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Abstract. The Boolean ring B of measurable subsets of the unit
interval, modulo sets of measure zero, has proper radical ideals
(e.g., {0}) that are closed under the natural metric, but has no
prime ideals closed under that metric; hence closed radical ideals
are not, in general, intersections of closed prime ideals. Moreover,
B is known to be complete in its metric. Together, these facts
answer a question posed by J.Gleason. From this example, rings
of arbitrary characteristic with the same properties are obtained.

The result that B is complete in its metric is generalized to show
that if L is a lattice given with a metric satisfying identically either
the inequality d(x ∨ y, x ∨ z) ≤ d(y, z) or the inequality d(x ∧ y,
x ∧ z) ≤ d(y, z), and if in L every increasing Cauchy sequence
converges and every decreasing Cauchy sequence converges, then
every Cauchy sequence in L converges; i.e., L is complete as a
metric space.

We show by example that if the above inequalities are replaced
by the weaker conditions d(x, x ∨ y) ≤ d(x, y), respectively d(x,
x ∧ y) ≤ d(x, y), the completeness conclusion can fail.

We end with two open questions.

1. Overview: a ring-theoretic question, culminating in a
lattice-theoretic result

A standard result of ring theory says that if I is an ideal of a com-
mutative ring R, then the nil radical of I (the ideal of elements having
some power in I) is the intersection of the prime ideals of R containing I
[1, Proposition 10.2.9, p. 352].
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Jonathan Gleason1 (personal communication) asked the present au-
thor about a possible generalization of that result. Namely, suppose R
is a topological commutative ring. For any ideal I of R, let

√
I denote

the least closed ideal J ⊇ I such that J contains every element x such
that xn ∈ J for some n ≥ 1. Must

√
I be the intersection of all closed

prime ideals containing I? If not in general, does this become true if
R is complete with respect to the given topology?

We shall see that the answer is negative: If R is the Boolean ring of
measurable subsets of the unit interval modulo sets of measure zero,
topologized using the metric given by the measure of the symmetric
difference of such sets, then R is complete in that metric, and {0} =√
{0} (defined as above); but R has no closed prime ideals, so {0}

is not an intersection of such ideals. We give the details in §2, and
note in §3 how to get, from this characteristic-2 example, examples of
arbitrary characteristic.

The one not-so-obvious property of our example is the completeness
of B as a metric space. In §4 (which is independent of §§2-3) we note
that this can be deduced from a standard result of measure theory,
and then prove a general result on when a metrized lattice is complete,
which yields an alternate proof.

In §5 we give a curious counterexample to a version of that general
completeness result with a weakened hypothesis.

2. The Boolean example

Most of the desired properties of the example sketched above are
straightforward to verify.

Recall that for any set X, the subsets of X form a Boolean ring under
the operations

(1) 0 = ∅, 1 = X, S + T = S ∪ T \ (S ∩ T ), S T = S ∩ T.
Now let B0 be the set of measurable subsets of the unit interval [0, 1],

and for S ∈ B0, let µ(S) ∈ [0, 1] be its measure. B0 clearly forms a
subring of the Boolean ring of subsets of [0, 1], and for any S, T ∈ B0,
we see from the above definition of S + T that

(2) µ(S∪T ) = µ(S+T ) +µ(S∩T ) = µ(S) +µ(T )−µ(S∩T ).

For S, T ∈ B0, let

(3) d0(S, T ) = µ(S + T ).

Then d0 is a pseudometric, i.e., for all S, T, U ∈ B0,

(4) d0(S, T ) ≥ 0,

1Jonathan Gleason, then a graduate student in mathematics at the University of
California, Berkeley, raised this question shortly before his unexpected tragic death
in January, 2018.
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(5) S = T =⇒ d0(S, T ) = 0,

(6) d0(T, S) = d0(S, T ),

(7) d0(S, T ) + d0(T, U) ≥ d0(S, U).

Here (4)-(6) are immediate. To get (7), note that the second equality
of (2) gives the inequality µ(S) +µ(T ) ≥ µ(S+T ). Putting S+T and
T + U in place of S and T in that relation gives (7).

The definition (3), and the identities of Boolean rings, show that the
Boolean operations behave nicely under d0:

(8) d0(S+U, T+U) = d0(S, T ),

(9) d0(SU, TU) ≤ d0(S, T ).

These relations show in particular that if S and T are close to one
another under d0, then the results of adding U to S and T are also
close to one another, as are the results of multiplying S and T by U,
in each case in a uniform way, whence addition and multiplication are
continuous with respect to d0.

Now let B be the quotient ring

(10) B = B0 / {S | µ(S) = 0}.
Let us write [S] ∈ B for the residue class of an element S ∈ B0, and
define

(11) d([S], [T ]) = d0(S, T ) = µ(S + T ) for [S], [T ] ∈ B.
Then (4)-(9) clearly carry over to d, with the “=⇒” of (5) strengthened
to “⇐⇒”. Thus, d is a metric, and

Lemma 2.1. The operations of the Boolean ring B of measurable sub-
sets of [0, 1] modulo sets of measure zero are continuous in the metric
d of (11). �

Being a Boolean ring, B has no nonzero nilpotent elements, hence
the ideal {0} of B trivially contains every x ∈ B such that xn ∈ {0} for
some n ≥ 1; and being a singleton, {0} is closed in the metric topology.

So
√
{0} = {0} under the definition of

√
I suggested by Gleason.

Is {0} an intersection of closed prime ideals? A negative answer
follows from

Lemma 2.2. Every prime ideal P of the ring B has for topological
closure the whole ring B.

Hence B has no closed prime ideals.

Proof. Given a prime ideal P, let us first show that P has elements
arbitrarily close to 1, i.e., elements [1 + U ] such that U has arbitrarily
small measure. To do this, we shall show that whenever [1 + U ] ∈ P,
there exists [1 + S] ∈ P with µ(S) = µ(U)/2.
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Indeed, let us write U as the union of two disjoint measurable subsets
S and T, each of measure µ(U)/2. (E.g., one can take S = U ∩ [0, t] and
T = U ∩ (t, 1] for appropriate t ∈ [0, 1]. Such a t exists by continuity of
µ(U∩[0, t]) in t.) Since [1+S][1+T ] = [1+U ] ∈ P, one of [1+S], [1+T ]
belongs to P.

So P indeed has elements arbitrarily close to 1. Multiplying arbitrary
[V ] ∈ B by such elements, we see that P has elements arbitrarily close
to [V ]; so the closure of P contains every [V ] ∈ B, as claimed.

Hence no prime ideal P is itself closed, giving the final assertion. �

So {0} =
√
{0} is not an intersection of closed prime ideals. Since B

is complete in the metric µ (to be proved in two ways in §4), B answers
the strongest form of Gleason’s question.

(To be precise, Gleason’s question concerned completeness of a topo-
logical ring R in the uniform structure arising from additive trans-
lates of neighborhoods of 0. Our metrized ring has additive-translation-
invariant metric by (8), hence completeness in the uniform structure so
arising from the metric topology is equivalent to completeness in the
metric.)

3. Non-Boolean algebras

Is the behavior of above example limited to Boolean rings, or perhaps
to rings of nonzero characteristic? No. We note below how to generalize
the construction of the preceding section to algebras in the sense of
General Algebra (a.k.a. Universal Algebra), and observe that when the
algebras in question are rings (of arbitrary characteristic), these give
more varied examples of the properties proved for B.

We start with the analog of B0.

Definition 3.1. For X a set, let X [0,1] denote the set of all X-valued
functions on the unit interval, and for each f ∈ X [0,1] and x ∈ X, let

(12) fx = {t ∈ [0, 1] | f(t) = x}.

Let X ′ denote the subset of X [0,1] consisting of those f such that

(13) for all x ∈ X, the set fx ⊆ [0, 1] is measurable,

and

(14)
the image of f, that is, {x ∈ X | fx 6= ∅}, is countable
(i.e., finite or countably infinite).

For f, g ∈ X ′, let

(15) d′(f, g) = µ({t ∈ [0, 1] | f(t) 6= g(t)}) = (
∑

x∈X d0(fx, gx)) / 2,

where d0 is the pseudometric on measurable subsets of [0, 1] defined
in (3).
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The final equality of (15) is, intuitively, a consequence of the fact
that every t ∈ [0, 1] such that f(t) 6= g(t) contributes twice to the
summation in the final term: via the summand with x = f(t) and the
summand with x = g(t). That idea is easily formalized to show that
that sum is indeed twice the middle term of (15).

Lemma 3.2. For any set X, the function d′ defined by (15) is a pseu-
dometric on X ′.

For any finitary operation u : Xn → X, the induced pointwise opera-
tion u[0,1] : (X [0,1])n → X [0,1] carries (X ′)n to X ′, and for f (0), . . . , f (n−1),
g(0), . . . , g(n−1) ∈ X ′, we have

(16)
d′(u[0,1](f (0), . . . , f (n−1)), u[0,1](g(0), . . . , g(n−1)))

≤ d′(f (0), g(0)) + · · ·+ d′(f (n−1), g(n−1)).

Proof. That d′ is a pseudometric is straightforward. (The triangle in-
equality is verified using the rightmost expression of (15) and the fact
that d0 is a pseudometric.)

We need to know next that given u : Xn → X, and f (0), . . . , f (n−1) ∈
X ′, we have u[0,1](f (0), . . . , f (n−1)) ∈ X ′. Note that for each x ∈ X,
u[0,1](f (0), . . . , f (n−1))x will be the union, over all n-tuples (x0, . . . , xn−1)
satisfying u(x0, . . . , xn−1) = x, of the sets

(17) f
(0)
x0 ∩ · · · ∩ f

(n−1)
xn−1 .

Now for each i ∈ n, only countably many values of xi make f
(i)
xi

nonempty, so only countably many n-tuples (x0, . . . , xn−1) make the
intersection (17) nonempty; and by (13), each of those n-fold intersec-
tions is measurable; so for each x, u[0,1](f (0), . . . , f (n−1))x is a countable
union of measurable sets, hence measurable; i.e., u[0,1](f (0), . . . , f (n−1))
satisfies the condition of (13). It also satisfies the condition of (14),
since the countably many cases where (17) is nonempty lead to only
countably many possibilities for the element u(x0, . . . , x(n−1)). So u[0,1]

carries (X ′)n to X ′.
The inequality (16) follows from the fact that u(f (0), . . . , f (n−1)) and

u(g(0), . . . , g(n−1)) can differ only at points t ∈ [0, 1] where f (i) and g(i)

differ for at least one i. �

We now want to deduce the corresponding results with the set of
functions X ′ replaced by the set of equivalence classes of such functions
under the relation of differing on a set of measure zero. We will need
the following observation.

Lemma 3.3. As in §2, let B0 denote the Boolean ring of measurable
subsets of [0, 1].

Let S0, S1, . . . be a countable (i.e., finite or countably infinite) family
of elements of B0 such that

(18) µ(Si ∩ Sj) = 0 whenever i 6= j,
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and

(19)
∑

i µ(Si) = 1.

Then there exist T0, T1, . . . ∈ B0 such that

(20) d0(Si, Ti) = 0 (i = 0, 1, . . . ),

and the Ti partition [0, 1], i.e., satisfy the two conditions

(21) Ti ∩ Tj = ∅ whenever i 6= j (cf. (18))

and

(22)
⋃

i Ti = [0, 1] (cf. (19)).

Proof. Let

(23) Ti = Si \
⋃

0≤j<i Sj for i > 0,

and

(24) T0 = [0, 1] \
⋃

i>0 Ti.

These sets are clearly measurable and partition [0, 1].
Since the sets Sj whose members are removed from Si in (23) have,

by (18), only a set of measure zero in common with Si, we see that for
i > 0, Ti differs from Si in a set of measure zero, giving (20) for such i.
Also by (23), no Ti with i > 0 contains elements of S0, so by (24),
T0 ⊇ S0; hence to prove the i = 0 case of (20), it suffices to show that
µ(T0) = µ(S0). To do this, note that since the Ti partition [0, 1], we
have

∑
i≥0 µ(Ti) = µ([0, 1]) = 1 =

∑
i≥0 µ(Si) by (19). If we subtract

from that relation the equations µ(Ti) = µ(Si) for all i > 0, which
follow from the cases of (20) already obtained, we get the desired i = 0
case. �

Now – still assuming the completeness of B, to be obtained in the
next section – we can get

Proposition 3.4. For X a set, let X∗ denote the quotient of X ′ (de-
fined in Definition 3.1) by the equivalence relation d′(f, g) = 0, and let
d∗ be the metric on X∗ induced by d′.

Then X∗, under the metric d∗, is a complete metric space.

Proof. Consider any Cauchy sequence [f (0)], [f (1)], · · · ∈ X∗, where
f (0), f (1), · · · ∈ X ′. For each n, the set of elements x ∈ X such that

f
(n)
x is nonempty is countable by (14); hence there exists a countable

(possibly finite) list of distinct such elements:

(25) {x0, x1, . . . } = {x ∈ X | (∃n) f
(n)
x 6= ∅}.

Now (writing d0 and d, as in the preceding section, for our pseudo-
metric on B0 and metric on B), we have for all i, m, n,

(26)
d([f

(m)
xi ], [f

(n)
xi ]) = d0(f

(m)
xi , f

(n)
xi )

≤ d′(f (m), f (n)) = d∗([f (m)], [f (n)]);
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hence the Cauchyness of the sequence of elements [f (n)] ∈ X∗ implies,

for each xi, the Cauchyness of the sequence of [f
(n)
xi ] ∈ B. Hence by

the completeness of B, for each i the sequence [f
(0)
xi ], [f

(1)
xi ], . . . con-

verges to an element which we shall write [Si], choosing an arbitrary
representative Si ∈ B0 of the limit of that sequence in B.

I claim that these sets Si satisfy (18) and (19). To get the first of
these equations for given i 6= j, note that for any ε > 0, one can choose

n such that d0(f
(n)
xi , Si) < ε/2 and d0(f

(n)
xj , Sj) < ε/2. Since f

(n)
xi and

f
(n)
xj are disjoint, we see that Si and Sj intersect in a set of measure

at most ε. Since this holds for all ε > 0, they intersect in a set of
measure 0.

To get (19), note that for any ε > 0 we may choose m such that for
all n ≥ m we have d∗([f (m)], [f (n)]) ≤ ε/3, equivalently,

(27) d′(f (m), f (n)) ≤ ε/3.

Since f
(m)
x0 , f

(m)
x1 , . . . partition [0, 1], we can also choose j such that

(28) µ(f
(m)
x0 ) + · · ·+ µ(f

(m)
xj ) ≥ 1− ε/3.

For n ≥ m, (27) guarantees that d0(f
(m)
x0 , f

(n)
x0 ) + · · ·+ d0(f

(m)
xj , f

(n)
xj ) ≤

2ε/3 (see (15)), equivalently, d([f
(m)
x0 ], [f

(n)
x0 ]) + · · ·+ d([f

(m)
xj ], [f

(n)
xj ]) ≤

2ε/3, hence passing to the limit as n → ∞, d([f
(m)
x0 ], [S0]) + · · · +

d([f
(m)
xj ], [Sj]) ≤ 2ε/3; and combining with (28) we get µ(S0) + · · · +

µ(Sj) ≥ 1 − ε, equivalently, µ(S0 ∪ · · · ∪ Sj) ≥ 1 − ε. Since this holds
for all ε, we have

∑
i µ(Si) = µ(

⋃
i Si) ≥ 1; and since a subset of [0, 1]

cannot have measure larger than 1, we get (19).
Lemma 3.3 now gives us a partition of [0, 1] into sets Ti which differ

from the Si by sets of measure zero. If we define f ∈ X ′ by

(29)
fxi

= Ti for all i (whence, by (22), fx = ∅ for all x not of
the form xi),

then [f ] ∈ X∗ is a limit of the given Cauchy sequence [f (0)], [f (1)], . . . ,
proving completeness. �

Remark: If in (14) we had allowed uncountable cardinalities, we
would not have been able to use basic properties of measure, e.g., in
concluding that the set in the middle term of (15) was measurable, and
in proving in Lemma 3.2, that u[0,1] carries (X ′)n to X ′. On the other
hand, if we had required the set of x making fx nonempty to be finite,
our X∗ would not have been complete, except in the case where X was
finite. So countability is the only choice that gives our construction X∗

the desired properties.
We have not yet called on (16). It implies that our construction

behaves nicely on algebras:
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Proposition 3.5. Suppose A is an algebra in the sense of General Al-
gebra, that is, a set given with a (finite or infinite) family of operations,
each of finite arity, and let the set A∗ be defined as in Proposition 3.4.

Then for each operation u : An → A of A, the operation u∗ of A∗

described by

(30) u∗([f0], . . . , [fn−1]) = [u[0,1](f0, . . . , fn−1)]

is well-defined, and uniformly continuous in the metric d∗; indeed, it
satisfies Lipschitz condition

(31)
d∗(u∗([f (0)], . . . , [f (n−1)]), u∗([g(0)], . . . , [g(n−1)]))

≤ d∗([f (0)], [g(0)]) + · · ·+ d∗([f (n−1)], [g(n−1)]).

The resulting algebra A∗ satisfies all identities satisfied by A. In fact,
every finite set of elements of A∗ is contained in a subalgebra of A∗

isomorphic to a countable direct product of copies of A.

Sketch of proof. By the case of (16) where the d′(f (i), g(i)) are all zero,
the operations u[0,1] of A′ respect the equivalence relation used in defin-
ing the set A∗, so (30) gives well-defined operations. The general case
of (16) then gives the Lipschitz inequality (31), and in particular, con-
tinuity. Finally, given any finite family of elements [f (0)], . . . , [f (N−1)]

of A∗, the countably many nonempty sets f
(i)
a (0 ≤ i < N, a ∈ A)

yield a decomposition of [0, 1] into countably many intersections as
in (17), on each of which all of f (0), . . . , f (N−1) are constant. Dropping
those intersections that have measure zero, and looking at the algebra
of members of A′ that are constant on the remaining countably many
subsets, we see that this contains f (0), . . . , f (N−1), and has as its image
in A∗ a subalgebra isomorphic to a countable direct product of copies
of A. �

Finally, some observations specific to rings.

Proposition 3.6. Let A be an associative unital ring. Then in the
complete metrized ring A∗ arising by the construction of Proposition 3.5,
the closure of every prime ideal is all of A∗; hence A∗ has no closed
prime ideals.

On the other hand, if A is commutative and has no nonzero nilpotent
elements, then the topological radical

√
{0}, defined as in §1, is {0}.

Sketch of proof. Let P be a prime ideal of A∗. Writing 1S for the char-
acteristic function with values in {0, 1} ⊆ A of a subset S ⊆ [0, 1], let
us show that P contains elements [1[0,1]\U ] for sets U of arbitrarily small
positive measure. Clearly, it contains [1[0,1]\U ] for U = [0, 1]. Given any
U such that [1[0,1]\U ] ∈ P, let us partition U into two disjoint measur-
able subsets S and T of equal measure. Since {0, 1}-valued functions
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are central in A′, so are their images in A∗, so we have

(32)
[1[0,1]\S] A∗ [1[0,1]\T ] = [1[0,1]\S] [1[0,1]\T ] A∗

= [1[0,1]\(S∪T )] A
∗ = [1[0,1]\U ] A∗ ⊆ P,

so as P is prime, one of [1[0,1]\S], [1[0,1]\T ] belongs to P ; so we have cut in
half the measure of our set U with [1[0,1]\U ] ∈ P. Since d([1[0,1]\U ], 1) =
µ(U), we have, as in the proof of Lemma 2.2, found elements of P
arbitrarily close to 1, and can deduce that the closure of P is all of A∗.

The final assertion is straightforward. �

Thus, for A a commutative ring without nilpotents, the rings A∗

generalize the properties of the example B of the preceding section.
That B is, of course, the case of this construction with A = Z/2Z.

If we take A = Z/nZ for an arbitrary positive integer n, then A
may have nilpotents, so the last sentence of Proposition 3.6 does not
apply. Nevertheless, from the fact that the nil ideal of A is finite, and
so in particular, has a bound on the order of nilpotence of its elements,
it is easy to deduce that the nilpotent elements of A∗ form a closed
ideal N. Thus, N =

√
N is a proper ideal of A∗, hence again, not an

intersection of closed prime ideals; so as stated in the Abstract, we
get counterexamples of all characteristics to the statement J. Gleason
asked about.

Remark: The development of the above results in terms of mea-
surable X-valued functions on [0, 1], modulo disagreement on sets of
measure zero, feels artificial. Surely one should be able to perform
our constructions abstractly in terms of the set X, the Boolean ring B,
and the real-valued function on B induced by the measure on [0, 1], and
then generalize it to get such results with B replaced by any Boolean
ring with an appropriate real-valued function.

If we were interested in maps [0, 1]→ X assuming only finitely many
values, then the analog of X∗ could be described as the set of continu-
ous functions from the Stone space of B to the discrete space X. But
for maps allowed to assume countably many values, the function corre-
sponding to the metric seems to be needed in defining X∗. I leave the
proper formulation and generalization of that construction to experts
in the subject. Cf. [2, Chapter 31].

In contrast, the results of the next section will be obtained in a
satisfyingly general context.

4. Completeness

When I first looked at the Boolean ring B of measurable subsets of
[0, 1], modulo sets of measure zero, as a possible answer to J. Gleason’s
question, the one property that was not clear was completeness in the
natural metric, though it seemed likely.
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One might naively hope to prove completeness by showing that ev-
ery sequence of measurable subsets of [0, 1] whose images in B form a
Cauchy sequence “converges almost everywhere” on [0, 1]; i.e., that al-
most every t ∈ [0, 1] belongs either to all but finitely many members of
the sequence, or to only finitely many. But this is not so; a counterex-
ample [3, Exercise 22(6), p.94] is the sequence whose first term is [0, 1],
whose next two are [0, 1/2] and [1/2, 1], whose next three are [0, 1/3],
[1/3, 2/3], [2/3, 1], and, generally, whose 1+2+ . . .+(n−1)+ i -th term
for 1 ≤ i ≤ n is [(i − 1)/n, i/n]. The measures of these sets approach
zero, so the sequence approaches ∅ in our metric; but clearly every
t ∈ [0, 1] occurs in infinitely many of these sets. Looking at this exam-
ple, one might still hope that given a Cauchy sequence in B, almost
every t ∈ [0, 1] has the property that the terms Si which contain t are
either “eventually scarce”, or have eventually scare complement. But
this, too, fails; to see this, take the above example, and “stretch it out”
by repeating the m-th term 2m times successively, for each m.

However, an online search turned up a proof of the desired complete-
ness statement in a set of exercises [5] (in particular, point 6 on p. 2).
I cited that, in the first draft of this note, as the only reference for
the result that I could find. David Handelman then pointed out that
the desired statement follows immediately from the standard fact that
L1 of the unit interval is complete in its natural metric ([4, Theorem
VI.3.4, p.133], [3, Theorem 22.E, p.93]), on identifying measurable sets
with their characteristic functions. (And indeed, in [3, Exercise 40(1),
p.169], the reader is asked to deduce the result we want from that re-
sult about L1.) Subsequently, Hannes Thiel pointed me to a result of
the desired sort proved for a large class of Boolean rings with measure-
like [0, 1]-valued functions [2, Theorem 323G(c)]. (The condition there
called localizability means, roughly, that the Boolean ring has “enough”
elements of finite measure, and has joins of arbitrary subsets.)

In all these sources, the key to the proof of completeness is to pass
from an arbitrary Cauchy sequence to a subsequence with the property
that the distance between the i-th and i+1-st terms is ≤ 2−i. Rather
magically, a sequence with this property does indeed converge almost
everywhere, giving a limit of the original Cauchy sequence.

In fact, this trick can be abstracted from the context of measure
theory to that of lattices (or even semilattices) as in the next theorem,
from which we will recover, as a corollary, the result on measurable sets
modulo null sets.

Since we no longer need the notation “fx” of the preceding section
for the point-set at which a function takes on the value x, we will
henceforth use subscripts in the conventional way to index terms of
sequences.
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We remark that the condition that a metrized lattice be complete as
a metric space, obtained in the theorem, is independent of its complete-
ness as a lattice, i.e., the existence of least upper bounds and greatest
lower bounds of not necessarily finite subsets (though the condition
that certain infinite least upper bounds and greatest lower bounds ex-
ist will be key to the argument). For instance, any lattice, under the
metric that makes d(x, y) = 1 whenever x 6= y, is complete as a metric
space, and, indeed, satisfies the hypotheses of the next theorem, but
need not be complete as a lattice. Inversely, the totally ordered subset
of the real numbers {−2} ∪ (−1, 1) ∪ {2} is complete as a lattice, but
not as a metric space.

Theorem 4.1. Let L be a lattice, whose underlying set is given with a
metric d which satisfies identically at least one of the inequalities

(33) d(x ∨ y, x ∨ z) ≤ d(y, z) (x, y, z ∈ L),

(34) d(x ∧ y, x ∧ z) ≤ d(y, z) (x, y, z ∈ L)

(or, more generally, let L be an upper semilattice satisfying (33), or a
lower semilattice satisfying (34)).

Suppose moreover that in L

(35)
every increasing Cauchy sequence x0 ≤ x1 ≤ . . . ≤ xn ≤ . . .
converges,

and likewise

(36)
every decreasing Cauchy sequence x0 ≥ x1 ≥ . . . ≥ xn ≥ . . .
converges.

Then every Cauchy sequence in L converges; i.e., L is complete as a
metric space.

Proof. It suffices to prove the case where L is an upper semilattice
satisfying (33), since this includes the case where L is a lattice sat-
isfying (33), while the cases where L is a lower semilattice or lattice
satisfying (34) follow by duality. So assume L such an upper semilat-
tice.

In proving L complete, it suffices to show convergence of sequences
x0, x1, . . . such that

(37)
∑

i≥0 d(xi, xi+1) < ∞,

since every Cauchy sequence has such a subsequence (e.g., one chosen
so that d(xi, xi+1) ≤ 2−i, as in [3], [4] and [5]), and if a subsequence of
a Cauchy sequence converges, so does the whole sequence.

So let the sequence x0, x1, . . . satisfy (37), and let us define

(38) xh,j = xh ∨ xh+1 ∨ · · · ∨ xj for h ≤ j.

Note that if in (33) we put x = xh,j, y = xj, z = xj+1, we get

(39) d(xh,j, xh,j+1) ≤ d(xj, xj+1).
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Also, for h ≤ j ≤ k, the triangle inequality (applied k− j− 1 times)
gives d(xh,j, xh,k) ≤

∑
j≤`<k d(xh,`, xh,`+1). Applying (39) to each term

of this summation, we get

(40) d(xh,j, xh,k) ≤
∑

j≤`<k d(x`, x`+1).

In particular, for each j, the distance from xh,j to any of the later
terms xh,k is ≤

∑
j≤`<∞ d(x`, x`+1). As j → ∞, this sum approaches

0, so (still for fixed h) the elements xh,j (j = h, h+1, . . . ) form an
increasing Cauchy sequence. By (35) this sequence will converge; let

(41) xh,∞ = limj→∞ xh,j.

Note that, by (40), (41), and the continuity of d in the topology it
defines, we have

(42) d(xh,j, xh,∞) ≤
∑

j≤`<∞ d(x`, x`+1) for h ≤ j.

Note next that

(43) xh,j ≥ xi,j for h ≤ i ≤ j.

I claim that this implies that

(44) xh,∞ ≥ xi,∞ for h ≤ i.

Indeed, (43) and (44) are respectively equivalent to the conditions
d(xh,j, xh,j∨xi,j) = 0 and d(xh,∞, xh,∞∨xi,∞) = 0, and the latter can
be obtained from the former using (41).

So the elements xh,∞ (h = 0, 1, . . . ) form a decreasing sequence. I
claim that this sequence, too, is Cauchy; in fact, that

(45) d(xh,∞, xi,∞) ≤
∑

h≤`<i d(x`, x`+1) for h ≤ i.

Namely, by essentially the same argument used to prove (40), one sees
that for every j ≥ i, d(xh,j, xi,j) ≤

∑
h≤`<i d(x`, x`+1); and by continu-

ity of d, this again carries over to the limit as j → ∞. Hence by (36),
the terms of (44) converge, and we can define

(46) x∞,∞ = limh→∞ xh,∞.

Finally, note that for every h ≥ 0,

(47)

d(xh, x∞,∞) = d(xh,h, x∞,∞)

≤ d(xh,h, xh,∞) + d(xh,∞, x∞,∞)

≤
∑

h≤`<∞ d(x`, x`+1) +
∑

h≤`<∞ d(x`, x`+1)

= 2
∑

h≤`<∞ d(x`, x`+1),

and that this sum approaches 0 as h→∞. Hence the xh converge,

(48) limh→∞ xh = x∞,∞,

completing the proof of the theorem. �
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The first assertion of the following corollary clearly includes the com-
pleteness result called on in §§2-3. The remaining two assertions are
further generalizations.

Corollary 4.2. Let M be a measure space of finite total measure, and
B the Boolean ring of measurable subsets of M modulo sets of measure
zero. For S a measurable subset of M, let [S] denote its image in B.
Then B is complete with respect to the metric

(49) d([S], [T ]) = µ(S + T ),

More generally, if M is a measure space not necessarily of finite total
measure, and C a positive real constant, and we define

(50) dC([S], [T ]) = min(µ(S + T ), C),

then the Boolean ring B is complete with respect to dC .
Alternatively, if, in the latter situation, we define Bfin to be the

nonunital Boolean ring of measurable sets of finite measure modulo
sets of measure zero, then Bfin is again complete with respect to the
metric d of (49).

In all these cases, the operations of our Boolean ring are continuous
in the metric named.

Proof. In each of these cases, the lattice operations on our structure are
easily shown to satisfy (33)-(36) with respect to the indicated metric.
(In the case of the metric dC of (50), note that in any Cauchy sequence,
all but finitely many terms must have the property that their distances
from all later terms are < C, so that the definition (50), applied to those
distances, reduces to (49).) Hence Theorem 4.1 gives completeness. �

The standard result mentioned earlier, that L1 of the unit interval
(indeed, of any measure space) is complete in its natural metric, follows
similarly, on regarding L1 as a lattice under pointwise max and min.

We remark that in any partially ordered set with a metric, the con-
junction of conditions (35) and (36) above is easily shown equivalent to
the single condition that every Cauchy sequence whose members form
a chain under the partial ordering converges. But the pair of conditions
as stated seems easier to work with. In particular, it is easy to see that
it holds for measurable sets modulo sets of measure zero in a measure
space.

Concerning conditions (33) and (34), note that these are equivalent
to Lipschitz continuity of ∨, respectively ∧, with Lipschitz constant 1.
One could generalize the proof of Theorem 4.1 to allow any Lipschitz
constant; in fact, I suspect that a version of the theorem could be
proved – at the cost of more complicated arguments – with these con-
ditions weakened to say that ∨, respectively, ∧, is uniformly continuous;
equivalently, that there exists a function u from the positive reals to



14 GEORGE M. BERGMAN

the positive reals satisfying

(51) limt→0 u(t) = 0,

such that

(52) d(x ∨ y, x ∨ z) ≤ u(d(y, z)) (x, y, z ∈ L),

respectively,

(53) d(x ∧ y, x ∧ z) ≤ u(d(y, z)) (x, y, z ∈ L).

The idea would be to choose from a general Cauchy sequence a subse-
quence for which the distance between i-th and i+1-st terms decreases
rapidly enough not only to make these distances have a convergent
sum, but to have the corresponding property after taking into account
the effect of the u in (52) or (53) under the iterated application of that
inequality in the proof. But I don’t know whether there are situations
where metrics arise that would make it worth trying to prove such a
result.

5. Counterexample: a natural lattice under a strange
metric

Another pair of conditions weaker than (33) and (34), which I at
one point thought might be able to replace those two hypotheses in
Theorem 4.1, are

(54) d(x, x ∨ y) ≤ d(x, y) (x, y ∈ L),

and

(55) d(x, x ∧ y) ≤ d(x, y) (x, y ∈ L).

One can in fact prove from (54) that

(56) d(x0, x0 ∨ · · · ∨ xi) ≤
∑

0≤`<i d(x`, x`+1) (x0, . . . , xi ∈ L).

Indeed, (54) gives (if i > 0) d(x0, x0∨x1∨· · ·∨xi) ≤ d(x0, x1∨· · ·∨xi);
by the triangle inequality, the right-hand side is ≤ d(x0, x1) + d(x1,
x1 ∨ · · · ∨ xi). The second of these terms is (if i > 1) similarly bounded
by d(x1, x2)+d(x2, x2∨· · ·∨xi), and this procedure, iterated, gives (56).
But one cannot similarly get

(57)
d(x0 ∨ · · · ∨ xi, x0 ∨ · · · ∨ xj) ≤

∑
i≤`<j d(x`, x`+1)

(0 ≤ i ≤ j, x0, . . . , xj ∈ L)

as would be needed to carry out the argument used in the proof of
Theorem 4.1.

I give below examples showing that that theorem in fact does not
hold with (54) and (55) in place of (33) and (34). We will first get
an example for upper semilattices and (54), then note how to modify
it to make the semilattice into a lattice. Applying duality, one gets
examples for the remaining two cases of the theorem.



COMPLETENESS RESULTS FOR METRIZED RINGS AND LATTICES 15

To start the construction, let M be any metric space, with metric
dM , and for any finite nonempty subset S of M, define its diameter,

(58) diam(S) = maxx,y∈S (dM(x, y)).

Now let L be the upper semilattice of all finite nonempty subsets of
M, under the operation of union; and for S, T ∈ L define

(59) dL(S, T ) =

{
0 if S = T,

diam(S ∪ T ) if S 6= T.

It is straightforward that dL is a metric on L; the only step requiring
thought is the triangle inequality dL(S, U) ≤ dL(S, T )+dL(T, U) in the
case where the three sets S, T and U are distinct and the maximum
defining the left-hand side of the desired inequality is given by the
distance between some x ∈ S and some y ∈ U. In that case, taking
any z ∈ T, one sees that dL(S, U) = dM(x, y) ≤ dM(x, z) + dM(z, y) ≤
dL(S, T ) + dL(T, U), as required.

Under this metric, (54) is also immediate: writing that relation as
d(S, S ∪ T ) ≤ d(S, T ), we see that unless T ⊆ S, the two sides both
equal diam(S ∪ T ), while if T ⊆ S, the left-hand side is zero.

I claim next that L has no infinite strictly increasing Cauchy se-
quences. Indeed, given S0 $ S1 $ · · · ∈ L, the set S1 must have more
than one element, hence have nonzero diameter; and from (59) we see
that for every i ≥ 1, dL(Si, Si+1) ≥ diam(S1), so the distances between
successive terms of the sequence do not approach 0. L also has no infi-
nite strictly decreasing Cauchy sequences, since any strictly decreasing
sequence of sets starting with a finite set is finite. So, trivially, (35)
and (36) hold.

Note also that every non-singleton S ∈ L has distance at least
diam(S) from every other element of L, so it is an isolated point. It
follows that the set of non-singleton elements of L is open in L, so
the set of singleton elements is a closed set, which is easily seen to be
isometric to M : dL({x}, {y}) = dM(x, y).

Hence if we take for M a non-complete metric space, then a non-
convergent Cauchy sequence in M yields a non-convergent Cauchy
sequence in L. So the semilattice L is non-complete, despite satisfy-
ing (54), (35) and (36).

To get an example which is a lattice, we pass from L as above to L′ =
L ∪ {∅}, which is clearly a lattice under union and intersection. The
only problem is how to extend the metric dL to L′. We may in fact use
any extension of dL to a metric on that overset which does not sabotage
the non-completeness of L; for (54) holds automatically when x and y
are comparable, and ∅ is comparable to every element of L′. So, for
instance, we might fix some P ∈ L, and define

(60) dL′(∅, S) = 1 + dL(P, S) for all S 6= ∅.
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Since this makes ∅ an isolated point, it leaves the image of M in L′

closed, so L′ remains non-complete.
We remark that the join operation of L, and hence of L′, is in

general discontinuous; for given any non-eventually-constant sequence
x0, x1, . . . inM that approaches a limit y ∈M, we know that {x0}, {x1}, . . .
approach {y} in L; but for any z 6= y, if we apply − ∨ {z} we get the
sequence {x0, z}, {x1, z}, . . . , which cannot approach the isolated point
{y, z}.

So is it plausible that continuity of the meet and join operations,
combined with (54), (35) and (36), would imply completeness of a
metric lattice? Still no: if we apply the above construction of L with
M taken to be a discrete non-complete metric space (e.g., {n−1 | n ≥
1} ⊆ [0, 1]), then L is also discrete. (The only elements we don’t al-
ready know are isolated are the singletons {x} for x ∈ M ; but taking
ε such that the ball of radius ε about x in M contains no other points,
we find that the ball of radius ε about {x} in L also contains no other
points.) Hence L′, metrized as in (60), is also discrete; and any oper-
ation on a discrete space is continuous, though L′ is, we have shown,
non-complete.

6. Open questions

I have not examined the question of whether the conjunction of (54)
and (55) might somehow force a metrized lattice satisfying (35) and (36)
to be complete as a metric space. (In the discrete L′ constructed above
satisfying (54), the inequality (55), i.e., dL′(S, S∩T ) ≤ dL′(S, T ), holds
when S ∩ T 6= ∅, but not, in general, when S ∩ T = ∅.)

The referee has asked whether Gleason’s original question has the
same answer if restricted to the case where R an integral domain. I do
not know whether this is so, with or without the assumption that R is
complete in the given topology. It seems an interesting question.
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