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GROUPS AND FLIP-SETS

GEORGE M. BERGMAN

Abstract. Call a sequence (ai)i∈Z of elements of a group G a trajectory if for some g, h ∈ G, ai = g hi,

equivalently, if ai+1 = ai a
−1
i−1ai for all i. The latter formulation suggests the study of the derived operation

g \ h = g h−1g on groups, intuitively, “flipping h past g ”.
We determine the identities satisfied by this operation on the underlying sets of all groups, and define a

flip-set to be a set with a binary operation \ that satisfies those identities. Not every flip-set is isomorphic

to, or embeddable in, the underlying flip-set of a group, but we describe a way of mapping any flip-set into
the flip-set of a group which is often one-to-one or close to one-to-one.

We look at the relation between additional identities on groups and on their \ -structures. In particular,
the groups satisfying all the \ -identities satisfied by abelian groups are the groups of nilpotency class ≤ 2,

i.e., the groups in which all commutators are central.

Note added 20 Nov., 2019: Yves de Cornulier and Ualbai Umirbaev have pointed me to the concept of
quandle, noting that what I here call the flip-structure of a group G is called its core quandle, Core(G). (If
you are not familiar with the concepts see the Wikipedia page Racks and quandles, and the German Wikipedia
page Quandle, which includes the example Core(G), and/or search for the terms on MathSciNet.) I will
contact some people in the area, and ask them what parts of what I have written up are new, and if these
seem to merit it, I will produce a new version of this note.

1. Basics

We note

Lemma 1. Let G be a group, and (ai)i∈Z a sequence of elements of G. Then the following conditions are
equivalent.

(i) For some g, h in G, we have ai = g hi for all i ∈ Z.
(i′) For some g, h in G, we have ai = hig for all i ∈ Z.
(i′′) For some g, g′, h in G, we have ai = g hig′ for all i ∈ Z.
(ii) ai+1 = ai a

−1
i−1 ai for all i ∈ Z.

(ii′) ai−1 = ai a
−1
i+1 ai for all i ∈ Z.

Proof. Trivially, (i) =⇒ (i′′). Conversely, the equation of (i′′) can be written ai = (gg′)(g′−1h g′)i, an
instance of (i); so (i) and (i′′) are equivalent. Similarly, (i′) and (i′′) are equivalent.

The equivalence of (ii) with (ii′) can be seen by solving the former relation for ai−1.
It is straightforward to check that (i) implies (ii). Conversely, if (ii), and hence (ii′), hold, we claim that (i)

holds with g = a0, h = a−10 a1. Indeed, for these g and h, the formula of (i) gives a sequence which agrees
with (ai) at i = 0, 1, and satisfies (ii) and (ii′). Hence by upward and downward induction on i, it agrees
everywhere with (ai). �

Definition 2. A sequence (ai)i∈Z of elements of a group G satisfying the equivalent conditions of Lemma 1
will be called a trajectory in G.

(The term “progression” has been used for the related concept of a subset of a group of the form {g hi |
0 ≤ i < n}; e.g., see [2].)

We note that
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Lemma 3. If G is a group, the class of trajectories in G is closed under
(i) left and right translations: (ai) 7→ (fai) and (ai) 7→ (aif) for f in G,
(ii) termwise inversion: (ai) 7→ (a−1i ),
(iii) shifts: (ai) 7→ (ai+n) for n ∈ Z,
(iv) the operations (ai) 7→ (ani) for n ∈ Z. In particular, taking n = −1, the class of trajectories is

closed under the reversal operation (ai) 7→ (a−i). �

On the other hand, if (ai) and (bi) are trajectories, the sequence (aibi) need not be. For instance,
if elements x and y of a group G do not commute, and (ai), (bi) are the trajectories (xi) and (yi)
respectively, we find that (ci) = (xiyi) does not satisfy condition (ii) of Lemma 1 for any i. Likewise, the
termwise square of the trajectory (x yi) will not be a trajectory unless y and x y x−1 commute.

I came upon the concept of trajectory in thinking about conditions on a group related to one-sided
orderability. For instance, what is called “locally invariant orderability” of a group [3] is equivalent to the
existence of a total ordering under which each trajectory is either monotone increasing, monotone decreasing,
or decreasing up to a certain term and increasing thereafter. This condition is implied by the existence of a
one-sided ordering; an intermediate condition is the existence of an ordering under which every trajectory is
everywhere monotone increasing or decreasing.

I was not able to determine whether either of the above implications is reversible, and will not further dis-
cuss orderability questions here. However, the binary operation (g, h) 7→ g h−1g suggested by Lemma 1 (ii)
and (ii′) turned out to have some interesting properties, examined below. I find the concept of a trajectory
sometimes useful for picturing the subject, but the binary operation simpler to work with. So let us make

Definition 4. If G is a group, we will denote by \ the derived binary operation on the underlying set of
G given by

(1) g \ h = g h−1g,

and call this the flip operation of G. (The idea is that g \ h represents the result of “flipping h past g”.)

The flip operation satisfies identities loosely paralleling the three identities defining groups:

Lemma 5. The identities satisfied by the derived operation \ of all groups are the consequences of the three
identities

(2) g \ g = g,

(3) g \ (g \ h) = h,

(4) (f \ g) \ h = f \ (g \ (f \ h)).

Any word in a set X of symbols and the operation-symbol \ can be reduced, using these identities, to a
unique expression with parentheses clustered on the right,

(5)
x0 \ (x1 \ (. . . \ (xn−1 \ xn) . . . )), where all xi ∈ X, and no two successive terms

xi, xi+1 are the same.

Proof. The verification of the identities (2)-(4) for the operation (1) is immediate. Postponing the claim
that (2)-(4) imply all identities of that operation, we note that given any \ -word in symbols from X, (4)
can be used recursively to reduce it to one in which parentheses are clustered to the right, (3) can then be
used recursively to eliminate cases where xi−1 = xi for some i < n, and, finally, (2) can be used recursively
to eliminate cases where xn−1 = xn, giving a word of the form (5).

To show uniqueness, note that in a group G, the formula in (5) represents the element

(6) x0 x
−1
1 . . . x∓1n−1 x

±1
n x∓1n−1 . . . x

−1
1 x0.

Hence if we take for G the free group on the elements of X, then by the restriction in (5) that no two
successive xi be equal, (6) is a reduced word in that free group, whose value in that group determines
x0, . . . , xn. So starting with an arbitrary \ -word in the elements of X, any two expressions as in (5)
obtainable from it using (2)-(4) must be the same, as desired.

Returning to the claim whose verification we postponed, suppose u = v is an identity satisfied by \ in
all groups. Applying (2)-(4) as above, we can reduce the two sides to words of the form (5). Since we have
assumed the original expressions identically equal in groups, the above reduced expressions will have the
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same value in the free group on X, so they must be the same. So our reduction using (2)-(4) has indeed
proved the given identity. �

2. Abstract flip-sets

In what follows, for the sake of precision, we shall understand a group G to be a 4-tuple (|G|, ·, −1, 1),
where |G| is the underlying set, and ·, −1, 1 are the multiplication and inverse operations and the identity
element. (However, we shall continue to write g h for g · h, and to call an element g ∈ |G| “an element of
G ”.) For notational simplicity as we develop these general results, all groups will be written multiplicatively.

Groups presented by generators and relations will be written using the symbols . . . | . . . .
Motivated by Lemma 5, we make

Definition 6. A flip-set will mean an ordered pair A = (|A|, \ ), where |A| is a set, and \ : |A|2 → |A| a
binary operation such that for all f, g, h ∈ |A|,
(7) g \ g = g,

(8) g \ (g \ h) = h,

(9) (f \ g) \ h = f \ (g \ (f \ h)).

(Cf. (2), (3), (4).)
If G is a group, the pair (|G|, \ ), with \ defined by (1), will be called the underlying flip-set of G, and

denoted Flip(G).

A degenerate but instructive class of examples is noted in

Lemma 7. If G is a group, then the identity

(10) x \ y = y

is satisfied by Flip(G) if and only if G satisfies the identity g2 = 1, i.e., has exponent 2.

Proof. The identity (10) translates to the group-theoretic identity x y−1x = y, equivalently, (x y−1)2 = 1,
which clearly holds for all x, y ∈ |G| if and only if g2 = 1 for all g ∈ |G|. �

For G a group of exponent 2, we see from (10) that every subset of Flip(G) will be closed under \ ,
hence will form a sub-flip-set. Taking such a set of finite cardinality not a power of 2, we see that the
resulting flip-set cannot itself be Flip(G) for any group G; so not every flip-set has that form.

Is every flip-set at least embeddable in one of the form Flip(G) ? No.

Lemma 8. For elements x, y of a group G, we have, in Flip(G),

(11) x \ y = y ⇐⇒ y \ x = x.

On the other hand, if A is the factor-flip-set of Flip( g | g4 = 1 ) by the equivalence relation which
identifies g with g3, but leaves 1 and g2 distinct, and we let x and x′ be the respective images of 1 and
g2, and y the common image of g and g3, then x \ y = y, but y \ x = x′. Hence that 3-element flip-set
cannot be embedded in Flip(G) for any group G.

Proof. Group-theoretically, the left-hand equality of (11) says x y−1 x = y, i.e., (x y−1)2 = 1. Inverting this
gives (y x−1)2 = 1, the right-hand equality of (11).

It is straightforward to verify that the equivalence relation on |Flip( g | g4 = 1 )| described in the second
paragraph of the lemma respects the flip-structure, and so indeed leads to a factor-structure, which we see
has the asserted properties. �

Nevertheless, given a flip-set A, there is a natural homomorphism to one of the form Flip(G) which often
does a good job of separating elements.



4 GEORGE M. BERGMAN

Lemma 9. Let A be any flip-set, and Sym(|A|) the group of all permutations of the set |A|. For x ∈ |A|,
define α(x) ∈ |Sym(|A|)| by

(12) α(x)(a) = x \ a (a ∈ |A|).
Then α is a homomorphism of flip-sets, A→ Flip(Sym(|A|)).

If A above has the form Flip(G) for a group G, then elements x, x′ ∈ |A| = |G| fall together under α
if and only if they belong to the same coset of the group of elements of exponent 2 in the center of G.

Proof. From (8) we see that for x ∈ |A|, α(x)2 = 1 (the identity permutation of |A|), hence α(x) ∈
|Sym(|A|)|. Let us check that α is a \ -homomorphism. Given x, y ∈ |A|, we see (using (9) at the second
step, and the fact that α(x) has exponent 2 in the fourth) that for all z ∈ |A|,

(13)
α(x \ y)(z) = (x \ y) \ z = x \ (y \ (x \ z)) =

α(x)α(y)α(x)(z) = α(x)α(y)−1α(x)(z) = (α(x) \ α(y))(z),

as required.
To get the last assertion of the lemma, note that for elements x, x′ ∈ |G|, we have α(x) = α(x′) if and

only if all y ∈ |G| satisfy x y−1x = x′y−1x′. Multiplying on the left by x′−1 and on the right by x−1, this
becomes

(14) x′−1x y−1 = y−1x′ x−1.

Taking y = 1 in (14) gives

(15) x′−1x = x′x−1.

Hence (14) implies that the common value of the two sides of (15) is central in G. In particular, the right-
hand side of (15) is unaffected by conjugation by x; but the result of that conjugation is the inverse of the
left-hand side, so the common value of the two sides has exponent 2, giving the “only if” direction of the
desired statement. The “if” direction is straightforward. �

3. Notes on the arithmetic of \ , and trajectories in flip-sets

We have observed that the identity (9) allows one to recursively bring any \ -word in a set of symbols to
a form with parentheses clustered to the right. It is helpful to note a consequence of that identity (of which
the identity itself is the n = 2 case), which describes how such a right-clustered expression acts by \ .

(16)
f1 \ (f2 \ (. . . \ (fn−1 \ fn) . . . )) \ g =

f1 \ (f2 \ (. . . \ (fn−1( \ fn \ (fn−1 \ (. . . \ (f2 \ (f1 \ g)) . . . )))) . . . )).

This is straightforward to check when our flip-set has the form Flip(G) (cf. (6)). For a general flip-set
A, the same result holds by fact proved in Lemma 5, that every identity holding in flip-sets Flip(G) holds
in arbitrary flip-sets. Alternatively, one can prove (16) inductively from (9).

It is, of course, natural to make

Definition 10. (Cf. Definition 2.) If A is a flip-set, then a sequence (ai)i∈Z of elements of A will be
called a trajectory in A if it satisfies

(17) ai+1 = ai \ ai−1 for all i ∈ Z,
equivalently,

(18) ai−1 = ai \ ai+1 for all i ∈ Z.
(Cf. Lemma 1, (ii), (ii′).)

As noted in the proof of Lemma 1, if (ai) is a trajectory in a group, we can write an = g hn where
g = a0, h = a−10 a1. Writing f = a1, this becomes

(19) an = g (g−1 f)n.

In an abstract flip-set A, the description of the elements of a trajectory in terms of g = a0 and f = a1
is not quite as simple. Rather than writing a formula, I will illustrate the forms of a−3 to a4, from which
the pattern can be seen.
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(20)

. . .
a−3 = g \ (f \ (g \ f))
a−2 = g \ (f \ g)
a−1 = g \ f
a0 = g
a1 = f
a2 = f \ g
a3 = f \ (g \ f)
a4 = f \ (g \ (f \ g))

. . .

Again, this family of formulas can be proved either by establishing them in flip-sets Flip(G) (where they
are translations of the corresponding cases of (19)), or by computations using the identities defining flip-sets
(in which case (16) is helpful).

Let us note

Lemma 11. Given elements x and y of a group G, and an integer n, one can determine from the
\ -structure of Flip(G) whether x−1y is an n-th power in the group G. Namely, this will hold if and only
if there exists a trajectory (ai) in Flip(G) with a0 = x and an = y; equivalently, if and only if, writing
g = x, there exists f ∈ |G| such that y is given by the formula for an as in (20). �

It follows in turn that we can tell whether, x−1 y is, say, a product of squares, namely, by asking whether
there is a sequence of elements x=x0, x1, . . . , xn = y with each x−1n−1 xn a square. This shows in turn that
the structure of Flip(G) determines whether a property such as “every product of squares is a square”, or
“every product of two distinct squares in G has cube the identity” holds in a given group G.

On the other hand, we cannot, in general, tell from the \ -structure of G whether different trajectories
have the same factor g f−1 between successive terms. Hence we cannot, so far as I can see, determine
whether, say, two elements differ by a factor that can be written a b c a c b for a, b, c ∈ |G|.

(However, we leave it to the interested reader to verify that we can, with a little ingenuity, determine
whether a given two elements differ by a factor of the form f i gj fk for given integers i, j, k; or by a factor
of the form (f i gj)k; or by one of the form a b c d a c b. In the opposite direction, Lemma 16 will show that
Flip(G) does not determine whether G is commutative; hence we cannot tell from the \ -structure whether
a given two elements of G differ by a factor of the form f−1g−1f g.)

The elements of a trajectory (20) in a flip-set comprise the sub-flip-set generated by f and g, and a
flip-set that is not embeddable in a group may have trajectories with behavior that we do not see in groups.
A trajectory in a group, if it involves any repetition, is periodic of some period n, with a repeating sequence
of n distinct elements; while in the flip-set A of the last paragraph of Lemma 8, the trajectory with a0 = x,
a1 = y has the repeating sequence x, y, x′, y, where y appears twice.

4. Components of flip-sets

We saw in Lemma 7 that for G a group of exponent 2, the flip-set Flip(G) has the uninteresting
operation (10), with the consequence that every subset of |G| is a sub-flip-set.

Note that if a flip-set A admits a homomorphism to a flip-set B satisfying (10), then the inverse image
of every subset of B is a sub-flip-set of A. Moreover, every flip-set A has a universal homomorphic image
satisfying (10), whose elements are the equivalence classes of elements of |A| under the equivalence relation ∼
generated by relations

(21) x \ y ∼ y (x, y ∈ |A|).
With the help of (8) it is easy to show that this equivalence relation has the form

(22) a ∼ b ⇐⇒ (∃x1, . . . , xn ∈ |A|) b = x1 \ (. . . \ (xn \ a) . . . ).

Calling these equivalence classes the “components” of A, we see that the union of any family of components
is a sub-flip-set of A.

However, in contrast to the case of Lemma 7, the structure of A, or of such a sub-flip-set of A, is not
in general determined by the flip-structures of its components: although each map a \− (a ∈ |A|) takes
every component A0 of A into itself, if a is not in A0, the involution a \− on A0 carries information not
determined by the \ -structure of A0.
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Instead of constructing a sub-flip-set B of A by letting each component of A either wholly belong to
B or be wholly absent, can we put together a B by choosing sub-flip-sets of the various components of A
more or less independently of one another? Specifically, suppose we start with a flip-set Flip(G) for G a
group, and let N be the normal subgroup of G generated by the squares, so that G/N is the universal
exponent-2 image of G. Can we get a sub-flip-set of Flip(G) whose intersections with the various cosets
of N include cosets of distinct subgroups of N ? For instance, can we do this when G is an infinite cyclic

group g , so that N = g2 ?
The answer turns out to be no in that case, but yes for some other G.

Indeed, when A = Flip( g ), it is not hard to see that every nonempty sub-flip-set A′ of A consists of
the elements of a single trajectory. (Idea: If A′ has more than one element, choose distinct gi, gj ∈ |A′| so
as to minimize |i − j|, and show that the existence of an element gk not in the trajectory they generate
would contradict that minimality.) For such a trajectory, {i | gi ∈ |A′|} either consists entirely of even
integers, or consists entirely of odd integers, or the sets of even and of odd elements are cosets of a common

subgroup of g2 .
But for an example where something more interesting can happen, let G be the infinite dihedral group

g, h | h2 = 1, h−1 g h = g−1 . It is easy to check that each coset of the subgroup g ⊆ G has trivial
\ -action on the other:

(23) gi \ (gjh) = gjh; equivalently, (gjh) \ gi = gi (i, j ∈ Z).

From this it follows that the union of any \ -closed subset of one of these cosets with any \ -closed subset of
the other gives a sub-flip-set of Flip(G); and those \ -closed subsets can, independently, each be a nontrivial
trajectory, a singleton, or empty.

(The cosets of g are not actually the components of Flip(G); each is the union of two such components.
But each of those cosets is, as a flip-set, a single trajectory, so, as discussed earlier, the intersections of a
sub-flip-set of G with its components has much less freedom.)

5. More on mapping flip-sets into groups

Given a flip-set A, we have seen that the map α : A → Flip(Sym(|A|)) of Lemma 9 is not, in general,
one-to-one. Some of the elements that fall together under that map must do so under any homomorphism
to the flip-set of a group, as seen in Lemma 8, while others need not: the second paragraph of Lemma 9
characterizes elements of flip-sets Flip(G) that fall together under the above map, but obviously do not
under the identity map Flip(G)→ Flip(G).

To avoid “unnecessary falling-together”, one can try to embed A in a larger flip-set A′, such that even
if elements x 6= x′ satisfy x \ y = x′ \ y for all y ∈ |A|, this equality fails for some y ∈ |A′|, so that
Lemma 9 yields a representation of A′ that distinguishes them. If A has the form Flip(G) for some group
G, this will always work: construct G′ by adjoining to G one new generator g and no relations. Then
nonidentity elements of G will not centralize g, so the cases of elements of G falling together under our
map to Sym(|G′|) as described in Lemma 9 become trivial.

Given an arbitrary flip-set A, there will similarly exist a universal flip-set A′ generated by an image of
A and one additional generator g. If we could find a normal form for elements of this A′ in terms of A, we
could use it to tell which pairs of elements x, x′ fall together under all maps into flip-sets of groups. (Namely,
if and only if x \ g = x′ \ g.) But I do not see how to get such a normal form. Obviously, we can reduce any
element of A′ to an expression (5) in elements of |A| ∪ {g}. But the identities of flip-sets will imply further
equalities between such expressions. For instance, when we have an expression . . . \ (ai \ (ai+1 \ (. . . ))) . . .
with ai and ai+1 both coming from |A|, we can use (8) in reverse, to insert two terms ai after ai+1,
getting an expression . . . \ (ai \ (ai+1 \ (ai \ (ai \ (. . . ))))) . . . , then apply (9) to the first three of the terms
shown to get . . . \ (b \ (ai \ (. . . ))) . . . , where b = ai \ ai+1. (Or we can do the mirror image, inserting two
instances of ai+1 to the left of ai and then applying (9).) For another example, if five successive terms
ai, . . . , ai+4 all come from |A| and satisfy ai = ai+2 = ai+4, then we can apply (9) either to ai, ai+1, ai+2,
or to ai+2, ai+3, ai+4, getting different reductions of our expression.

Contrast this with the case of the group gotten by adjoining a new generator g to an arbitrary group
G. This has a normal form consisting of all alternating strings of nonidentity elements of G and nonzero
powers of g, from which one quickly sees that no nonidentity element of G is central in the new group.
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The reader might find it interesting to examine the case where A is the 3-element flip-set with elements
x, x′, y referred to in the last paragraph of Lemma 8, and see how the axioms for a flip-set force x \ g = x′ \ g.
(Outline: In x \ g, substitute y \ x′ for x, and expand the result using (9). Write the last y in the resulting
expression as x′ \ y and again expand by (9). Then apply (8) twice.)

By general nonsense (see [1, Exercise 9.9:8, or better, Theorem 10.4:3]) one can associate to any flip-set
A a group Group(A) with a universal flip-set homomorphism A → Flip(Group(A)). The pairs x, x′ of
elements of |A| that fall together under this homomorphism will be those that fall together under all \ -
homomorphisms to groups. But, as in the approach of adjoining a universal g to A as a flip-set, it is not
clear how to systematically detect such pairs.

Incidentally, let us note that the above universal map A → |Group(A)| can never be onto. To see this,
take any nontrivial group G and any g ∈ |G| − {1}. Then a \ -homomorphism cg : A → Flip(G) is given
by the constant map cg(a) = g (a ∈ |A|), and by the universal property of Group(A), cg must factor
|A| → |Group(A)| → |G|, via a group homomorphism Group(A) → G. Since cg takes no element of A to
1 ∈ |G|, our map |A| → |Group(A)| cannot take any element of |A| to 1, and so cannot be surjective.

Here is another property of flip-sets arising from groups.

Lemma 12. If G is a group, then the automorphism group of Flip(G) is transitive on the set |Flip(G)| =
|G|.

Proof. By Lemma 3, the left translations of the group G (and likewise the right translations) are automor-
phisms of Flip(G), and they are, of course, transitive on |G|. �

The 3-element flip-set of the second paragraph of Lemma 8 is an example of a flip-set A whose automor-
phism group is not transitive: since the element y is fixed under all the operations a \−, while the elements
x and x′ are not, no automorphism of A can carry y to x or x′.

The above example is a homomorphic image of flip-set of the form Flip(G). A flip-set A which is, rather,
embeddable in one of the form Flip(G), but again does not have transitive automorphism group, is the case

of the example in the paragraph containing (23) where, as subsets of the cosets g and g h we use all
of one, and a singleton subset of the other. Then A consists of an infinite trajectory together with a lone
element which belongs only to trajectories of ≤ 2 elements; so no automorphism can carry that element to
any other.

6. Identities of groups and flip-sets

If a group G satisfies nontrivial identities (identities not implied by the identities defining groups), this
can lead to nontrivial identities on Flip(G).

(In (24) below, e, like f, g and h, denotes a general element of |G|; recall that identity elements are
written 1 in this note.)

Lemma 13. The identities satisfied by Flip(G) for all abelian groups G are the consequences (given the
defining identities (7)-(9) for flip-sets) of the identity

(24) e \ (f \ (g \ h)) = g \ (f \ (e \ h)).

Proof. That (24) holds in Flip(G) when G is abelian is immediate (cf. (6)).
To see that the only identities holding in all such flip-sets are the consequences of (24), first note that given

an expression x0 \ (x1 \ (. . . \ (xn−1 \ xn) . . . )), where the xi are symbols in a set X, we can, assuming (24),
rearrange in any way the xi having even subscript i < n, and likewise rearrange the xi having odd subscript
i < n. In particular, if some x ∈ X occurs in both even and odd positions, we can rearrange the terms so
that these occurrences of x appear in adjacent positions, and then use (7) or (8) to shorten the word. (We
use (7) if one of these occurrences of x is xn, so that it was the other occurrence that had to be moved to
become adjacent with it; (8) if neither occurrence is xn, so that one, the other, or both can be moved till
they become adjacent.)

Now suppose that u = v is an identity in symbols from X satisfied by Flip(G) for all abelian groups
G. Using (9) we can assume without loss of generality that in both u and v, parentheses are clustered to
the right, while using (24), (7), and (8) as above, we can assume that in each of these words, no member of
X occurs in both even-subscripted and odd-subscripted positions. Let us now evaluate u and v in the free
abelian group G on X (which we write multiplicatively). For x ∈ X, an occurrence of x as the i-indexed
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term of the expression u or v will contribute 2 (−1)i to the exponent of x in the resulting element of G,
unless the term in question is the final term (namely, xn if our expression is x0 \ (. . . \ xn) . . . ) in which
case it will contribute just (−1)i. Since no term occurs in both even and odd positions in u or in v, we
can conclude from the structure of free abelian groups that u and v must have the same length, the same
number of occurrences of each element of X in nonfinal even position, the same number of occurrences of
each element of X in nonfinal odd position, and the same final term. Hence u can be transformed into v
by applications of (24); hence the identity u = v is indeed a consequence of (24) (given (7)-(9)). �

What about the other direction? I.e., for which groups G will Flip(G) satisfy (24)?

Lemma 14. If G is a group, then Flip(G) satisfies (24) if and only if G is nilpotent of nilpotency class
≤ 2, i.e., if and only if in G,

(25) every commutator [f, g] = f−1g−1f g is central in G.

Proof. In Flip(G), (24) translates to the group-theoretic identity

(26) e f−1 g h−1 g f−1 e = g f−1 e h−1 e f−1 g.

Let us start with the case where f = 1, write h−1 = x, and multiply the resulting equation both on the
left and on the right by g−1 e−1. Then we get

(27) x g e g−1e−1 = g−1e−1g e x.

Taking x = 1, this tells us that g e g−1 e−1 equals g−1 e−1 g e, i.e., [g, e]. So the general case of (27) tells
us that x [g, e] = [g, e]x; so indeed, every commutator [g, e] in G is central.

Conversely, suppose that in G every commutator is central. Now the string of symbols e f−1 g can be
turned into the string g f−1 e by three transpositions of terms; and each of these transpositions corresponds
group-theoretically to the insertion of a certain commutator at a certain point in the product in question.
Hence the desired identity e f−1 g h−1 g f−1 e = g f−1 e h−1 e f−1 g can be thought of as gotten from the
trivial relation g f−1 e h−1 g f−1 e = g f−1 e h−1 g f−1 e by inserting three commutators among the first three
terms of the left-hand side, and the same three among last three the terms of the right-hand side. Since
commutators are central in G, inserting them at different points yields the same value; so the two sides
of (26) are in fact equal. �

If a flip-set Flip(G) satisfies (24), can it also be written Flip(G′) for an abelian group G ? In general,
no.

Lemma 15. For any group G, the following conditions are equivalent:
(i) In G, every product of squares is a square.
(ii) In Flip(G), for all elements x, y, z there exists an element w such that

(28) x \ (y \ z) = w \ z.

In particular, every abelian group satisfies these conditions. On the other hand, the group G free on two
generators in the variety determined by (25), equivalently, the group of upper triangular 3× 3 matrices over
Z with 1’s on the diagonal, does not. Hence the flip-structure of the latter group, though it satisfies (24), is
not isomorphic to the flip-structure of an abelian group.

Proof. In the paragraph following Lemma 11, we noted that condition (i) above could be expressed in terms
of the structure of Flip(G); condition (ii) is the explicit form that that condition takes (though we will not
need to know what that form is to get the final result of this lemma).

Clearly, every abelian group satisfies (i). To see that the free group G of nilpotency class ≤ 2 on
generators f, g does not, let us write the general element thereof as f i gj [g, f ]k (i, j, k ∈ Z), and note
that the group operation is given by

(29) (f i gj [g, f ]k) (f i
′
gj

′
[g, f ]k

′
) = f i+i′ gj+j′ [g, f ]k+k′+ji′ .

(Rough idea: in bringing the product on the left-hand side to normal form, each time we push one of the j
occurrences of g in the first factor past one of the i′ occurrences of f in the second, a [g, f ] is created.)

Now if, in (28), we take x = f, y = g−1, z = 1, the left-hand side of that relation becomes

(30) f g 1 g f = f2 g2 [g, f ]2.
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For the right-hand side of (28) to equal this, w has to have the form f g [g, f ]k; but we see that this gives

(31) w \ z = ww = f2 g2 [g, f ]2k+1,

which cannot agree with (30). �

On the other hand, if we adjoin to the noncommutative group of the above lemma a central square root
of [g, f ], the above problem goes away:

Lemma 16. Let G1 be the free abelian group on three generators f, g, h, and G2 the group obtained by
adjoining to the free group of nilpotency class ≤ 2 on generators f, g a central square root of the element
[g, f ], which we shall write [g, f ]1/2, so that the general element of G2 can be written in the normal form
f i gj [g, f ]k/2 with i, j, k ∈ Z, and the group multiplication is given by (29), with k and k′ everywhere
replaced by k/2 and k′/2.

Then Flip(G2) ∼= Flip(G1), by the map

(32) f i gj [g, f ]k/2 7→ f i gj hk−ij .

Proof. The map (32) is clearly a bijection. Computation shows that it respects \ . �

(The computation of the exponent of h in the image of the \ -product of two elements of G2 is very
messy; I wish I could offer a nicer verification. For a bit of intuition on (32), observe that f i gj [g, f ]k/2 can
also be written gj f i [g, f ](k/2)−ij , and that (k/2) + ((k/2)− ij) = k− ij balances the asymmetry implicit
in each of these two normal forms for G2.)

Returning to the result in Lemma 15 that the underlying flip-sets of the free abelian group of rank 3 and
the free group of nilpotency class ≤ 2 on two generators are not themselves isomorphic, we remark that
each can nonetheless be embedded in the other. In one direction, restricting (32) to the case where [g, f ]
has integer exponent, we have an embedding of the free nilpotent group in the free abelian group,

(33) f i gj [g, f ]k 7→ f i gj h2k−ij .

For the other direction, note that the cases of the right-hand side of (33) with j even comprise the
elements of the free abelian group on f, g2, h2, so renaming these elements as f, g, h (but not changing
our notation in the free nilpotent group), and turning the map around, we get the embedding

(34) f i gj hk 7→ f i g2j [g, f ]k+ij .

Turning back to the identity (24), here is another way to look at that condition.

Lemma 17. Let A be a flip-set, and z any element of A. Then A satisfies (24) if and only if (in the
notation of Lemma 13) the elements of the set {α(f)α(z) | f ∈ |A|} ⊆ |Sym(|A|)| all commute with one
another; in other words, if and only if the map

(35) f 7→ α(f)α(z),

which is a \ -homomorphism A→ Flip(Sym(|A|)), has image in an abelian subgroup of Sym(|A|).
Hence if the above equivalent conditions hold, and if, moreover, the map f 7→ α(f) is one-to-one, then

A is embeddable in Flip(G) for an abelian group G. In particular, for every group H of nilpotency class
≤ 2 having no central elements of order 2, Flip(H) is embeddable in Flip(G) for an abelian group G.

Proof. Suppose first that for some z ∈ |A|, the elements α(f)α(z) (f ∈ |A|) all lie in an abelian subgroup
of Sym(|A|). Since α(z)2 = 1, these elements can be written α(f)α(z)−1, hence for any f, g ∈ |A|, that
abelian subgroup contains (α(f)α(z)−1) (α(g)α(z)−1)−1 = α(f)α(g)−1; so our hypothesis is equivalent to
the statement that all elements of Sym(|A|) the form α(f)α(g)−1 commute. Again noting that the exponent
−1 makes no difference, we see in particular that for all e, f, g ∈ |A|, we have (α(e)α(f)) (α(g)α(f)) =
(α(g)α(f)) (α(e)α(f)), which, cancelling the α(f)’s on the right, gives α(e)α(f)α(g) = α(g)α(f)α(e).
Applying this element of Sym(|A|) to elements h ∈ |A|, we get (24).

The reverse implication works essentially the same way.
That (35) is a \ -homomorphism follows from the fact that f 7→ α(f) is a \ -homomorphism, and that,

by the proof of Lemma 12, right translation by α(z) is a \ -automorphism of Sym(|A|).
The first sentence of the second paragraph follows immediately. The final sentence follows in view of

Lemma 9. �
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We end this section by looking briefly at the other very simple sort of identity a group can satisfy, saying
that all its elements have exponent n for some fixed n. Lemma 11 shows us that for each n, the groups
satisfying this identity can be characterized by a \ -identity on their flip-structures, namely,

Lemma 18. Let n be a positive integer. Then a group G satisfies the identity gn = 1 if and only if
Flip(G) satisfies the identity equating the formulas for a0 and an in (20). �

The above “if and only if” shows that in this case we don’t have the complication that we had for
commutativity, where the effect of our \ -identity was weaker than the group-identity we started with. But
we have a different sort of complication. For each positive integer n we can ask

Question 19. Does the \ -identity described in Lemma 18 which characterizes groups of exponent n imply,
for general flip-sets, all \ -identities satisfied by groups of exponent n ?

Equivalently, is the free flip-set on any finite set of generators, subject to that identity, embeddable in the
flip-set of a group?

It seems likely that the answer will depend on n. A positive answer is vacuously true for n = 1, and for
n = 2 is easily deduced from Lemma 7. I have not investigated the question for higher n. We were able to
obtain a positive result for the analogous question concerning the commutativity identity in Lemma 13 with
the help of the explicit description of free abelian groups, and to get a result of the same sort for the class
of all groups in Lemma 5, using the normal form for free groups; but I doubt that normal forms are known
for free groups of exponent n, except for a few small values of n.

I have not examined the consequences for Flip(G) of any other identities on a group G.

7. Counting generators and relations

It is natural to ask

Question 20. Under what conditions on a group G is Flip(G) finitely generated? Finitely presented?
In such cases, what can be said about the number of generators or relations required?
In particular, what is true in the case where G is the free group on two generators?

Here is what I know about generator-counts.

Lemma 21. For G a group, let gen(G) denote the minimum number of elements needed to generate G
as a group, and likewise, for A a flip-set, let gen(A) denote the minimum number of elements needed to
generate it as a flip-set.

Then for every finitely generated group G, if we write N for the subgroup of G generated by the squares
(so that G/N is the universal exponent-2 homomorphic image of G), we have

(36) gen(Flip(G)) ≥ max(gen(G)+1, card(|G/N |)).
If G is abelian, we in fact have equality in (36).

Proof. In view of Lemma 7, the homomorphic image Flip(G/N) of Flip(G) cannot be generated by any
proper subset of Flip(G/N), hence requires card(|G/N |) generators; hence Flip(G) itself requires at least
that many; so to prove (36) it remains to prove that Flip(G) also requires more than gen(G) generators.

Suppose Flip(G) is generated by a set S. Since Flip(G) is nonempty, S must be nonempty; choose
g ∈ S. Since left translations under the group operation are \ -automorphisms of Flip(G), Flip(G) is also
generated by g−1S; hence (since the \ -operation of Flip(G) is a derived operation of G), the group G is
generated by g−1S. But 1 ∈ g−1S; so S − {1} also generates G, so Flip(G) indeed requires at least one
more generator than G.

To get the final sentence of the lemma, let us first note that if G is any abelian group, and X any subset
of |G| containing 1, then an element g ∈ |G| will belong to the flip-subset generated by X if and only if

(37) g can be written as a product of powers of elements of X − {1}, in which the exponents of all
but at most one of those elements are even.

Indeed, if we take an expression (6) with the xi allowed to be arbitrary members of X, drop factors with
xi = 1, and combine occurrences of each xi to the left and to the right of xn, we get a product of the form
described, where the only member of X that can appear with odd exponent is xn if that is not 1. (If all
terms are 1, we regard the result as the empty product, which we understand to have value 1.)
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Now suppose G is a finitely generated abelian group, say with gen(G) = n. Then G is the direct product

of n cyclic subgroups gi | gdi
i = 1 (i = 1, . . . , n) where each di is either 0 or > 1. Without loss of

generality, assume that d1, . . . , dm are even, and dm+1, . . . , dn are odd. Thus, the universal exponent-2
homomorphic image G/N has order 2m.

We now want to construct a generating set X for Flip(G), of the cardinality shown on the right-hand
side of (36).

The key to insuring that the set we will describe generates Flip(G) will be to set things up so that the
closure of X under \ contains, on the one hand, all 2m products of subsets of {gi, . . . , gm} (including
the empty product 1), and, on the other hand, all the elements gm+1, . . . , gn. We will then be able to
express an arbitrary g ∈ G in the form (37) by letting the product of those gi with i = 1, . . . ,m that occur
with odd exponent in g be the one term occurring with (arbitrary) odd exponent in that product, bring
in the elements from {g1, . . . , gm} with appropriate even exponents to achieve the desired powers of those
elements, and finally note that each gi with m < i ≤ n has odd order, hence the subgroup it generates is
also generated by its square, i.e., can be regarded as consisting of even powers of gi, so those gi can also
be brought into our product (37) with even exponent to achieve the desired value.

To get such a generating set X, let us first form the set X0 of all products of finite subsets of {g1, . . . , gm}.
What we do next depends on which of n+ 1 and 2m (i.e, gen(G) + 1 and card(|G/N |)) is larger. In either
case, we keep unchanged the members of X0 that are products of 0 or 1 of gi, . . . , gm. If n + 1 ≤ 2m

(equivalently, n −m ≤ 2m − (m + 1)), we replace n −m of the 2m − (m + 1) elements y ∈ X0 that are
products of two or more of g1, . . . , gm with elements gi y for distinct i = m + 1, . . . , n, and take for X
the resulting modified version of X0, which we note still has 2m elements. If n + 1 ≥ 2m, we replace all
2m −m − 1 of the elements y ∈ X0 that are products of two or more of g1, . . . , gm with elements gi y as
above; this leaves (n −m) − (2m −m − 1) = n − 2m + 1 of gm+1, . . . , gn unused, and we make these into
additional members of X, giving X a total cardinality of 2m + (n− 2m + 1) = n+ 1. (If n+ 1 = 2m, these
two constructions agree.) Thus, in each case, we get a set X of cardinality max(n+ 1, 2m).

To show that this X is a generating set for Flip(G), it will suffice, by our earlier remarks, to show that
for each element gi y that we introduced, the flip-set generated by X contains both gi and y.

To recover gi, let us first form an expression (37) in the elements of X in which gi y occurs with
exponent 2, and each of the gj whose product gives y occurs with exponent −2. (These gj are products
singleton subsets of {gi, . . . , gm}, which we left unchanged in constructing X from X0.) The result is g2i ,
and as we have noted, since gi has odd order, some power of g2i is gi, which thus lies in the flip-set generated
by X. Now taking an expression (37) with gi y having exponent 1, and gi (obtained above) having an
even exponent that gives a value equal to g−1i , we recover y, as required. �

I have not investigated Question 20 beyond this.

8. Comparison with heaps

A derived operation on groups related to the flip-operation is the ternary operation

(38) τ(x, y, z) = x y−1 z,

which satisfies the identities

(39) τ(τ(v, w, x), y, z) = τ(v, τ(y, x, w), z) = τ(v, w, τ(x, y, z)),

(40) τ(x, x, y) = y = τ(y, x, x).

A set with an operation τ satisfying (39) and (40) is called a heap. (Cf. [1, Exercises 9.6:10-11] for some
background and references.) For G a group, let us write Heap(G) for the heap with underlying set G and
operation defined by (38).

As with flip-set structures, the heap structure on Heap(G) does not determine the group structure: again,
every right or left translation operation of the group structure gives an automorphism of the heap. However,
in contrast to the case of flip-structures, every heap structure on a nonempty set does arise as above from
a group structure, which is unique up to isomorphism, and which becomes unique when one chooses an
element e to be the identity element. The group structure is then given by

(41) x y = τ(x, e, y), x−1 = τ(e, x, e).
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Because of this very close relationship with groups, heaps are not much studied for their own sake, though
one sometimes calls on the concept in situations where a natural heap structure exists but not a natural
group structure; namely, given two isomorphic objects C and D of a category, the set of isomorphisms
C → D has a natural structure of heap, given by the same formula (38), but not a natural group structure.

The flip-structure on the underlying set of a group is, clearly, a further weakening of the heap structure,
given by

(42) x \ y = τ(x, y, x).

This loses much more information than the heap structure. In particular, as we have seen, not every such
structure is embeddable in one coming from a group.

9. Final thoughts

I do not know whether the ideas of this paper will prove useful in improving our understanding of groups
or other structures, or are merely a curious side-trip. The results we have obtained have all been lemmas –
no deep results.

In this development, unexpected behavior has repeatedly involved the exponent 2 in groups (e.g., Lem-
mas 7 and 21, and last paragraphs of Lemmas 8 and 9.) A generalization of the subject (if one wants to
move further into areas that might or might not be of use), in which more exponents can be expected to
show such behavior, would be to study, for any n > 1, the binary operator \n on underlying sets of groups
defined to carry the terms a1 and a0 of a trajectory to an; in other words,

(43) g \n h = g (h−1g)n−1.

(So the operation we have called \ is in this notation \2.)
If (ai) is a trajectory in a group, and S any subset of Z, then it is not hard to show that the set of ai

generated under \n by {ai | i ∈ S} will have the property that each of its members has the form aj for some
j which is both congruent modulo n to some member of S and congruent modulo n− 1 to some (possibly
different) member of S. Note also that the expression (43) has value g if and only if (h−1g)n−1 = 1, value
h if and only if (h−1g)n = 1. So it seems that the \n-analogs of flip-sets should show interesting behavior
involving exponents dividing n or n− 1.

References

[1] George M. Bergman, An Invitation to General Algebra and Universal Constructions, 2015, Springer Universitext, x+572

pp.. http://dx.doi.org/10.1007/978-3-319-11478-1 . MR3309721
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