P 2, and P 3 are all antichains, hence all have dimension 2; but P ′, P ′2, and P ′3

have the forms P × 2, P 2 × 22, and P 3 × 23, and from (1.11) we see that they have dimensions 2, 2, and
3 respectively. So the dimensions of three posets, and of their pairwise direct products, do not determine
the dimension of the product of all three.

4. Absorbency

The following concept might be helpful in studying questions of the sort we have been considering.

Definition 4.1. If P is a finite-dimensional poset, let us define its absorbency to be

(4.1)
abs(P ) = the largest natural number n such that dim(P ×

∏
i∈n Ti) = dim(P ) for every n-tuple

of chains (Ti)i∈n.

As an example,

(4.2) For all d ≥ 3, abs(Sd) = 2.

Here ≥ follows from the P = Sd case of (2.16). To get the reverse inequality, we will need to call on a result
from the literature. Note that if abs(Sd) were ≥ 3, then since Sd ⊆ 2d, the value of dim(Sd × Sd) would
be ≤ dim(Sd × 2d) ≤ dim(Sd × 23) + dim(2d−3) = d+ (d− 3) = 2d− 3. However, Trotter [18, Theorem 2]
shows that for all d ≥ 3, dim(Sd × Sd) = 2d− 2.

An immediate property of absorbency is

(4.3) abs(P ) ≤ dim(P ),

since for any n > dim(P ), the product of P with, say, 2n will contain a copy of 2n, and hence have
dimension greater than that of P.

Here are some other easy properties.

Lemma 4.2. Let P and Q be finite-dimensional posets.

(4.4) If abs(P ) ≥ dim(Q), then dim(P ×Q) = dim(P ), and abs(P ×Q) ≥ abs(P )−dim(Q) + abs(Q).

The case where neither the hypothesis of (4.4) nor the corresponding inequality with the roles of P and
Q reversed holds is covered by

(4.5)
If min(dim(P ), dim(Q)) ≥ max(abs(P ), abs(Q)), then

max(dim(P ), dim(Q)) ≤ dim(P ×Q) ≤ dim(P ) + dim(Q)−max(abs(P ), abs(Q)).

Proof. In (4.4), the first conclusion holds because Q embeds in a product of dim(Q) ≤ abs(P ) chains, which
P can “absorb” without increasing its dimension.

To get the final inequality of (4.4), we must show that the dimension of P × Q is not increased on
multiplying it by a product of abs(P ) − dim(Q) + abs(Q) chains. Let us write such a product as X × Y,
where X is a product of abs(P ) − dim(Q) chains, and Y a product of abs(Q) chains. Then if we write
P ×Q× (X × Y ) as P × (X × (Q× Y )), we see that Q× Y has dimension dim(Q) (by our choice of Y ),
hence X × (Q× Y ) has (by our choice of X) dimension at most (abs(P )− dim(Q)) + dim(Q) = abs(P ),
so its product with P has dimension dim(P ), which we have noted equals dim(P ×Q), so we have indeed
shown that the dimension of P ×Q has not been increased, as required.

In the conclusion of (4.5), the left-hand inequality is immediate. The right-hand inequality is equivalent
to saying that dim(P × Q) is bounded above by dim(P ) + dim(Q) minus either of abs(P ) and abs(Q),
so by symmetry it suffices to prove the bound involving abs(P ). If we embed Q in a product of dim(Q)
nontrivial chains, and break this into a product X of abs(P ) chains and a product Y of dim(Q)− abs(P )
chains, then we have dim(P ×Q) ≤ dim(P ×X×Y ) ≤ dim(P ×X)+dim(Y ) = dim(P )+(dim(Q)−abs(P )),
as desired. �

We may ask

Question 4.3. Under the hypothesis of (4.4), does equality always hold in the final inequality of that impli-
cation?

If we ask the same question about the final inequality of (4.5), the peculiarities noted in the paragraph
following Question 3.6 make trouble. But those involved posets constructed using antichains, and I know of
no cases not arising in that way. To express this precisely, let us set up some terminology.



DIMENSIONS OF PRODUCTS OF POSETS 9

Definition 4.4. We shall call a poset P disconnected if it satisfies the following equivalent conditions.
(i) P can be written as a union of subposets P0 and P1 such that all elements of P0 are incomparable with
all elements of P1.
(ii) P can be written as a union of a family of more than one subposets Pi, such that for i 6= i′, all elements
of Pi are incomparable with all elements of Pi′ .
(iii) P is isomorphic to a poset constructed as in (1.9) and (1.10) with the index-poset (there called P ) an
antichain of cardinality > 1.

On the other hand, a poset P will be called connected if it is not disconnected; equivalently, if the
equivalence relation on |P | generated by the relation ≤P is the indiscrete equivalence relation.

We can now ask

Question 4.5. If the posets P and Q in (4.5) are connected, must equality hold in the final inequality of
the conclusion thereof?

Since (1.11) gives us a way of computing the dimension of a disconnected poset from the dimensions of its
connected components, a positive answer to Question 4.5 (together with the first assertion of (4.4)) would
allow us to compute exactly the dimension of a product of two arbitrary finite-dimensional posets, given the
dimensions and absorbencies of their connected components. It would, in particular, imply positive answers
to Questions 3.4 and 3.5.

But as long as we do not know a positive answer to Question 4.5, here are some further points worth
considering:

If Question 3.4 has a negative answer, one could consider variants of the absorbency concept, depending
on the lengths of the chains involved; though this is likely to get messy.

Assuming Question 3.4 has a positive answer but Question 3.5 does not, one might define the “eventual
absorbency” of a finite-dimensional poset P as the supremum, as n→∞, of dim(P ) + n− dim(P × 2n).

Given a poset P and a nonnegative integer d about which we know that dim(P ) ≤ d, one might define
the absorbency of P relative to d to be the largest n such that the product of P with every n-tuple of
chains has dimension ≤ d. So, for instance, given finite-dimensional posets P and Q, the absorbency of
P ×Q relative to dim(P ) + dim(Q) will be at least the sum of the absorbencies of P and of Q.

5. Another function related to dimension, and a few from the literature

Let us call a poset bounded if it has a greatest element and a least element.
(I wish I could think of a better term for this condition, since it has very different properties from the

familiar sense of “bounded”. E.g., a subposet of a bounded poset is not, in general, bounded. However,
“bounded” is used in this way in places in the literature; e.g., [10, p.179, 12th line from bottom].)

This allows us to define another function which is useful in studying dimensions.

Definition 5.1. For P a finite-dimensional poset, the bounded dimension of P, denoted bd-dim(P ), will
be defined to be

(i) the greatest integer n such that P contains a bounded subposet P ′ satisfying dim(P ′) = n,
equivalently,

(ii) the maximum, over all pairs of elements p ≤ p′ in P, of dim({x | p ≤ x ≤ p′}).

Since every bounded subset P ′ of P is contained in an interval {x | p ≤ x ≤ p′}, and every such interval
is bounded, we see that the two versions of the above definition are equivalent. Because of Theorem 3.1, this
function behaves very nicely under direct products:

Lemma 5.2. For finite-dimensional posets P and Q,

(5.1) bd-dim(P ×Q) = bd-dim(P ) + bd-dim(Q).

Proof. For elements p ≤ p′ of P, let us write

(5.2) [ p, p′] = { p′′ ∈ P | p ≤ p′′ ≤ p′}, regarded as a subposet of P.

Thus, by version (ii) of the definition of bounded dimension, bd-dim(P ×Q) is the greatest of the values
dim([(p, q), (p′, q′)]) for (p, q) ≤ (p′, q′) in P ×Q.

But by the order-structure of a direct product, [(p, q), (p′, q′)] is isomorphic to [ p, p′] × [ q, q′], and by
Theorem 3.1 the dimension of this product is dim([ p, p′]) + dim([ q, q′]). Taking the maximum over all pairs
p ≤ p′ and q ≤ q′, we get bd-dim(P ) + bd-dim(Q). �
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Clearly, for any poset P,

(5.3) bd-dim(P ) ≤ dim(P ).

However, the two sides of (5.3) can be far from equal, as can be seen by taking P = Sd for large d. Then
the left-hand side of (5.3) is easily seen to be 1, while the right-hand side is d.

The concept of bounded dimension allows us to get an upper bound on absorbency:

(5.4) abs(P ) ≤ dim(P ) − bd-dim(P ).

Indeed, if we take the product of P with more nontrivial chains than the number on the right, then since
P contains a bounded set of dimension bd-dim(P ), and each of the chains contains a nontrivial bounded
chain, the whole product will have dimension > bd-dim(P ) + (dim(P ) − bd-dim(P )) = dim(P ). Thus, to
be “absorbed”, a family of nontrivial chains can have at most the number of members shown on the right
in (5.4). (Incidentally, this argument is easily adapted to give the same upper bound for the “eventual
absorbency” function defined in the next-to-last paragraph of the preceding section.)

The two sides of (5.4) can also be far from equal. For instance, for P = Sd, where d ≥ 3, we have seen
in (4.2) that the left-hand side of (5.4) is 2. On the other hand, the right-hand side is d− 1.

From (5.4) we get a strengthening of (4.3); namely, we can add to that inequality the observation,

(5.5) The only finite-dimensional posets P for which abs(P ) = dim(P ) are the antichains,

since a poset that is not an antichain contains a copy of 2, a bounded poset of dimension 1.
Let us note some examples regarding the inequalities in the conclusion of (4.5) if we do not make the

connectedness assumption of Question 4.5. (These translate the “misbehavior” noted in the last paragraph
of §3.) Let D be a 2-element antichain, and 2, as usual, the 2-element chain. Then D has dimension
and absorbency 2, while the poset 2 has dimension 1 and, by (5.4), absorbency 0. Hence by (4.4), D× 2
has dimension 2 and absorbency at least 1, so by (5.4) its absorbency must be exactly 1. The analogous
considerations show that (D × 2)2, i.e., D2 × 22, again has dimension 2, but has absorbency 0. Hence
taking P = Q = D × 2, the inequalities in the conclusion of (4.5) become 2 ≤ 2 ≤ 2 + 2 − 1, so the
first is equality and the second a strict inequality. On the other hand, if we take P = Q = D × 22, then
the corresponding considerations show that this poset again has dimension 2, but has absorbency 0, while
P ×Q = D2 × 24 has dimension 4; so the inequalities become 2 ≤ 4 ≤ 2 + 2− 0, with the first strict and
the second an equality. (If, for a further comparison, we take P = Q = D, we find that the inequalities in
question are 2 ≤ 2 ≤ 2 + 2− 2, hence are both equalities.)

Trotter, in [18, Conjecture 2] suggested that for all n ≥ 2 there exist posets P of dimension n such
that P × P also has dimension n. Reuter [17, Theorem 13] showed that no such P exists for n = 3; but
it is conceivable that there exist such P for higher n. Such an example would imply a negative answer to
Question 4.5, in view of (5.4).

Returning to the bounded-dimension function, it might be of interest to look at the variants of bd-dim(P )
in which bounded is replaced by bounded above, respectively, bounded below.

I will end this section by sketching some other functions related to dimension that appear in the literature.
A striking example, studied in [2], [14], [20] is based on the concept of a Boolean representation of a poset P.
Here one considers families of d > 0 total orderings of |P |, which are not assumed to be strengthenings
of the ordering of P, but merely to have the property that the order-relation or incomparability between
elements x 6= y in P can be expressed in terms of which of the d given orderings have x < y and which
have x > y. For example, the order relation of Sn (n ≥ 3) can be so described in terms of the four total
orderings

(5.6) a0 <0 · · · <0 ai <0 · · · <0 an−1 <0 b0 <0 · · · <0 bi <0 · · · <0 bn−1,

(5.7) b0 <1 · · · <1 bi <1 · · · <1 bn−1 <1 a0 <1 · · · <1 ai <1 · · · <1 an−1,

(5.8) a0 <2 b0 <2 · · · <2 ai <2 bi <2 · · · <2 an−1 <2 bn−1,

(5.9) b0 <3 a0 <3 · · · <3 bi <3 ai <3 · · · <3 bn−1 <3 an−1.

Namely, x < y in Sn if and only if on the one hand, x precedes y in (5.6) but follows it in (5.7) (which
together say that x has the form ai and y the form bj), and, further, the relative order of x and y
is the same in (5.8) as in (5.9) (which says that they are not a pair of the form {ai, bi}). This is called
a Boolean representation of Sn in terms of the four orderings (5.6)-(5.9). The Boolean dimension of a
poset P, bdim(P ), is the least d such that P has a Boolean representation in terms of d total orderings.
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This number is always ≤ dim(P ), but often strictly less; e.g., the above example shows that for all n,
bdim(Sn) ≤ 4. In [20] it is shown that bdim(P ) agrees with dim(P ) when the latter is 3.

(In the formal definition of a Boolean representation of a poset P in terms of total orderings <0, . . . , <d−1
of |P |, one begins by mapping |P | × |P | to 2d by sending (x, y) to the d-tuple which has 1 in the i-th
position if and only if x <i y. The ordering of P is then determined by a function τ : 2d → {0, 1}, such
that x <P y if and only if τ takes the d-tuple determined by (x, y) to 1. For instance, in the above
example describing Sn, τ is the function on 24 taking the value 1 only at the two 4-tuples (1, 0, 0, 0) and
(1, 0, 1, 1). Here the condition that for a 4-tuple to be taken to 1, its first entry must be 1 and its second
entry 0 translate the conditions that x must precede y in (5.6) but not in (5.7); and the condition that
the last two entries of the 4-tuple be equal translates the condition that x and y must occur in the same
order in (5.8) and in (5.9). The term “Boolean dimension” refers to the fact that a map τ : 2d → 2 can
be expressed by a Boolean word in d variables. Incidentally, I think that in the definition of a Boolean
representation, it would be desirable to allow d = 0, in which case the Boolean dimension of an antichain
would be 0, determined by the function τ : 20 → {0, 1} sending the unique element of 20 to 0, meaning
that no pairs (x, y) satisfy x < y.)

Another variant of dimension described in [2] is the local dimension, ldim(P ), the least d such that
there exists a family of linearizations of subposets of P such that each member of P appears in ≤ d of
these linearized subposets, and such that for every pair (x, y) of distinct elements of P, there are enough
linearized subposets containing both so that the relationship between x and y in P (an order-relation,
or incomparability) is the relation between their images in the product of these linearizations. As with the
Boolean dimension, this is ≤ dim(P ), and considerably less for the Sn (in this case always ≤ 3).

Still another variant of dimension: If instead of looking at lists of linearizations of ≤P , such that every
relation x 6< y in P is realized in at least one member of our list, and letting the dimension of P be the
least cardinality of such a list, one can look at lists of linearizations with a “weight”, a positive real number,
attached to each, such that x 6< y in P if and only if the sum of the weights of the linearizations for which
x > y is at least 1, and define the fractional dimension of P to be the infimum, over all weighted lists
which determine the ordering of P in this way, of the sum of the weights of the listed linearizations. (The
term “weight” is not used in the literature; it is my way of giving an intuitive description of the definition.)
See [11, p.5, and references given there]. ([11] also introduces several dimension-like functions specific to the
type of posets there named “convex geometries”.)

Less exotic invariants of posets considered in [2] and elsewhere are the height, i.e., the supremum of the
cardinalities of chains contained in P, and the width, the supremum of the cardinalities of antichains in P.
The function associating to a poset P the largest n such that P contains a subposet isomorphic to Sn is
studied, under the name se(P ), in [3], [13, §3], [19, §5.2.1].

The function dim(P ), though usually (as in this note) simply called the dimension of P, is sometimes,
as in the title of [2], called the Dushnik-Miller dimension, to distinguish it amid this plethora of concepts.

6. When an infinite poset has finite dimension

I have left this topic to the end, because it assumes familiarity with a very different technique from
those used in the other sections. Namely, by a straightforward application of the Compactness Theorem of
first-order logic [6, Theorem VI.2.1(b)], [7, Theorem 6.1.1] (applied to a language with a constant for each
member of |P |, which, we are not assuming countable), one can verify

Proposition 6.1. Let P be a poset, and n a positive integer. Then P has dimension n if and only if n
is the supremum of the dimensions of all finite subposets of P. �

Remark: I originally had two rather complicated proofs of the above result – one using an ultraproduct of
the finite subposets of P, over any ultrafilter U on the set of such subposets extending the filter F generated
by the nonempty up-sets under inclusion; the other based on indexing |P | in any way by a well-ordered
set I, and recursively constructing embeddings of the subposets determined by initial subsets of I, into
products of n chains, in a way chosen at each step to guarantee further extensibility. But Theodore Slaman
pointed out to me that the Compactness Theorem yields the same result much more easily.

Immediate consequences are

Corollary 6.2. For any finite-dimensional poset P, bd-dim(P ) is equal to the supremum of the values of
bd-dim(P ′) on all finite subposets P ′ ⊆ P. �

Corollary 6.3. For any finite-dimensional poset P, abs(P ) is equal to the infimum of the values of abs(P ′)
over the finite subposets P ′ of P satisfying dim(P ′) = dim(P ). �
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I wonder about

Question 6.4. Do there exist infinite cardinals κ and λ such that for every poset P, if all subposets P ′ ⊆ P
of cardinality < κ have dimension ≤ λ, then P itself has dimension ≤ λ ?

Thus, Proposition 6.1 is the corresponding statement with ℵ0 in the role of κ, and the natural number
n in place of the infinite cardinal λ.
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