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CHAPTER 0

About the course, and these notes

0.1. Aims and prerequisites

This course will develop some concepts and results which occur repeatedly
throughout the various areas of algebra, and sometimes in other fields of mathe-
matics, and which can provide valuable tools and perspectives to those working in
these fields. There will be a strong emphasis on motivation through examples, and
on instructive exercises.

I will assume only an elementary background in algebra, corresponding to an
honors undergraduate algebra course or one semester of graduate algebra, plus a
moderate level of mathematical sophistication. A student who has seen the concept
of free group introduced, but isn’t sure he or she thoroughly understood it would
be in a fine position to begin. On the other hand, anyone conversant with fewer
than three ways of proving the existence of free groups has something to learn from
Chapters 1-2.

As a general rule, we will pay attention to petty details when they first come
up, but take them for granted later on. So students who find the beginning sections
devoted too much to “trivia” should be patient!

In preparing this published version of my course notes, I have not removed
remarks about homework, course procedures etc., addressed to students who take
the course from me at Berkeley, which take up most of the next three pages, since
there are some nonstandard aspects to the way I run the course, which I thought
would be of interest to others. Anyone else teaching from this text should, of course,
let his or her students know which, if any, of these instructions apply to them. In
any case, | hope readers elsewhere find these pages more amusing than annoying.

0.2. Approach

Since I took my first graduate course, it has seemed to me that there is some-
thing wrong with our method of teaching. Why, for an hour at a time, should an
instructor write notes on a blackboard and students copy them into their notebooks
— often too busy with the copying to pay attention to the content — when this work
could be done just as well by a photocopying machine? If this is all that happens in
the classroom, why not assign a text or distribute duplicated notes, and run most
courses as reading courses?

One answer is that this is not all that happens in a classroom. Students ask
questions about confusing points and the instructor answers them. Solutions to
exercises are discussed. Sometimes a result is developed by the Socratic method
through discussion with the class. Often an instructor gives motivation, or explains
an idea in an intuitive fashion he or she would not put into a written text.



2 0. ABOUT THE COURSE, AND THESE NOTES

As for this last point, I think one should not be embarrassed to put motivation
and intuitive discussion into a text, and I have included a great deal of both in these
notes. In particular, I often first approach general results through very particular
cases. The other items — answering questions, discussing solutions to exercises, etc.
— which seem to me to contain the essential human value of class contact, are what
I would like classroom time to be spent on in this course, while these notes will
replace the mechanical copying of notes from the board.

Such a system is not assured of success. Some students may be in the habit
of learning material through the process of copying it, and may not get the same
benefit by reading it. I advise such students to read these notes with a pad of paper
in their hands, and try to anticipate details, work out examples, summarize essential
points, etc., as they go. My approach also means that students need to read each
day’s material before the class when it will be covered, which many students are
not accustomed to doing.

0.3. A question a day

To help the system described above work effectively, I require every student
taking this course to hand in, on each day of class, one question concerning the
reading for that day. I strongly encourage you to get your question to me by e-mail
by at least an hour before class. If you do, I will try to work the answer into what I
say in class that day. If not, then hand it in at the start of class, and I will generally
answer it by e-mail if I feel I did not cover the point in class.

The e-mail or sheet of paper with your question should begin with your name,
the point in these notes that your question refers to, and the classifying word
“urgent”, “important”, “unimportant” or “pro forma”. The first three choices of
classifying word should be used to indicate how important it is to you to have the
question answered; use the last one if there was nothing in the reading that you
really felt needed clarification. In that case, your “pro forma” question should be
one that some reader might be puzzled by; perhaps something that puzzled you at
first, but that you then resolved. If you give a “pro forma” question, you must give
the answer along with it!

You may ask more than one question; you may ask, in addition to your question
on the current reading, questions relating to earlier readings, and you are encour-
aged to ask questions in class as well. But you must always submit in writing at
least one question related to the reading assignment for the day.

0.4. Homework

These notes contain a large number of exercises. I would like you to hand in
solutions to an average of one or two problems of medium difficulty per week, or
a correspondingly smaller number of harder problems, or a larger number of easier
problems. Choose problems that are interesting to you. But please, look at all
the exercises, and at least think about how you would approach them. They are
interspersed through the text; you may prefer to think about some of them as you
come to them, and to come back to others after you finish the section. We will
discuss many of them in class. I recommend spending at least one to five minutes
thinking about each exercise, unless you see a solution immediately.

Grades will be based largely on homework. The amount of homework suggested
above, reasonably well done, will give an A. I will give partial credit for partial
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results, as long as you show you realize that they are partial. I would also welcome
your bringing to the attention of the class interesting related problems that you
think of, or find in other sources.

It should hardly need saying that a solution to a homework exercise in general
requires a proof. If a problem asks you to find an object with a certain property,
it is not sufficient to give a description and say, “This is the desired object”; you
must prove that it has the property, unless this is completely obvious. If a problem
asks whether a calculation can be done without a certain axiom, it is not enough to
say, “No, the axiom is used in the calculation”; you must prove that no calculation
not using that axiom can lead to the result in question. If a problem asks whether
something is true in all cases, and the answer is no, then to establish this you must,
in general, give a counterexample.

I am worried that the amount of “handwaving” (informal discussion) in these
notes may lead some students to think handwaving is an acceptable substitute for
proof. If you read these notes attentively, you will see that handwaving does not
replace proofs. I use it to guide us to proofs, to communicate my understanding of
what is behind some proofs, and at times to abbreviate a proof which is similar to
one we have already seen; but in cases of the last sort there is a tacit challenge to
you, to think through whether you can indeed fill in the steps. Homework is meant
to develop and demonstrate your mastery of the material and methods, so it is not
a place for you to follow this model by challenging the instructor to fill in steps!

Of course, there is a limit to the amount of detail you can and should show.
Most nontrivial mathematical proofs would be unreadable if we tried to give every
substep of every step. So truly obvious steps can be skipped, and familiar methods
can be abbreviated. But more students err in the direction of incomplete proofs
than of excessive detail. If you have doubts whether to abbreviate a step, think
out (perhaps with the help of a scratch-pad) what would be involved in a more
complete argument. If you find that the “step” is more complicated than you had
thought, then it should not be omitted! But bear in mind that “to show or not
to show” a messy step may not be the only alternatives — be on the lookout for a
simpler argument, that will avoid the messiness.

I will try to be informative in my comments on your homework. If you are
still in doubt as to how much detail to supply, come to my office and discuss it. If
possible, come with a specific proof in mind for which you have thought out the
details, but want to know how much should be written down.

There are occasional exceptions to the principle that every exercise requires
a proof. Sometimes I give problems containing instructions of a different sort,
such as “Write down precisely the definition of ...”, or “State the analogous result
in the case ...”, or “How would one motivate ...?” Sometimes, once an object
with a given property has been found, the verification of that property is truly
obvious. However, if direct verification of the property would involve 32 cases each
comprising a 12-step calculation, you should, if at all possible, find some argument
that simplifies or unifies these calculations.

Exercises frequently consist of several successive parts, and you may hand in
some parts without doing others (though when one part is used in another, you
should if possible do the former if you are going to do the latter). The parts
of an exercise may or may not be of similar difficulty — one part may be an easy
verification, leading up to a more difficult part; or an exercise of moderate difficulty
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may introduce an open question. (Open questions, when included, are always noted
as such.)

Homework should be legible and well-organized. If a solution you have figured
out is complicated, or your conception of it is still fuzzy, outline it first on scratch
paper, and revise the outline until it is clean and elegant before writing up the
version to hand in. And in homework as in other mathematical writing, when an
argument is not completely straightforward, you should help the reader see where
you are going, with comments like, “We shall now prove ...”, “Let us first consider
the case where ...”, etc..

If you hand in a proof that is incorrect, I will point this out, and it is up to
you whether to try to find and hand in a better proof. If, instead, I find the proof
poorly presented, I may require that you redo it.

If you want to see the solution to an exercise that we haven’t gone over, ask in
class. I may postpone answering, or just give a hint, if other people still want to
work on it. In the case of an exercise that asks you to supply details for the proof
of a result in the text, if you cannot see how to do it you should certainly ask to
see it done.

You may also ask for a hint on a problem. If possible, do so in class rather
than in my office, so that everyone has the benefit of the hint.

If two or more of you solve a problem together and feel you have contributed
approximately equal amounts to the solution, you may hand it in as joint work.

If you turn in a homework solution which is inspired by material you have seen
in another text or course, indicate this, so that credit can be adjusted to match
your contribution.

0.5. The name of the game

The general theory of algebraic structures has long been called Universal Al-
gebra, but in recent decades, many workers in the field have come to dislike this
term, feeling that “it promises too much”, and/or that it suggests an emphasis on
universal constructions. Universal constructions are a major theme of this course,
but they are not all that the field is about.

The most popular replacement term is General Algebra, and I have used it in
the title of these notes; but it has the disadvantage that in some contexts, it may
not be understood as referring to a specific area. Below, I mostly say “General
Algebra”, but occasionally refer to the older term.

0.6. Other reading

Aside from these notes, there is no recommended reading for the course, but
I will mention here some items in the list of references that you might like to
look at. The books [5], [6], [11], [19] and [21] are other general texts in General
(a.k.a. Universal) Algebra. Of these, [11] is the most technical and encyclopedic.
[19] and [21] are both, like these notes, aimed at students not necessarily having
advanced prior mathematical background; however [21] differs from this course in
emphasizing partial algebras. [6] has in common with this course the viewpoint
that this subject is an important tool for algebraists of all sorts, and it gives some
interesting applications to groups, division rings, etc..



0.7. NUMERATION; HISTORY; ADVICE; WEB ACCESS; REQUEST FOR CORRECTIONS 5

[30] and [32] are standard texts for Berkeley’s basic graduate algebra course.
(Some subset of Chapters 1-6 of the present notes can, incidentally, be useful sup-
plementary reading for students taking such a course.) Though we will not assume
the full material of such a course (let alone the full contents of those books), you
may find them useful references. [32] is more complete and rigorous; [30] is some-
times better on motivation. [24]-[26] include similar material. A presentation of
the core material of such a course at approximately an honors undergraduate level,
with detailed explanations and examples, is [27].

Each of [5], [6], [11], [19], [21] and [25] gives a little of the theory of lattices,
introduced in Chapter 5 of these notes. Extensive treatments of this subject can
be found in [3] and [12].

Chapter 6 of these notes introduces category theory. [7] is the paper that
created that discipline, and still very stimulating reading; [18] is a general text on
the subject. [9] deals with an important area of category theory that our course
leaves out. For the thought-provoking paper from which the ideas we develop in
Chapter 9 come, see [10].

An amusing parody of some of the material we shall be seeing in Chapters 4-9
is [17].

0.7. Numeration; history; advice; web access; request for corrections

These notes are divided into chapters, and each chapter into sections. In each
section, I use two numbering systems: one that embraces lemmas, theorems, defi-
nitions, numbered displays, etc.; the other for exercises. The number of each item
begins with the chapter-and-section numbers. This is followed by a “.” and the
number of the result, or a “:” and the number of the exercise. For instance, in sec-
tion m.n, i.e., section n of Chapter m, we might have display (m.n.1), followed by
Definition m.n.2, followed by Theorem m.n.3, and interspersed among these, Exer-
cises m.n:1, m.n:2, m.n:3, etc.. The reason for using a common numbering system
for results, definitions, and displays is that it is easier to find Proposition 3.2.9 if
it is between Lemma 3.2.8 and display (3.2.10) than it would be if it were Propo-
sition 3.2.3, located between Lemma 3.2.5 and display (3.2.1). The exercises form
a separate system. They are listed in the “List of Exercises” at the end of these
notes, along with telegraphic descriptions of their subjects.

These notes began around 1971, as mimeographed outlines of my lectures,
which I handed out to the class, and gradually improved in successive teachings
of the course. With the advent of computer word-processing, such improvements
became much easier to make, and the notes evolved into a readable development of
the material. In Spring and Summer 1995 they were published by the short-lived
Berkeley Lecture Notes series, and for several years after that, by my late colleague
Henry Helson. I have continued to revise them each time I taught the course; I
never stop finding points that need improvement. But hopefully, they are now in a
state that justifies publication in book form.

In recent decades, I have kept the notes available online, as an alternative to
buying a paper copy. Though this will not be feasible for the final published version,
I intend to keep the version that I submit to the Springer editorial staff available
via my website http://math.berkeley.edu/~gbergman.
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To other instructors who may teach from these notes (and myself, in case I
forget), I recommend moving quite fast through the easy early material, and much
more slowly toward the end, where there are more concepts new to the students, and
more nontrivial proofs. Roughly speaking, the hard material begins with Chapter 7.
A finer description of the hard parts would be: §§6.9-6.11, 7.3, 7.9-7.12, 8.9-8.10,
and Chapter 9. However, this judgement is based on teaching the course to students
most of whom have relatively advanced backgrounds. For students who have not
seen ordinals or categories before (the kind I had in mind in writing these notes),
the latter halves of Chapters 4 and 6 would also be places to move slowly.

The last two sections of each of Chapters 6, 7 and 8 are sketchy (to varying
degrees), so students should be expected either to read them mainly for the ideas,
or to put in extra effort to work out details.

After many years of editing, reworking, and extending these notes, I know one
reason why the copy-from-the-blackboard system has not been generally replaced by
the distribution of material in written form: A good set of notes takes an enormous
amount of time to develop. But I think that it is worth the effort.

Comments and suggestions on any aspect of these notes — organizational, math-
ematical or other, including indications of typographical errors — are welcome at
gbergman@math.berkeley.edu,

0.8. Acknowledgements

Though T had picked up some category theory here and there, the first exten-
sive development of it that I read was Mac Lane [18], and much of the material
on categories in these notes ultimately derives from that book. I can no longer re-
construct which category-theoretic topics I knew before reading [18], but my debt
to that work is considerable. Cohn’s book [6] was similarly my first exposure to a
systematic development of General Algebra; and Freyd’s fascinating paper [10] is
the source of the beautiful result of §9.4, which I consider the climax of the course.
I am also indebted to more people than I can name for help with specific questions
in areas where my background had gaps.

I am indebted to Ed Moy, to Fran Rizzardi, and to D. Mark Abrahams for the
development and maintenance of the locally enhanced version of the text-formatting
program troff, in which I prepared earlier versions of these notes. For help with the
conversion to ITEX, I am indebted to George Gratzer, Paul Vojta, and, especially,
to Arturo Magidin.

Finally, I am grateful to the many students who have pointed out corrections
to these notes over the years — in particular, to Arturo Magidin, David Wasserman,
Mark Davis, Joseph Flenner, Boris Bukh, Chris Culter, and Lynn Scow.



Part 1

Motivation and examples.

In the next three chapters, we shall look at particular cases of algebraic structures
and universal constructions involving them, so as to get some sense of the general
results we will want to prove in the chapters that follow.

The construction of free groups will be our first example. We will prepare for
it in Chapter 1 by making precise some concepts such as that of a group-theoretic
expression in a set of symbols; then, in Chapter 2, we will construct free groups by
several mutually complementary approaches. Finally, in Chapter 3 we shall look at
a large number of other constructions — from group theory, semigroup theory, ring
theory, etc. — which have, to greater or lesser degrees, the same spirit as the free
group construction, and also, for variety, two such constructions from topology.



CHAPTER 1

Making some things precise

1.1. Generalities

Most notation will be explained as it is introduced. I will assume familiarity
with basic set-theoretic and logical notation: V for “for all” (universal quantifi-
cation), 3 for “there exists” (existential quantification), A for “and”, and V for
“or”. Functions will be indicated by arrows —, while their behavior on elements
will be shown by flat-tailed arrows, — . That is, if a function X — Y carries an
element x to an element y, this may be symbolized z — y (“x goesto y”). If S
is a set and ~ an equivalence relation on S, the set of equivalence classes under
this relation will be denoted S/~.

We will (with rare exceptions, which will be noted) write functions on the left
of their arguments, i.e., f(x) rather than zf, and understand composite functions
fg to be defined so that (fg)(z) = f(g(z)).

1.2. What is a group?

Loosely speaking, a group is a set G given with a composition (or multiplication,
or group operation) p: G x G — G, an inverse operation ¢: G — G, and a neutral
element e € G, satisfying certain well-known laws. (We will say “neutral element”
rather than “identity element” to avoid confusion with the other important meaning
of the word “identity”, namely an equation that holds identically.)

The most convenient way to make precise this idea of a set “given with” three
operations is to define the group to be, not the set G, but the 4-tuple (G, y, ¢, e).
In fact, from now on, a letter such as G representing a group will stand for such
a 4-tuple, and the first component, called the underlying set of the group, will be
written |G|. Thus

G = (|G, p, ¢, e).

For simplicity, many mathematicians ignore this formal distinction, and use a
letter such as G to represent both a group and its underlying set, writing z € G, for
instance, where they mean x € |G|. This is okay, as long as one always understands
what precise statement such a shorthand statement stands for. Note that to be
entirely precise, if G and H are two groups, we should use different symbols, say
ue and pyg, tg and vy, eq and ey, for the operations of G and H. How precise
and formal one needs to be depends on the situation. Since the aim of this course
is to abstract the concept of algebraic structure and study what makes these things
tick, we shall be somewhat more precise here than in an ordinary algebra course.

(Many workers in General Algebra use a special type-font, e.g., boldface, to
represent algebraic objects, and regular type for their underlying sets. Thus, where
we will write G = (|G|, u, ¢, €), they might write G = (G, u, ¢, €).)

Perhaps the easiest exercise in the course is:
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Exercise 1.2:1. Give a precise definition of a homomorphism from a group G to a
group H, distinguishing between the operations of G and the operations of H.

We will often refer to a homomorphism f: G — H as a “map” from G to H.
That is, unless the contrary is mentioned, “maps” between mathematical objects
mean maps between their underlying sets which respect their structure. Note that
if we wish to refer to a set map not assumed to respect the group operations, we
can call this “a map from |G| to |H|”.

The use of letters (u and ¢) for the operations of a group, and the functional
notation u(x, y), t(z) which this entails, are desirable for stating results in a form
which will generalize to a wide class of other sorts of structures. But when actually
working with elements of a group, we will generally use conventional notation,
writing x -y (or zy, or sometimes, in abelian groups, = + y) for p(z,y), and
271 (or —z) for 1(z). When we do this, we may either continue to write G =
(G|, u, t, €), or write G = (|G|, -, 71, e).

Let us now recall the conditions which must be satisfied by a 4-tuple G =
(|G|, -, 71, e), where |G| is a set, “-” is a map |G| x |G| — |G|, “~1” is a map
|G| — |G|, and e is an element of |G|, for G to be called a group:

(Vo,y,2€lG]) (z-y)-z==(y-2),
(1.2.1) VzelG|) ecx =z ==x-e
Vxel|G]) 2tz =e=a-27"

There is another definition of group that you have probably also seen: In effect,
a group is defined to be a pair (|G|, -), such that |G| is a set, and - is a map
|G| x |G| — |G| satistying

(Va,y,z€|G]) (z-y)-z=2-(y-2),

(1.2.2) Heel|G)(Vze|G]) ecx=xz=x-¢€) A
(VzelG) By elG]) y-z=e=x-y)

It is easy to show that given (|G|, -) satisfying (1.2.2), there exist a unique
operation ~! and a unique element e such that (|G|, -, ~1, e) satisfies (1.2.1) —
remember the standard results saying that neutral elements and 2-sided inverses
are unique when they exist. Thus, the versions (1.2.1) and (1.2.2) of the concept of
a group provide equivalent information. Our description of groups as 4-tuples may
therefore seem “uneconomical” compared with one using pairs, but we will stick
with it. We shall eventually see that, more important than the number of terms
in the tuple, is the fact that condition (1.2.1) consists of identities, i.e., universally
quantified equations, while (1.2.2) does not. But we will at times acknowledge the
idea of the second definition; for instance, when we ask (imprecisely) whether some
semigroup “is a group”.

Exercise 1.2:2. (i) If G is a group, let us define an operation dg on |G|
by dg(z,y) = z -y~ '. Does the pair G’ = (|G|, dg) determine the group
(1G], -, 7%, e)? (Le., if G; and Gy yield the same pair, G} = G%, must
G1 = G2 7 Some students have asked whether by “=" I here mean “=”. No, I
mean “=7".)

(ii) Suppose |X| is any set and §: | X| x |X| — |X| any map. Can you write
down a set of axioms for the pair X = (|X|,d), which will be necessary and
sufficient for it to arise from a group G in the manner described above? (That
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is, assuming |X| and § given, try to find convenient necessary and sufficient
conditions for there to exist a group G such that G’, defined as in (i), is precisely
(1X1, 8).)

If you get such a set of axioms, then try to see how brief and simple you can
make it.

I don’t know the full answers to the following variant question:

Exercise 1.2:3. Again let G' be a group, and now define og(x, y) =z -y ! z.

Consider the same questions for (|G|, o¢) that were raised for (|G|, d¢) in the
preceding exercise.

My point in discussing the distinction between a group and its underlying set,
and between groups described using (1.2.1) and using (1.2.2), was not to be petty,
but to make us conscious of the various ways we use mathematical language — so
that we can use it without its leading us astray. At times we will bow to convenience
rather than trying to be consistent. For instance, since we distinguish between a
group and its underlying set, we should logically distinguish between the set of
integers, the additive group of integers, the multiplicative semigroup of integers, the
ring of integers, etc.; but we shall in fact write all of these Z unless there is a
real danger of ambiguity, or a need to emphasize a distinction. When there is such
a need, we can write (Z, +, —, 0) = Zaqa, (Z, -, 1) = Zpmu, (Z, +, -, —, 0, 1) =
Zring, etc.. We may likewise use “ready made” symbols for some other objects, such
as {e} for the trivial subgroup of a group G, rather than interrupting a discussion
to set up a notation that distinguishes this subgroup from its underlying set.

The approach of regarding sets with operations as tuples, whose first member
is the set and whose other members are the operations, applies, as we have just
noted, to other algebraic structures than groups — to semigroups, rings, lattices,
and the more exotic beasties we will meet on our travels. To be able to discuss the
general case, we must make sure we are clear about what we mean by such concepts
as “n-tuple of elements” and “n-ary operation”. We shall review these in the next
two sections.

1.3. Indexed sets

If I and X are sets, an I-tuple of elements of X, or a family of elements
of X indexed by I will be defined formally as a function from I to X, but we
shall write it (x;);c; rather than f: I — X. The difference is one of viewpoint.
We think of such families as arrays of elements of X, which we keep track of with
the help of an index set I, while when we write f: A — B, we are most often
interested in some properties relating an element of A and its image in B. But
the distinction is not sharp. Sometimes there is an interesting functional relation
between the indices 7 and the values x;; sometimes typographical or other reasons
dictate the use of x(i) rather than z;.

There will be a minor formal exception to the above definition when we speak
of an n-tuple of elements of X (n > 0). In these beginning chapters, I will take this
to mean a function from {1, ..., n} to X, written (z1, ..., Zn) or (%;)i=1,... n,
despite the fact that set theorists define the natural number n inductively to be the
set {0, ..., n—1}. Most set theorists, for consistency with that definition, write
their n-tuples (o, ..., ,—1); and we shall switch to that notation after reviewing
the set theorist’s approach to the natural numbers in Chapter 4.
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If I and X are sets, then the set of all functions from I to X, equivalently,
of all I-tuples of members of X, is written X!. Likewise, X™ will denote the set
of n-tuples of elements of X, defined as above for the time being.

1.4. Arity

An n-ary operation on a set S means a map f:S™ — S. For n =1,2,3 the
words are unary, binary, and ternary respectively. If f is an n-ary operation, we
call n the arity of f. More generally, given any set I, an [-ary operation on S is
defined as a map S’ — S.

Thus, the definition of a group involves one binary operation, one unary op-
eration, and one distinguished element, or “constant”, e. Likewise, a ring can be
described as a 6-tuple R = (|R|, +, -, —, 0, 1), where + and - are binary op-
erations on |R|, “—7” is a unary operation, and 0, 1 are distinguished elements,
satisfying certain identities.

One may make these descriptions more homogeneous in form by treating “dis-
tinguished elements” as 0-ary operations of our algebraic structures. Indeed, since
an n-ary operation on S is something that turns out a value in S when we feed
in n arguments in S, it makes sense that a 0-ary operation should be something
that gives a value in S without our feeding it anything. Or, looking at it formally,
SO is the set of all maps from the empty set to S, of which there is exactly one;
so S° is a one-element set, so a map S° — S determines, and is determined by, a
single element of S.

We note also that distinguished elements show the right numerical behavior
to be called “zeroary operations”. Indeed, if f and g are an m-ary and an n-ary
operation on S, and i a positive integer < m, then on inserting ¢ in the i-th place

of f, we get an operation f(—,...,—,g(—, ..., —),—,...,—) of arity m+n —1.
Now if, instead, ¢ is an element of S, then when we put it into the i-th place of
f weget f(—,....,— g, —,...,—), an (m — 1)-ary operation, as we should if g is

thought of as an operation of arity n = 0.

Strictly speaking, elements and zeroary operations are in one-to-one correspon-
dence rather than being the same thing: one must distinguish between a map
SY — S, and its (unique) value in S. But since they give equivalent information,
we can choose between them in setting up our definitions.

So we shall henceforth treat “distinguished elements” in the definition of groups,
rings, etc., as zeroary operations, and we will find that they can be handled essen-
tially like the other operations. I say “essentially” because there are some minor
ways in which zeroary operations differ from operations of positive arity. Most no-
tably, on the empty set X = ), there is a unique n-ary operation for each positive
n, but no zeroary operation. Sometimes this trivial fact will make a difference in
an argument.

1.5. Group-theoretic terms

One is often interested in talking about what relations hold among the members
of one or another tuple of elements of a group or other algebraic structure. For
example, every pair of elements (£, 1) of a group satisfies the relation (¢-7n)~! =
n~t - &7t Some particular pair (&, n) of elements of some group may satisfy the
relation &-n=n- &2
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In general, a “group-theoretic relation” in a family of elements (&;); of a group
G means an equation p(&;) = ¢(&) holding in G, where p and ¢ are expressions
formed from an I-tuple of symbols using formal group operations -, ~! and e. So
to study relations in groups, we need to define the set of all “formal expressions” in
the elements of a set X under symbolic operations of multiplication, inverse and
neutral element.

The technical word for such a formal expression is a “term”. Intuitively, a
group-theoretic term is a set of instructions on how to apply the group operations
to a family of elements. E.g., starting with a set of three symbols, X = {z, y, z},
an example of a group-theoretic term in X is the symbol (y-z)- (y~1); or we
might write it u(u(y, x), t(y)). Whichever way we write it, the idea is: “apply
the operation p to the pair (y, x), apply the operation ¢ to the element y, and
then apply the operation p to the pair of elements so obtained, taken in that
order”. The idea can be “realized” when we are given a map f of the set X into
the underlying set |G| of a group G = (|G|, ua,ta, ec), say = — &, y — 1,
z = ¢ (& m, ¢ € |G]). We can then define the result of “evaluating the term
w(u(y, x), t(y)) using the map f7 as the element pg(ua(n, ), ta(n)) € |G|, that
is, (n-&)-(n7").

Let us try to make the concept of group-theoretic term precise. “The set of all
terms in the elements of X, under formal operations -,”' and e” should be a set
T =Tx, . -1, with the following properties:

(ax) Forevery x € X, T contains a symbol representing z.

(a,)) For every s,t € T, T contains a “symbolic combination of s and t un-
der -7.

(a_1) For every s € T, T contains an element gotten by “symbolic application
of =1 to s”.

(a.) T contains an element symbolizing e.

(b) Each element of T' can be written in one and only one way as one and only
one of the following:

(bx) The symbol representing an element of X.
(b.)  The symbolic combination of two members of 7" under -
(b_1) The symbol representing the result of applying ~! to an element of T.
(be) The symbol representing e.
(¢c) Every element of T can be obtained from the elements of X via the given
symbolic operations. That is, 7" has no proper subset satisfying (ax)—(a.).

In functional language, (ax) says that we are to be given a function X — T
(the “symbol for z” function); (a,) says we have another function, which we call
“formal product”, from T x T to T; (a_1) gives a function 7' — T, the “formal
inverse”, and (a.) a distinguished element of T. Translating our definition into this
language, we get

DEFINITION 1.5.1. By “the set of all terms in the elements of X wunder the
formal group operations p, v, e” we shall mean a set T which is:

(a) given with functions
symby: X =T, ur:T?> =T, 1p:T—T, and er:T° —T,
such that
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(b) each of these maps is one-to-one, their images are disjoint, and T is the union
of those images, and

(¢) T isgenerated by symby(X) under the operations ur, vr, and er; i.e., it has
no proper subset which contains symb;(X) and is closed under those operations.

The next exercise justifies the use of the word “the” in the above definition.

Exercise 1.5:1. Assuming 7 and 7’ are two sets given with functions that
satisfy Definition 1.5.1, establish a natural one-to-one correspondence between
the elements of T and 7”. (You must, of course, show that the correspon-
dence you set up is well-defined, and is a bijection. Suggestion: Let Y =
{ (symby(x), symbp () | * € X} C T x T, and let F be the closure of YV
under componentwise application of u, ¢ and e. Show that F' is the graph of
a bijection. What properties will characterize this bijection?)

Exercise 1.5:2. Is condition (c) of Definition 1.5.1 a consequence of (a) and (b)?

How can we obtain a set 7" with the properties of the above definition? One
approach is to construct elements of 1" as finite strings of symbols from some al-
phabet which contains symbols representing the elements of X, additional symbols
p (or -), ¢ (or 71), and e, and perhaps some symbols of punctuation. But we
need to be careful. For instance, if we defined pr to take a string of symbols s
and a string of symbols t to the string of symbols s-t, and ¢ to take a string of
symbols s to the string of symbols s~!, then condition (b) would not be satisfied!
For a string of symbols of the form -y -z (where z,y,z € X) could be obtained
by formal multiplication either of z and ¥y -z, or of z-y and z. In other words,
ur takes the pairs (z, y-2) and (x-y, z) to the same string of symbols, so it is not
one-to-one. Likewise, the expression x-y~! could be obtained either as ur(z, y~!)
or as tr(x - y), so the images of pp and ¢y are not disjoint. (It happens that in
the first case, the two interpretations of z -y -z come to the same thing in any
group, because of the associative law, while in the second, the two interpretations
do not: £-(p~t) and (£-n)~! are generally distinct for elements &,m of a group
G. But the point is that in both cases condition (b) fails, making these expressions
ambiguous as instructions for applying group operations. Note that a notational
system in which “x -y -2z” was ambiguous in the above way could never be used in
writing down the associative law; and writing down identities is one of the uses we
will want to make of these expressions.)

On the other hand, it is not hard to show that by introducing parentheses
among our symbols, and letting pr(s, t) be the string of symbols (s-t), and ¢ (s)
the string of symbols (s71), we can get a set of expressions satisfying the conditions
of our definition.

Exercise 1.5:3. Verify the above assertion. (How, precisely, will you define T'7
What assumptions must you make on the set of symbols representing elements
of X ? Do you allow some elements symb(z) to be strings of other symbols?)

Another symbolism that will work is to define the value of ur at s and ¢
to be the string of symbols u(s, t), and the value of ¢ at s to be the string of
symbols ¢(s).

Exercise 1.5:4. Assuming the elements symbp(z) are distinct single charac-

ters, and that p, ¢ and e are distinct characters distinct from the characters
symbp(z), let us define the value of ur on elements s and t to be the symbol
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ust, and the value of ¢t on s to be the symbol ts. Will the resulting set of
strings of symbols satisfy Definition 1.5.17

Though the strings-of-symbols approach can be extended to other kinds of
algebras with finitary operations, such as rings, lattices, etc., a disadvantage of that
method is that one cannot, in any obvious way, use it for algebras with operations
of infinite arities. Even if one allows infinite strings of symbols, indexed by the
natural numbers or the integers, one cannot string two or more such infinite strings
together to get another string of the same sort. One can, however, for an infinite set
I, create I-tuples which have I-tuples among their members, and this leads to the
more versatile set-theoretic approach. Let us show it for the case of group-theoretic
terms.

Choose any set of four elements, which will be denoted *, -, ~! and e. For
each x € X, define symbp(x) to be the ordered pair (x, x); for s,t € T, define
pr(s, t) tobe the ordered 3-tuple (-, s, t); for s € T' define vr(s) to be the ordered
pair (7!, s), and finally, define er to be the 1-tuple (e). Let T be the smallest
set closed under the above operations.

Now it is a basic lemma of set theory that no element can be written as an
n-tuple in more than one way; i.e., if (z1,...,2,) = (2},...,2},), then n’ =n and
x;=x; (i=1,...,n). It is easy to deduce from this that the above construction
will satisfy the conditions of Definition 1.5.1.

Exercise 1.5:5. Would there have been anything wrong with defining symb.(z) =
x instead of (%, )7 If so, can you find a way to modify the definitions of pyp
etc., so that the definition symb(z) = z can always be used?

I leave it to you to decide (or not to decide) which construction for group-
theoretic terms you prefer to assume during these introductory chapters. We shall
only need the properties given in Definition 1.5.1. From now on, we shall often use
conventional notation for such terms, e.g., (x-y) - (z7!). In particular, we shall
often identify X with its image symb;(X) C Tx,. -1 .. We will use the more
formal notation of Definition 1.5.1 mainly when we want to emphasize particular
distinctions, such as that between the formal operations ur etc., and the operations
ua ete. of a particular group.

1.6. Evaluation

Now suppose G is a group, and f: X — |G| a set map, in other words, an
X-tuple of elements of G. Given a term in an X-tuple of symbols,

seT = TXﬁ.’fl’e

we wish to say how to evaluate s at this family f of elements, so as to get a value
sy € |G|. We shall do this inductively (or more precisely, “recursively”; we will
learn the distinction in §4.3).

If s = symbp(x) for some x € X we define sy = f(x). If s = pr(t, v,
then assuming inductively that we have already defined ¢y, uy € |G|, we define
sy = pa(ty, uyp). Likewise, if s = vp(t), we assume inductively that ¢y is defined,
and define sy = t¢(ty). Finally, for s = er we define sy = eq. Since every element
s € T is obtained from symb,(X) by the operations ur, tr, er, and in a unique
manner, this construction gives one and only one value sy for each s.
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We have not discussed the general principles that allow one to make recursive
definitions like the above. We shall develop these in Chapter 4, in preparation for
Chapter 8 where we will do rigorously and in full generality what we are sketching
here. Some students might want to look into this question for themselves at this
point, so I will make this:

Exercise 1.6:1. Show rigorously that the procedure loosely described above yields
a unique well-defined map T — |G|. (Suggestion: Adapt the method suggested
for Exercise 1.5:1.)

In the above discussion of evaluation, we fixed f € |G|X, and got a function
T — |G|, taking each s € T to sy € |G|. If we vary f as well as T, we get a
two-variable evaluation map,

(Tx,,-1,¢) X |GI* — |G,

taking each pair (s, f) to sy. Finally, we might fix an s € T, and define a map
sg: |GIX = |G| by sa(f) = s (f € |G|X); this represents “substitution into
s5.” For example, suppose X = {x, y, z}, let us identify |G|¥ with |G|3, and let
s be the term (y-z) - (y~!) € T. Then for each group G, s is the operation
taking each 3-tuple (&, 7, ¢) of elements of G to the element (n&)n~! € G. Such
operations will be of importance to us, so we give them a name.

DEFINITION 1.6.1. Let G be a group and n a nonnegative integer. Let T =
T, -1,.. denote the set of group-theoretic terms in n symbols. Then for each
seT, wewilllet sg:|G|™ — |G| denote the map taking each n-tuple f € |G|™ to
the element sy € |G|. The n-ary operations sg obtained in this way from terms
s € T will be called the derived n-ary operations of G. (Some authors call these

term operations.)

Note that distinct terms can induce the same derived operation. E.g., the
associative law for groups says that for any group G, the derived ternary operations
induced by the terms (z-y) -z and z - (y-z) are the same. As another example,
in the particular group S3 (the symmetric group on three elements), the derived
binary operations induced by the terms (z-z)-(y-y) and (y-y)- (z-z) are the
same, though this is not true in all groups. (It is true in all dihedral groups.)

Some other examples of derived operations on groups are the binary operation
of conjugation, commonly written £7 = n~1¢n (induced by the term y~1 - (z - y)),
the binary commutator operation, [£, n] = ¢~ 1n~1¢n, the unary operation of squar-
ing, €2 = €-£, and the two binary operations § and o of Exercises 1.2:2 and 1.2:3.
Some trivial examples are also important: the primitive group operations — group
multiplication, inverse, and neutral element — are by definition also derived op-
erations; and finally, one has very trivial derived operations such as the ternary
“second component” function, p3 2(§, n, () = n, induced by y € Ty, 4 23, -1, e
(Here p3 o stands for “projection of 3-tuples to their second component”.)

1.7. Terms in other families of operations

The above approach can be applied to more general sorts of algebraic structures.
Let ©Q be an ordered pair (||, ari), where || is a set of symbols (thought of
as representing operations), and ari is a function associating to each «a € |Q
a nonnegative integer ari(c), the intended arity of « (§1.4). (For instance, in
the group case which we have been considering, we have effectively taken |2 =
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{u, ¢, e}, ari(u) =2, ari(r) =1, ari(e) =0. Incidentally, the commonest symbol,
among specialists, for the arity of an operation « is n(«), but I will use ari(«)
to avoid confusion with other uses of the letter n.) Then an Q-algebra will mean
a system A = (|A|, (@a)ag|o|), Where |A] is a set, and for each a € [Q], ax is
some ari(«)-ary operation on |A| :

Qg |A\ari(“) — |4|.

For any set X, we can now mimic the preceding development to get aset T' = T'x q,
the set of “terms in elements of X under the operations of Q7; and given any
Q-algebra A, we can get substitution and evaluation maps as before, and so define
derived operations of A.

The long-range goal of this course is to study algebras A in this general sense.
In order to discover what kinds of results we want to prove about them, we shall
devote Chapters 2 and 3 to looking at specific situations involving familiar sorts of
algebras. But let me give here a few exercises concerning these general concepts.

Exercise 1.7:1. On the set {0, 1}, let M3 denote the ternary “majority vote”
operation; i.e., for a,b,c € {0,1}, let Mjs(a, b, ¢) be 0 if two or more of a, b
and c are 0, or 1 if two or more of them are 1. One can form various terms in a
symbolic operation Mj (e.g., p(w, x, y, z) = Ms(z, M5(z, w, y), z)) and then
evaluate these in the algebra ({0, 1}, M3) to get operations on {0, 1} derived
from Ms3.

General problem: Determine which operations (of arbitrary arity) on {0, 1}
can be expressed as derived operations of this algebra.

As steps toward answering this question, you might try to determine whether
each of the following can or cannot be so expressed:
(a) The 5-ary majority vote function Ms: {0, 1}> — {0, 1}, defined in the
obvious manner.
(b) The binary operation sup. (I.e., sup(a,b) = 0 if a = b = 0; otherwise
sup(a, b) = 1.)
(¢) The unary “reversal” operation r, defined by r(0) =1, r(1) =0.
(d) The 4-ary operation Ny, described as “the majority vote function, where the
first voter has extra tie-breaking power”; i.e., Ny(a, b, ¢, d) = the majority value
among a, b, ¢, d if there is one, while if a+b+c+d =2 weset Ny(a, b, ¢, d) = a.

Advice: (i) If you succeed in proving that some operation s is not derivable
from Ms, try to abstract your argument by establishing a general property that
all operations derived from M3 must have, but which s clearly does not have.
(ii) A mistake some students make is to think that a formula such as s(&, n) =
Ms(0, &, 1) defines a derived operation. But since our system ({0, 1}, Ms3) does
not include the zeroary operation 0 (nor 1), “M3(0, z, y)” is not a term.

Exercise 1.7:2. (Question raised by Jan Mycielski, letter of Jan. 17, 1983.) Let

denote the set of complex numbers, and exp the exponential function exp(z)
e”, a unary operation on C.
(i) Does the algebra (C, +, -, exp) have any automorphisms other than the
identity and complex conjugation? (An automorphism means a bijection of the
underlying set with itself, which respects the operations.) I don’t know the answer
to this question.

It is not hard to prove using the theory of transcendence bases of fields ([30,
§VL.1], [32, §VIIL1]) that the automorphism group of (C, +, -) is infinite (cf.
[30, Exercise VI.6(b)], [32, Exercise VIIL.1]). A couple of easy results in the
opposite direction, which you may prove and hand in, are

C
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(ii) The algebra (C, +, -) has no continuous automorphisms other than the two
mentioned.

(iii) If we write “cj” for the unary operation of complex conjugation, then the
algebra (C, +, -, ¢j) has no automorphisms other than id and cj.

(iv) A map C — C is an automorphism of (C, +, -, exp) if and only if it is an
automorphism of (C, +, exp).

Exercise 1.7:3. Given operations a1, ..., a;, (of various finite arities) on a finite
set S, and another operation S on S, describe a test that will determine in a
finite number of steps whether 3 is a derived operation of ay, ..., a,.

The arities considered so far have been finite; the next exercise will deal with
terms in operations of possibly infinite arities. To make this reasonable, let us note
some naturally arising examples of operations of countably infinite arity on familiar
sets:

On the real unit interval [0, 1] :

(a) the operation limsup (“limit superior”), defined by

limsup; z; = lim; 0 SUpP;>; T,

(b) the operation defined by s(ai, az, ...) =Y. 27%a;.
On the set of real numbers > 1 :

(c) the continued fraction operation, c(ai, as, ...) =a1 + 1/(aa + 1/(...)).
On the class of subsets of the set of integers:

(d) the operation |Jas,

(e) the operation [ a;.

Exercise 1.7:4. Suppose () is a pair (|{2|, ari), where |Q] is again a set of opera-
tion symbols, but where the arities ari(«) may now be finite or infinite cardinals;
and let X be a set of variable-symbols. Suppose we can form a set T of terms
satisfying the analogs of conditions (a)-(c) of Definition 1.5.1. For s,t € T, let
us write s>t if ¢ is “immediately involved” in s, that is, if s has the form

a(uy, ug, ...) where a € ||, and u; =t for some i.
(i) Show that if all the arities ari(a)) are finite, then for each term s we can
find a finite bound B(s) on the lengths n of sequences si, ..., s, € T such

that s =s1> ... >35,.

(ii) If not all ari(c) are finite, and X is nonempty, show that there exist terms
s for which no such finite bound exists.

(iii) In the situation of (ii), is it possible to have a right-infinite chain s =
§1> ...>8,> ... in T?

(iv) Show that one cannot have a “cycle” s;> ... >s,>s; in T.

Until we come to Chapter 8, we shall rarely use the word “algebra” in the
general sense of this section. But the reader consulting the index should keep this
sense in mind, since it is used there with reference to general concepts of which we
will be considering specific cases in the intervening chapters.



CHAPTER 2
Free groups

In this chapter, we introduce the idea of universal constructions through the
particular case of free groups. We shall first motivate the free group concept, then
develop three ways of constructing such groups.

2.1. Motivation

Suppose G is a group and we take (say) three elements a, b, ¢ € |G|, and
consider what group-theoretic relations these satisfy. That is, letting 7" be the
set of all group-theoretic terms in three symbols x, y and z, we look at pairs of
elements p(x, y, 2), q(x,y, z) € T, and if pg(a, b, ¢) = qg(a, b, ¢) in |G|, we say
that (a, b, ¢) satisfies the relation p = ¢. We note:

LEMMA 2.1.1. Suppose F and G are groups, such that F is generated by
three elements a, b, ¢ € |F|, while «, 3,y are any three elements of G. Then the
following conditions are equivalent:
(a) Every group-theoretic relation p = q satisfied by (a, b, ¢) in F is also satisfied
by (o, B, 7) in G.
(b) There exists a group homomorphism h: F — G under which a — a, b 3,
crH .

Further, when these conditions hold, the homomorphism h of (b) is unique.

If the assumption that a, b and c generate F is dropped, one still has
(b) = (a).

PRrROOF. Not yet assuming that a, b and ¢ generate F, suppose h is a ho-
momorphism as in (b). Then I claim that for all p € T,

h(pp(a, b, C)) = pG(av B, 'Y)'
Indeed, the set of p € T for which the above equation holds is easily seen to
contain x, y and z, and to be closed under the operations of T, hence it is all of
T. Statement (a) follows, giving the final assertion of the lemma. If, further, a, b
and ¢ generate F, then every element of |F| can be written pp(a, b, ¢) for some
p, so the above formula shows that given such a, b and ¢, the homomorphism h
is determined by «, B and <, yielding the next-to-last assertion.

Finally, suppose a, b and c¢ generate F and (a) holds. For each ¢g =
pr(a, b, ¢) € |F|, define h(g) = pa(a, B, 7). To show that this gives a well-defined
map from |F| to |G|, note that if we have two ways of writing an element g € |F|,
say pr(a, b, ¢) = g = qr(a, b, ¢), then the relation p = ¢ is satisfied by (a, b, ¢)
in F, hence by (a), it is satisfied by («, 8, v) in G, hence the two values our
definition prescribes for h(g), namely pg(«, 8, v) and gg(a, 5, ), are the same.

That this set map is a homomorphism follows from the way evaluation of group-
theoretic terms is defined. For instance, given g € |F|, suppose we want to show

18
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that h(g™') = h(g)~!. We write g = pr(a, b, ¢). Then (t7(p))r(a, b, ¢) = g1,
so our definition of 7 gives h(g~") = (¢r(p))a (e, B, 7) = pa(a, B, 7)™ = h(g)~".
The same reasoning applies to products and to the neutral element. O

Exercise 2.1:1. Show by example that if {a, b, ¢} does not generate F, then
condition (a) of the above lemma can hold and (b) fail, and also that (b) can

hold but h not be unique. (You may replace (a, b, ¢) with a smaller family,
(a, b) or (a), if you like.)

Lemma 2.1.1 leads one to wonder: Among all groups F' given with generating
3-tuples of elements (a, b, ¢), is there one in which these three elements satisfy the
smallest possible set of relations? We note what the above lemma would imply for
such a group:

COROLLARY 2.1.2. Let F be a group, and a, b, ¢ € |F|. Then the following
conditions are equivalent:

(a) a, b, ¢ generate F, and the only relations satisfied by a, b, ¢ in F are those
relations satisfied by every 3-tuple («, B, v) of elements in every group G.

(b) For every group G, and every 3-tuple of elements («, B, v) in G, there exists
a unique homomorphism h: F — G such that h(a) = a, h(b) =4, h(c)=~. O

Only one point in the deduction of this corollary from Lemma 2.1.1 is not
completely obvious; I will make it an exercise:

Exercise 2.1:2. In the situation of the above corollary, show that (b) implies that
a, b and ¢ generate F. (Hint: Let G be the subgroup of F' generated by those
three elements.)

I’ve been speaking of 3-tuples of elements for concreteness; the same observa-
tions are valid for n-tuples for any n, and generally, for X-tuples for any set X.
An X-tuple of elements of F' means a set map X — |F|, so in this general context,
condition (b) above takes the form given by the next definition. (But making this
definition does not answer the question of whether such objects exist!)

DEFINITION 2.1.3. Let X be a set. By a free group F on the set X, we shall
mean a pair (F, u), where F is a group, and u a set map X — |F|, having the
following universal property:

For every group G, and every set map v: X — |G|, there exists a unique
homomorphism h: F — G such that v = hu; i.e., making the diagram below
commute.

x —4 |F| F
& J1h
G| G

(In the above diagram, the first vertical arrow also represents the homomor-
phism h, regarded as a map on the underlying sets of the groups.)

Corollary 2.1.2 (as generalized to X-tuples) says that (F, u) is a free group
on X if and only if the elements w(z) (zr € X) generate F, and satisfy no
relations except those that hold for every X-tuple of elements in every group. In
this situation, one says that these elements “freely” generate F, hence the term
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free group. Note that if such an F' exists, then by definition, any X-tuple of
members of any group G can be obtained, in a unique way, as the image, under a
group homomorphism F — G, of the particular X-tuple u. Hence that X-tuple
can be thought of as a “universal X-tuple of group elements”, so the property
characterizing it is called a universal property.

We note a few elementary facts and conventions about such objects. If (F, u)
is a free group on X, then the map u: X — |F| is one-to-one. (This is easy
to prove from the universal property, plus the well-known fact that there exist
groups with more than one element. The student who has not seen free groups
developed before should think this argument through.) Hence given a free group,
it is easy to get from it one such that the map w is actually an inclusion X C |F].
Hence for notational convenience, one frequently assumes that this is so; or, what
is approximately the same thing, one often uses the same symbol for an element of
X and its image in |F.

If (F,u) and (F’,w’) are both free groups on the same set X, there is a
unique isomorphism between them as free groups, i.e., respecting the maps u and
u’. (Cf. diagram below.)

|| F

A A

Y A
|F] F

(If you haven’t seen this result before, again see whether you can work out the
details. For the technique you might look ahead to the proof of Proposition 3.3.3.)
As any two free groups on X are thus “essentially” the same, one sometimes speaks
of the free group on X.

One also often says that a group F “is free” to mean “there exists some set
X and some map u: X — |F| such that (F, u) is a free group on X.” When this
holds, X can always be taken to be a subset of |F|, and u the inclusion map.

But it is time we proved that free groups exist. We will show three different
ways of constructing them in the next three sections.

Exercise 2.1:3. Suppose one replaces the word “group” by “finite group” through-
out Definition 2.1.3. Show that for any nonempty set X, no finite group exists
having the stated universal property.

2.2. The logician’s approach: construction from group-theoretic terms

We know from Corollary 2.1.2 that if a free group F' on three generators a, b, ¢
exists, then each of its elements can be written pg(a, b, ¢) for some group-theoretic
term p, and that two such elements, pr(a, b, ¢) and gp(a, b, ¢), are equal if and
only if the equation “p = ¢” is satisfied by every three elements of every group, i.e.,
follows from the group axioms. This suggests that we may be able to construct such
a group by taking the set of all group-theoretic terms in three variables, constructing
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an equivalence relation “p ~ ¢” on this set which means “the equality of p and
q is a consequence of the group axioms”, taking for |F| the quotient of our set
of terms by this relation, and defining operations -, ~! and e on |F| in some

natural manner. This we shall now do!

Let X be any set, and T' = Ty . -1 . the set of all group-theoretic terms in
the elements of X. What conditions must a relation “~” satisfy for p ~ ¢ to be
the condition “p, = ¢, ” for some map v of X into some group G? Well, the
group axioms tell us that it must satisfy

(2.2.1) (Vp,q,r€T) (p-q)-r~p-(qg-7),

(2.2.2) (VpeT) (p-e~p)A(e-p~p),

(2.2.3) (YpeT) (p-p ' ~e)A(p™ -p~e)

Also, just the well-definedness of the operations of G tells us that

(2.24) (Vp,p,qa€T) (p~p) = ((p-a~p ) N(g-p~q-P)),
(2.2.5) Vp,p' €T) (p~p) = (' ~p).

Finally, of course, ~ must be an equivalence relation:

(2.2.6) (VpeT) p~p,

(2.2.7) (Vp,geT) (p~q) = (¢~ p),

(2.2.8) (Vp,q,r€T) (pP~a)A(g~r) = (p~ )

So let us take for “

(2.2.1)-(2.2.8).

Let us note what this means, and why it exists: Recall that a binary relation on
a set T is formally a subset R C T x T'; when we write p ~ ¢, this is understood
to be an abbreviation for (p, q) € R. “Least” means smallest with respect to
set-theoretic inclusion. Our conditions (2.2.1)-(2.2.8) are in the nature of closure
conditions, and, as with all sets defined by closure conditions, the existence of a
least set satisfying them can be established in two ways:

We may capture this set “from above” by forming the intersection of all binary
relations on 7T satisfying (2.2.1)-(2.2.8) — the set-theoretic intersection of these
relations as subsets of T' x T. (Note, incidentally, that if we think of such relations
as predicates rather than as sets, this intersection (] becomes a (generally infinite)
conjunction A .) The key point to observe is that each of these conditions is such
that an intersection of relations satisfying it again satisfies it. Hence the intersection
of all relations satisfying (2.2.1)-(2.2.8) will be the least such relation.

Or we can “build it up from below”. Let Rg denote the empty relation () C
T x T, and recursively construct the i+ 1-st relation R;;; from the i-th, by adding
to R; those elements that conditions (2.2.1)-(2.2.8) say must also be in R, given
that the elements of R; are there. Precisely, we let

~" the least binary relation on T satisfying conditions

Riy1 = R; (el'ts already constructed)
U{(p-q)-r, p-(g-7)) |p,greT} (el'ts arising by (2.2.1))
U

U {(.p.7 -7’)| (3q9) (p, q) € Rin(g, 7)€ R} (el’.t.s .arising by (2.2.8))
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We now define R = |J; R;. It is straightforward to show that R satisfies
(2.2.1)-(2.2.8), and that any subset of T'x T satisfying (2.2.1)-(2.2.8) must contain
R; so R, looked at as a binary relation ~ on 7T, is the desired least relation.

By (2.2.6)-(2.2.8), ~ is an equivalence relation; so let |F| = T/~, the set
of equivalence classes of this relation; i.e., writing [p] for the equivalence class of
peT, |Fl={[p]|peT} Wemap X into |F| by the function

u(z) = [7]
(or, if we do not identify symb,(x) with = in our construction of T, by u(z) =
[symby(z)]). We now define operations -, ~! and e on |F| by
(2.2.9) [l -[la] = [p-dl,
(2.2.10) =t = 7',
(2.2.11) e = [e].

That the first two of these are well-defined follows respectively from properties
(2.2.4) and (2.2.5) of ~! (With the third there is no problem.) From properties
(2.2.1)-(2.2.3) of ~, it follows that (|F|, -, 7!, e) satisfies the group axioms. E.g.,
given [p] [g],[r] € |FJ, if we evaluate (- [a])-[r] and [p]- ([q]-[r]) in |F], we get
[(p-q)-r] and [p- (¢-r)] respectively, which are equal by (2.2.1). Writing F for
the group (|F], -, 1, e), it is clear from our construction of ~ that every relation
satisfied by the images in F of the elements of X is a consequence of the group
axioms; so by Corollary 2.1.2 (or rather, the generalization of that corollary with
X-tuples in place of 3-tuples), F' has the desired universal property.

To see this universal property more directly, suppose v is any map X — |G|,
where G is a group. Write p ~, ¢ to mean p, = ¢q, in G. Clearly the relation ~,
satisfies conditions (2.2.1)-(2.2.8), hence it contains the least such relation, our ~ .
So a well-defined map h: |F| — |G| is given by h([p]) = p, € |G|, and it follows
from the way the operations of F, and the evaluation of terms in G at the X-tuple
v, are defined, that A is a homomorphism, and is the unique homomorphism such
that hu = v. Thus we have

PROPOSITION 2.2.12. (F, u), constructed as above, is a free group on the given
set X. 0

So a free group on every set X does indeed exist!

Some further notes:

2.2.13. There is a viewpoint that goes along with this construction, which will
be helpful in thinking about universal constructions in general. Suppose that we are
given a set X, and that we know that G is a group, with a map v: X — |G|. How
much can we “say about” G from this fact alone? We can name certain elements
of G, namely the v(z) (z € X), and all the elements that can be obtained from
these by the group operations of G (e.g., (v(z)-v(y))~t- ((v(y)~t-e)~t- v(2))
if z,y, z € X). A particular G may contain more elements than those obtained
in such ways, but we have no way of getting our hands on them from the given
information. We can also derive from the identities for groups certain relations that
these elements satisfy, (e.g., (v(z)-v(y))~t =v(y)~! v(x)~!). The elements v(z)
may, in particular cases, satisfy more relations than these, but again we have no
way of deducing these additional relations. If we now gather together this limited



2.3. FREE GROUPS AS SUBGROUPS OF BIG ENOUGH DIRECT PRODUCTS 23

“data” that we have about such a group G — the quotient of a set of labels for
certain elements by a set of identifications among these — we find that this collection
of “data” itself forms a group with a map of X into it; and is, in fact, a universal
such group!

2.2.14. At the beginning of this section, I motivated our construction by saying
that “~” should mean “equality that follows from the group axioms”. I then wrote
down a series of eight rules, (2.2.1)-(2.2.8), all of which are clearly valid procedures
for deducing equations which hold in all groups. What was not obvious was whether
they would be sufficient to yield all such equations. But they were — the proof of
the pudding being that (T)/~, -, =1, €) was shown to be a group.

This is an example of a very general type of situation in mathematics: Some
class, in this case, a class of pairs of group-theoretic terms, is described “from
above”, i.e., is defined as the class of all elements satisfying certain restrictions (in
this case, those pairs (p, ¢) € T x T such that the relation p = ¢ holds on all
X-tuples of elements of all groups). We seek a way of describing it “from below”,
i.e., of constructing or generating all members of the class. Some procedure which
produces members of the set is found, and one seeks to show that this procedure
yields the whole set — or, if it does not, one seeks to extend it to a procedure that
does.

The inverse situation is equally important, where we are given a construction
which “builds up” a set, and we seek a convenient way of characterizing the elements
that result. Exercise 1.7:1 was of that form. You will see more examples of both
situations throughout this course, and, in fact, in most every mathematics course
you take.

Exercise 2.2:1. Prove directly from (2.2.1)-(2.2.8) that for z, y € X, (z-y)~! ~
y~t-271 (Your solution should show explicitly each application you make of

each of those conditions.)

Exercise 2.2:2. Does the relation of the preceding exercise follow from (2.2.1)-
(2.2.3) and (2.2.6)-(2.2.8) alone?

Note that in our recursive construction of the set R (that is, the relation ~),
repeated application of (2.2.1)-(2.2.3) was really unnecessary; these conditions give
the same elements of R each time they are applied, so we might as well just have
applied them the first time, and only applied (2.2.4)-(2.2.8) after that. Less obvious
is the answer to:

Exercise 2.2:3. (A. Tourubaroff) Can the construction of R be done in three
stages: First take the set P of elements given by (2.2.1)-(2.2.3), then form
the closure @ of this set under applications of (2.2.4)-(2.2.5) (as before, by
recursion or as an intersection), and finally, obtain R as the closure of @ under
applications of (2.2.6)-(2.2.8) (another recursion or intersection)? This procedure
will yield some subset of T' x T'; the question is whether it is the R we want.

What if we do things in a different order — first (2.2.1)-(2.2.3), then
(2.2.6)-(2.2.8), then (2.2.4)-(2.2.5)?

2.3. Free groups as subgroups of big enough direct products

Another way of getting a group in which some X-tuple of elements satisfies the
smallest possible set of relations is suggested by the following observation. Let Gy
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and G2 be two groups, and suppose we are given elements

a1, Bi, 11 € 1G1|, a2, B2, 72 € |Gal.
Then in the direct product group G = G; X G2 we have the elements

a = (a1, @), b= (B, B2), c= (71,7),
and we find that the set of relations satisfied by a, b, ¢ in G is precisely the
intersection of the set of relations satisfied by «;, f1, 71 in G; and the set of
relations satisfied by asg, B2, 72 in Ga. This may be seen from the fact that for
any se€T,

sala, b, ) = (sG, (a1, B1,m), sa,(az, B2,72)),
as is easily verified by induction.

More generally, if we take an arbitrary family of groups (G;):cr, and in each
G; three elements «;, 3;, v;, then in the product group G = TIG;, we can define
the elements

a = (i)ier, b= (Bi)ier, ¢ = (Vi)ier,
and the relations that these satisfy will be just those relations satisfied simultane-
ously by our 3-tuples in all of these groups.

This suggests that by using a large enough such family, we could arrive at a
group with three elements a, b, ¢ which satisfy a smallest possible set of relations.

How large a family (G, aj, Bi, v:i) should we use?

Well, we could be sure of getting the least set of relations if we could use the
class of all groups and all 3-tuples of elements of these. But taking the direct
product of such a family would give us set-theoretic indigestion.

We can cut down this surfeit of groups a bit by noting that for any group G;
and three elements «;, 8;, v;, if we let H; denote the subgroup of GG; generated by
these three elements, it will suffice for our product to involve the group H;, rather
than the whole group G;, since the relations satisfied by «;, £; and ~; in the
whole group G; and in the subgroup H; are the same. Now a finitely generated
group is countable (meaning finite or countably infinite), so we see that it would
be enough to let (G;, ay, B;, v;) range over all countable groups, and all 3-tuples
of elements thereof.

However, the class of all countable groups is still not a set. Indeed, even the
class of one-element groups is not a set, because we get a different (in the strict set-
theoretic sense) group for each choice of that one element. (For those not familiar
with such considerations: In set theory, every element of a set is a set. If we had a
set of all one-element groups, then we could form from this the set of all members
of their underlying sets, which would be the set of all sets; and one knows that this
does not exist.) But this is clearly just a quibble — obviously, if we choose any one-
element set {z}, and take the unique group with this underlying set, it will serve
as well as any other one-element group so far as honest group-theoretic purposes
are concerned. In the same way, I claim we can find a genuine set of countable
groups that up to isomorphism contains all the countable groups. Namely, let S
be a fixed countably infinite set. Then we can form the set of all groups G whose
underlying sets |G| are subsets of S. Or, to hit more precisely what we want, let

(2.3.1) {(Gi, ai, Biy vi) i € T}
be the set of all 4-tuples such that G; is a group with |G;| C S, and «;, B;
and ~; are members of |G;|. Now for any countable group H and three elements
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«, B, v € |H|, we can clearly find an isomorphism 6 from one of these groups, say
G; (je€lI), to H, such that 6(a;) =, 6(8;) =8, 0(v;) =; so (2.3.1) is “big
enough” for our purpose.

So taking (2.3.1) as above, let P be the direct product group TT,G;, let a, b, c
be the I-tuples (), (B:), (i) € |P|, and let F' be the subgroup of P generated
by a, b and c. I claim that F is a free group on a, b and c.

We could prove this by considering the set of relations satisfied by a, b, ¢
in F as suggested above, but let us instead verify directly that F satisfies the
universal property characterizing free groups (Definition 2.1.3). Let G be any
group, and «, (8, v three elements of G. We want to prove that there exists a unique
homomorphism h: F — G carrying a, b, ¢ € |F| to «, 8,y € |G| respectively.
Uniqueness will be no problem — by construction F' is generated by a, b and ¢, so
if such a homomorphism exists it is unique. To show the existence of h, note that
the subgroup H of G generated by «, 3, v is countable, hence as we have noted,
there exists for some j € I an isomorphism 6 : G; = H carrying «;, B35, v, € |G|
to a, B, v € |H|. Now the projection map p; of the product group P = TIG; onto
its j-th coordinate takes a, b and c to «;, f3;, 7;, hence composing this projection
with 6, we get a homomorphism h: F' — G having the desired effect on a, b, ¢,
as shown in the diagram below.

F a, b, c € |F|
-lTGi a, b7 cE -|T|Gz|

pj}; l

4l |

H o, 8,7 € |H|
G

o, B, v € |G|

<.

For a useful way to picture this construction, think of P as the group of all
functions on the base-space I, taking at each point ¢ € I a value in Gj :
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groups Gj

W

N

elements

Of P = ]TIGl

/
T

Then F' is the subgroup of functions generated by a, b and c¢. Now given «, 3, v
in any group G, identify the subgroup of G that they generate with an appropriate
G; (j € I). Then the homomorphism h that we constructed above may be thought
of as taking each element of F' to its value at the point j. We have chosen our
space I and values for a, b and c sufficiently eclectically so that it is possible
to choose points at which a, b and ¢ take on (up to isomorphism) any 3-tuple of
values in any group. Thus, the functions a, b and ¢ are a “universal” 3-tuple of
group-elements.

The same argument works if we replace “3-tuple” by “X-tuple”, where X
is any countable set. Here we use the observation that a group generated by a
countable family of elements is countable. For X of arbitrary cardinality, one can
easily show that a group H generated by an X-tuple of elements has cardinality
< max(card(X), Rg). Hence we get:

PRrROPOSITION 2.3.2. Let X be any set. Take a set S of cardinality
max(card(X), Ng), and let {(Gi, u;) | @ € I} be the set of all pairs such that
G; is a group with |G;| C S, and w; is a map X — |G;| (i.e., an X-tuple of
elements of G;). Let P = TI,G;, and map X into P by defining u(z) (v € X)
to be the element with component w;(x) at each i. Let F be the subgroup of P
generated by {u(z) |z € X}.

Then the pair (F, u) is a free group on the set X. O

Digression: Let S3 be the symmetric group on three letters. Suppose we had
begun the above investigation with a less ambitious goal: merely to find a group J
with three elements a, b, ¢ such that
For every choice of three elements «, 3,7 € |Ss|, J a, b, c € |J]
(2.3.3)  there exists a unique homomorphism h: J — Ss lh l

taking a, b, ¢ to «, B, v respectively. Sy a8, € |Ss]

Then we could have performed the above construction just using 4-tuples

(S3,,8,7) (a,B,v € |S3|) as our (G, oy, Bi, 7). There are 63 = 216 such
4-tuples, so P would be the direct product of 216 copies of S3, and a, b, ¢ would
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be elements of this product which, as one runs over the 216 coordinates, take on
all possible combinations of values in S3. The subgroup J they generate would
indeed satisfy (2.3.3). This leads to:

Exercise 2.3:1. Does condition (2.3.3) characterize (J, a, b, ¢) up to isomor-
phism? If not, is there some additional condition that (J, a, b, ¢) satisfies which
together with (2.3.3) determines it up to isomorphism?

Exercise 2.3:2. Investigate the structure of the group J, and more generally, of
the analogous groups constructed from Ss using different numbers of generators.
To make the problem concrete, try to determine, or estimate as well as possible,
the orders of these groups, for 1, 2, 3 and generally, for n generators.

The methods by which we have constructed free groups in this and the pre-
ceding section go over essentially word-for-word with “group” replaced by “ring”,
“lattice”, or a great many other types of mathematical objects. The determination
of just what classes of algebraic structures admit this and related sorts of universal
constructions is one of the themes of this course. The next exercise concerns a
negative example.

Exercise 2.3:3. State what would be meant by a “free field on a set X7, and
show that no such object exists for any set X. If one attempts to apply the two
methods of this and the preceding section to prove the existence of free fields,
where does each of them fail?

Exercise 2.3:4. Let Z[zy, ..., ] be the polynomial ring in n indeterminates
over the integers (= the free commutative ring on n generators — cf. §3.12
below). TIts field of fractions Q(z1, ..., z,), the field of “rational functions in
n indeterminates over the rationals”, looks in some ways like a “free field on n
generators”. E.g., one often speaks of evaluating a rational function at some set
of values of the variables. Can some concept of “free field” be set up, perhaps
based on a modified universal property, or on some concept of comparing relations
in the field operations satisfied by n-tuples of elements in two fields, in terms of
which Q(x1, ..., z,) is indeed the free field on n generators?

Exercise 2.3:5. A division ring (or skew field or sfield) is a ring (associative but
not necessarily commutative) in which every nonzero element is invertible. If
you find a satisfactory answer to the preceding exercise, you might consider the
question of whether there exists in the same sense a free division ring on n
generators. (This was a longstanding open question, which was finally answered
in 1966, and then again, by a very different approach, about five years later. I
can refer interested students to papers in this area.)

There are many hybrids and variants of the two constructions we have given
for free groups. For instance, we might start with the set T of terms in X, and
define p ~ ¢ (for p, ¢ € T') to mean that for every map v of X into a group G,
one has p, = ¢, in G. Now for each pair (p, q) € T x T such that p ~ ¢ fails to
hold, we can choose a map u, , of X into a group G, 4 such that p,, . # qu, ,-
We can then form the direct product group P = TIG), 4, take the induced map
u: X — |P|, and check that the subgroup F' generated by the image of this map
will satisfy condition (a) of Corollary 2.1.2. Interestingly, for X countable, this
construction uses a product of fewer groups G), , than we used in the version given
above.
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Finally, consider the following construction, which suffers from severe set-
theoretic difficulties, but is still interesting. (I won’t try to resolve these difficulties
here, but will talk sloppily, as though they did not occur.)

Define a “generalized group-theoretic operation in three variables” as any func-
tion p which associates to every group G and three elements «, 8,7 € |G| an
element p(G, a, B, v) € |G|. We can “multiply” two such operations p and ¢ by
defining

(p' Q)(G7a7 67 ’Y) = p(G7 a, Bv ’Y) : Q(Gv «, ﬁa 7) S |G‘
for all groups G and elements «, 3,7 € |G|. We can similarly define the multiplica-
tive inverse of such an operation p, and the constant operation e. We see that the
class of generalized group-theoretic operations will satisfy the group axioms under
the above three operations. Now consider the three generalized group-theoretic
operations a, b and c defined by

a(G, o, B,7) =a, bG, a B,7)=8 oG a B 7)) ="
Let us define a “derived generalized group-theoretic operation” as one obtainable
from a, b and ¢ by the operations of product, inverse, and neutral element defined
above. Then the set of derived generalized group-theoretic operations will form a
free group on the generators a, b and c. (This is really just a disguised form of
our naive “direct product of all groups” idea.)

Exercise 2.3:6. Call a generalized group-theoretic operation p functorial if for
every homomorphism of groups f: G — H, one has [f(p(G, a, 8,7)) =
p(H, f(a), f(B), f(7) (a, B, 7 € |G]). (We will see the reason for this name
in Chapter 6.) Show that all derived group-theoretic operations are functorial.
Is the converse true?

Exercise 2.3:7. Same question for functorial generalized operations on the class
of all finite groups.

2.4. The classical construction: free groups as groups of words

The constructions discussed above have the disadvantage of not giving very
explicit descriptions of free groups. We know that every element of a free group F
on the set X arises from a term in the elements of X and the group operations, but
we don’t know how to tell whether two such terms — say (b(a='b)7!)(a"1b) and e
— yield the same element; in other words, whether (8(a=!8)71)(a™!8) = e is true
for all elements «, 8 of all groups. If it is, then by the results of §2.2 one can obtain
this fact somehow by the procedures corresponding to conditions (2.2.1)-(2.2.8); if
it is not, then the ideas of §2.3 suggest that we should try to prove this by looking
for some particular elements for which it fails, in some particular group in which
we know how to calculate. But these approaches are hit-and-miss.

In this section, we shall construct the free group on X in a much more explicit
way. We will then be able to answer such questions by calculating in the free group.

We first recall an important consequence of the associative identity: that “prod-
ucts can be written without parentheses”. For example, given elements a, b, ¢ of
a group, the elements a(c(ab)), a((ca)b), (ac)(adb), (a(ca))b and ((ac)a)b are
all equal. It is conventional, and usually convenient, to say, “Let us therefore
write their common value as acab.” However, we will soon want to relate these
expressions to group-theoretic terms; so instead of dropping parentheses, let us
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agree to take a(c(ab)) as the common form to which we shall reduce the above
five expressions, and generally, let us note that any product of elements can be
reduced by the associative law to one with parentheses clustered to the right:
Ty (Tp—1(... (X2 21)...)).

In particular, given two elements written in this form, we can write down their
product and reduce it to this form by repeatedly applying the associative law:

@n (- (@2 21) ) - (U (- (2 91)--0))

If we want to find the inverse of an element written in this form, we may use the

(2.4.1)

formula (zy)~! =y~ 27!, another consequence of the group laws. By induction
this gives (z,(...(zoz1)...)) " = (... (x7 23") .. )z, , which we may reduce,
again by associativity, to =7 '(. .. (x,; x, 1) .. .).

More generally, if we started with an expression of the form
+1, +1
e (oL (etarh) L),

where each factor is either z; or z; ! and the exponents are independent, then
the above method together with the fact (x7!)~! = 2 (another consequence of the
group axioms) allows us to write its inverse as .Z'Tl( .. (xfil xF1l)...), which is
of the same form as the expression we started with; just as (2.4.1) shows that the
product of two expressions of the above form reduces to an expression of the same
form.

Note further that if two successive factors zi' £l

; and z;7, are respectively x
and z~ ! for some element z, or are respectively z~! and z for some x, then by
the group axioms on inverses and the neutral element (and again, associativity),
we can drop this pair of factors — unless they are the only factors in the product,
in which case we can rewrite the product as e.

Finally, easy consequences of the group axioms tell us what the inverse of e
is (namely e), and how to multiply anything by e. Putting these observations
together, we conclude that given any set X of elements of a group G, the set of
elements of G that can be written in one of the forms

e or zE'( .. (zFlzfl). ),
(2.4.2)  where n > 1, each z; € X, and no two successive factors are an
element of X and the inverse of the same element, in either order,

is closed under products and inverses. So this set must be the whole subgroup of
G generated by X. In other words, any member of the subgroup generated by X
can be reduced by the group operations to an expression (2.4.2).

In the preceding paragraph, X was a subset of a group. Now let X be an arbi-
trary set, and as in §2.2, let T be the set of all group-theoretic terms in elements of
X (Definition 1.5.1). For convenience, let us assume T' chosen so as to contain X,
with symb;, being the inclusion map. (If you prefer not to make this assumption,
then in the argument to follow, you should insert “symb;.” at appropriate points.)
Let Tyeq €T (“red” standing for “reduced”) denote the set of terms of the form
(2.4.2). If s, t € Tyeq, we can form their product s-¢ in T, and then, as we have
just seen, rearrange parentheses to get an element of T,.q which is equivalent to
s-t so far as evaluation at X-tuples of elements of groups is concerned. Let us call
this element s®t. Thus, s©t has the properties that it belongs to Tieq, and that
for any map v: X — |G| (G a group) one has (s-t), = (s®t),. In the same way,
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given s € Theq, we can obtain from s~! € T an element we shall call s(7) € Theq,
such that for any map v: X — |G|, one has (s71), = (s(7)),.

Are any further reductions possible? For a particular X-tuple of elements of a
particular group there may be equalities among the values of different expressions
of the form (2.4.2); but we are only interested in reductions that can be done in
all groups. No more are obvious; but can we be sure that some sneaky application
of the group axioms wouldn’t allow us to prove some two distinct terms (2.4.2) to
have the same evaluations at all X-tuples of elements of all groups? (In such a
case, we should not lose hope, but should introduce further reductions that would
always replace one of these expressions by the other.)

Let us formalize the consequences of the preceding observations, and indicate
the significance of the question we have asked.

LEMMA 2.4.3. For each s € T, there exists an s € Tyeq (i-e., an element of
T of one of the forms shown in (2.4.2)) such that

(2.4.4) for every map v of X into any group G, s, = s in |G|.
Moreover, if one of the following statements is true, all are:

(a) For each s € T, there exists a unique s € Tyeq satisfying (2.4.4).

(b) If s, t are distinct elements of Tyea, then “s = t7” is not an identity for
groups; that is, for some G and some v: X — |G|, s, # ty.

(C) The 4-tuple F = (Treda ©, (_)a eT) is a group.
(d) The 4-tuple F = (Treq, ®, ), er) is a free group on X.

PRrROOF. We get the first sentence of the lemma by an induction, which I will
sketch briefly. The assertion holds for elements z € X: we simply take 2’ = z. Now
suppose it true for two terms s, t € T. To establish it for s-¢ € T, define (s-t) =
s'®t'. One likewise gets it for s~ using s’(f), and it is clear for e. It follows from
condition (c) of the definition of “group-theoretic term” (Definition 1.5.1) that it
is true for all elements of T.

The equivalence of (a) and (b) is straightforward. Assuming these conditions,
let us verify that the 4-tuple F defined in (c) is a group. Take p, ¢, r € Tyeq. Then
p®(ger) and (p©®q) ®r are two elements of Tieq, call them s and ¢. For any
v: X = |G|, s, =t, by the associative law for G. Hence by (b), s = ¢, proving
that ©® is associative. The other group laws for F' are deduced in the same way.

Conversely, assuming (c), we claim that for distinct elements s, t € Tyeq, we
can prove, as required for (b), that the equation “s = t” is not an identity by
getting a counterexample to that equation in this very group F. Indeed, if we let v
be the inclusion X — Tyeq = |F|, we can check by induction on n in (2.4.2) that
for all s € Tyeq, Sy = s. Hence s # t implies s, # t,,, as desired.

Since (d) certainly entails (c), our proof will be complete if we can show, assum-
ing (c¢), that F has the universal property of a free group. Given any group G and
map v: X — |G|, wemap |F| = Tyeq to |G| by s+ s,. From the properties of ®
and (%), we know that this is a homomorphism h such that h|X (the restriction
of h to X) is v; and since X generates F, h is the unique homomorphism with
this property, as desired. O

Well — are statements (a)-(d) true, or not??
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The usual way to answer this question is to test condition (c) by writing down
precisely how the operations @ and (=) are performed, and checking the group
axioms on them. Since a term of the form (2.4.2) is uniquely determined by the
integer n (which we take to be 0 for the term ¢) and the n-tuple of elements of
X and their inverses, (x,jfl, R :vlil), one describes ® and (=) as operations on
such n-tuples. E.g., one multiplies two tuples (w, ..., z) and (y, ..., z) (where
each of w, ..., z is an element of X or a symbolic inverse of such an element) by
uniting them as (w, ..., z, ¥, ..., z), then dropping pairs of factors that may now
cancel (e.g., z and y above if y is 27 !); and repeating this last step until no such
cancelling pairs remain.

But checking the associative law for this recursively defined operation turns
out to be very tedious, involving a number of different cases. (E.g., you might try
checking associativity for (v, w, z)- (271, w=t, y=1) - (y, w, 2), and for (v, w, x) -
(71, 274 4y - (y, w, 2), where w, =, y and z are four distinct elements of X.
Both cases work, but they are different computations.)

But there is an elegant trick, not as well known as it ought to be, which rescues
us from the toils of this calculation. We construct a certain G which we know to
be a group, using which we can verify condition (b) — rather than condition (c) —
of the above lemma.

To see how to construct this G, let us go back to basics and recall where the
group identities, which we need to verify, “come from”. They are identities which
are satisfied by permutations of any set A, under the operations of composing
permutations, inverting permutations, and taking the identity permutation. So let
us try to describe a set A on which the group we want to construct should act by
permutations in as “free” a way as possible, specifying the permutation of A that
should represent the image of each = € X.

To start our construction, let a be any symbol not in {#*! | z € X}. Now
define A to be the set of all strings of symbols of the form:

+1 %1 +1

Ty Ty ...X] G

(2.4.5) where n > 0, each x; € X, and no two successive factors z' and

xﬁll are an element of X and the inverse of that same element, in
either order.
In particular, taking n = 0, we see that a € A.
Let G be the group of all permutations of A. Define for each z € X an
element v(z) € |G| as follows. Given b € A,

if b does mot begin with the symbol z=!, let v(x) take b to the
symbol x b, formed by placing an x at the beginning of the symbol b;

if b does begin with 27!, say b = x7l¢, let v(z) take b to the

symbol ¢, formed by removing z=! from the beginning of b.
It is immediate from the definition of A that v(z)(b) belongs to A in each case.
To check that v(z) is invertible, consider the map which sends a symbol b to b,
and a symbol ¢ not beginning with z to the symbol 27! ¢; we find that this is a
2-sided inverse to v(z).

So we now have a map v: X — |G|. As usual, this induces an evalua-

tion map s — s, taking the set T of terms in X into |G|. Now consider any
s =a (.. (z5tafl)...) € Tieq. It is easy to verify by induction on n that the

permutation s, € |G| takes our “base” symbol a € A to the symbol xf!... xlila
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(or if s =e, to a itself). It follows that if s and ¢ are distinct elements of Tjeq,
then s,(a) and t,(a) are distinct elements of A, so s, # ¢, in G, establishing
(b) of Lemma 2.4.3. By that lemma we now have

PROPOSITION 2.4.6. F = (Tyeq, O, =), e) is a group; in fact, letting v denote
the inclusion X — Tyeqa, the pair (F, u) is a free group on X.
Using parenthesis-free notation for products, and identifying each element of
X with its image in F, this says that every element of the free group on X can be
written uniquely as
e, or xrl.. . agilztl

where in the latter case, n > 1, each z; € X, and no two successive factors xl:-tl

and xi_ll are an element of X and the inverse of that same element, in either
order. (]

What we have just obtained is called a normal form for elements of a free group
on X — a set of expressions which contains a unique expression for each member
of the group, such that we can algorithmically reduce any expression to one in this
set. This indeed allows us to calculate explicitly in the free group. For example,
you should find it straightforward to do

Exercise 2.4:1. Determine whether each of the following equations holds for all

elements z, y, z of all groups:

(i) (@ lyz) M za)(@ly) = (y2) "'z (yo).

(ii) (z7'y tay)? = a2y 1Py

In the next exercise, we will use the group theorists’ abbreviations
Y =y lzy and [r,y] = 27y oy

for the conjugate of an element x by an element y in a group G, respectively
the commutator of two elements = and y. If H;, H, are subgroups of G, then
[H1, Hs] denotes the subgroup of G generated by all commutators [h1, ha] (k1 €
Hq, hy € Hg)

Exercise 2.4:2. (i) Show that the commutator operation is not associative; i.e.,
that it is not true that for all elements a, b, ¢ of every group G one has
la, [b, c]] = [[a, b], c].

(ii) Prove a group identity of the form

+1 +1 +1
[, 1), 2 [y, 2, o= [, 0, g

Yy
for some choice of the exponents +1. (There is a certain amount of leeway in
these exponents; you might try to adjust your choices so as to get maximum
symmetry. The result is known as the Hall-Witt identity; however its form may
vary with the text; in particular, we get different identities depending on whether
the above definition of [z, y], preferred by most contemporary group theorists,
is used, or the less common definition zyx~!y=!))

(iii) Deduce that if A, B and C are subgroups of a group G such that two of
[[4, B], C], [|[B, C], 4], [[C, A], B] are trivial, then so is the third. (The “three
subgroups theorem”.)

(As noted above, [A, B] means the subgroup of G generated by elements
[a,b] with @ € A, b€ B. Thus, [[4, B], C] means the subgroup generated by
elements [g,c] with ¢ € C, and g in the subgroup generated as above. You will
need to think about the relation between the condition [[A, B], C] = {e} and
the condition that [[a, b], c] =€ forall a€ A, be B, ceC.)

= 6’
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(iv) Deduce that if A and B are two subgroups of G, and [A, [A, B]] is trivial,
then so is [[A4, A], B]. Is the converse true?

Incidentally, group theorists generally abbreviate [z, y], 2] to [z, y, z]. If I
worked with commutators every day, I might do the same, but as an occasional
visitor to the subject, I prefer to stick with more transparent notation.

The idea of finding normal forms, or other explicit descriptions, of objects
defined by universal properties is a recurring one in algebra. The form we have
found is specific to free groups. It might appear at first glance that corresponding
forms could be obtained mechanically from any finite system of operations and
identities; e.g., those defining rings, lattices, etc.; and thus that the results of this
section should generalize painlessly (as those of the two preceding sections indeed
do!) to very general classes of structures. But this is not so. An example we shall
soon see (§3.5) is that of the Burnside problem, where a sweet and reasonable set of
axioms obstinately refuses to yield a normal form. Other nontrivial cases are free
Lie algebras [83] (cf. §8.7 below) and free lattices [3, §VI.8], for which normal forms
are known, but complicated; free modular lattices, for which it has been proved that
the word problem is undecidable (no recursive normal form can exist); and groups
defined by particular families of generators and relations (§3.3 below), for which the
word problem has been proved undecidable in general, though nice normal forms
exist in many cases. In general, normal form questions must be tackled case by case,
but for certain large families of cases there are interesting general methods [43].

The trick that we used to show that the set of terms T,.q constitutes a normal
form for the elements of the free group is due to van der Waerden, who introduced
it in [139] to handle the more difficult case of coproducts of groups (§3.6 below).
Though the result we proved is, as we have said, specific to groups, the idea be-
hind the proof is a versatile one: If you can reduce all expressions for elements of
some universal structure F to members of a set T,.q, and wish to show that this
gives a normal form, then look for a “representation” of F' (in whatever sense is
appropriate to the structure in question — in the group-theoretic context this was
“an action of the group F on a set A”) which distinguishes the elements of Tyeq.
A nice twist which often occurs, as in the above case, is that the object on which
we “represent” F' may be the set Ti.q itself, or some closely related object.

My development of Proposition 2.4.6 was full of motivations, remarks, etc.. You
might find it instructive to write out for yourself a concise, direct, self-contained
proof that the set of terms indicated in Proposition 2.4.6, under the operations
described, forms a group, and that this has the universal property of the free group
on X.

Exercise 2.4:3. If X is a set, and s # ¢ are two reduced group-theoretic terms
in the elements of X (as in Lemma 2.4.3(b)), will there in general exist a finite
group G, and a map v: X — |G|, such that s, #t,? (In other words, are the
only identities satisfied by all finite groups those holding in all groups?)

If you succeed in answering the above question, you might try the more difficult
ones in the next exercise.

Exercise 2.4:4. (i) If X isaset, F' the free group on X, H a subgroup of F,
and s an element of F such that s ¢ |H|, will there in general exist a finite
group G and a homomorphism f: F' — G such that f(s) ¢ f(|H|)?
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(ii) Same question, under the assumption that the subgroup H is finitely gen-
erated.

Free groups can also be represented by matrices:

Exercise 2.4:5. Let SL(2, Z) denote the group of all 2 x 2 matrices of integers
with determinant 1, and let H be the subgroup thereof generated by the two

matrices = = <é ?) and y = <£1,) ?) Show that H is free on {z, y}.

(Hint: Let ¢ be the column vector ;{ . Examine the form of the column

vector obtained by applying an arbitrary reduced group-theoretic word in x and
y to c.

If ;ou do the above, you might like to think further about what pairs of
(possibly distinct) integers, or for that matter, what pairs of real or complex
numbers can replace the two “3”s in the above matrices. For integers the answer
is known; for rational, real and complex numbers, there are many partial results
(see [74]), but nothing close to a complete answer at present.



CHAPTER 3

A Cook’s tour of other universal constructions

We shall now examine a number of other constructions having many similarities
to that of free groups. In each case, the construction can be motivated by a question
of the form, “Suppose we have a structure about which we know only that it satisfies
such and such conditions. How much can we say about it based on this information
alone?” In favorable cases, we shall find that if we collect the “data” we can
deduce about such an object, this data itself can be made into an object F, which
satisfies the given conditions, and satisfies no relations not implied by them (cf.
remark 2.2.13). This F' is then a “universal” example of these conditions, and that
fact can be translated into a “universal mapping property” for F.

Although the original question, “What can we say about such an object?”, and
the “least set of relations” property, are valuable as motivation and intuition, the
universal mapping property gives the characterization of these constructions that
is most useful in applications. So though I will sometimes, but not always, refer
to those motivating ideas, I will always characterize our constructions by universal
properties.

The existence of these universal objects can in most cases be proved from
scratch by either of the methods of §§2.2 and 2.3: construction from below, as sets
of terms modulo necessary identifications, or construction from above, as subobjects
of big direct products. But often, as a third alternative, we will be able to combine
previously described universal constructions to get our new one.

Where possible, we will get explicit information on the structure of the new
object — a normal form or other such description. It is a mark of the skilled
algebraist, when working with objects defined by universal properties, to know
when to use the universal property, and when to turn to an explicit description.

As we move through this chapter, I shall more and more often leave standard
details for the reader to fill in: the precise meaning of an object “universal for” a
certain property, the verification that such an object exists, etc.. In the later sec-
tions, commutative diagrams illustrating universal properties will often be inserted
without explanation. These diagrams are not substitutes for assertions, but aids to
the reader in visualizing the situation of the assertion he or she needs to formulate.

Constructions of groups will receive more than their rightful share of attention
here because they offer a wide range of interesting examples, and are more familiar
to many students than lattices, noncommutative rings (my own love), Lie algebras,
etc..

Let us begin by noting how some familiar elementary group-theoretic construc-
tions can be characterized by universal properties.

3.1. The subgroup and normal subgroup of G generated by S C |G|
Suppose we are explicitly given a group G, and a subset S of |G|.

35
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Consider a subgroup A of G about which we are told only that it contains all
elements of the set S. How much can we say about A7

Clearly A contains all elements of G that can be obtained from the elements
of S by repeated formation of products and inverses, and also contains the neutral
element. This is all we can deduce, for it is easy to see that the set of elements
which can be so obtained will form the underlying set of a subgroup of G, namely
the subgroup {S) generated by the set S. This description builds {S) up “from
below”. We can also obtain it “from above”, as the intersection of all subgroups
of G containing S. Whichever way we obtain it, the defining universal property of
(S is that it is a subgroup which contains S, and is contained in every subgroup
A of G that contains S':

S = K9 S
SN N
A A

(In the second part of the above display, we symbolize the group homomorphism
given by an inclusion map of underlying sets by an inclusion sign between the
symbols for the groups; a slight abuse of notation.)

We know a somewhat better description of the elements of (S than the one I
just gave: Each such element is either e or the product of a sequence of elements
of S and their inverses. A related observation is that {S) is the image of the
map into G of the free group F on S induced by the inclusion-map S — |G|. In
particular cases one may get still better descriptions. For instance, if S = {a, b, ¢}
and a, b and ¢ commute, then {(S) consists of all elements a™b"™ cP; if G is
the additive group of integers, then the subgroup generated by {1492, 1974} is
the subgroup of all even integers; if G is a symmetric group S,, (n > 2), and S
consists of the two permutations (12) and (12...n), then {S) is all of G.

There is likewise a least normal subgroup of G containing S. This is called
“the normal subgroup of G generated by S”, and has the corresponding universal
property, with the word “normal” everywhere inserted before “subgroup”.

Exercise 3.1:1. Show that the normal subgroup N C G generated by S is the
subgroup of G' generated by {gsg~'|g € |G|, s € S}.
Can |N| also be described as {ghg~'|g € |G|, h € [{(S)|}?

Exercise 3.1:2. Let G be the free group on two generators = and y, and n a
positive integer. Show that the normal subgroup of G generated by z™ and y
is generated as a subgroup by z" and {z'yz~%|0 < i < n}, and is in fact a
free group on this (n+ 1)-element set. Also describe the normal subgroup we get
if we let n = 0.

3.2. Imposing relations on a group. Quotient groups

Suppose next that we are given a group G, and are interested in homomor-
phisms of G into other groups, f: G — H, which make certain specified pairs
of elements fall together. That is, let us be given a family of pairs of elements
{(zs, yi) | i € I} C |G| x |G| (perhaps only one pair, (z, y)) and consider homo-
morphisms f from G into other groups, which satisfy

(3.2.1) (Viel) flzi) = f(yi)
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Note that given one homomorphism f: G — H with this property, we can get
more such homomorphisms G — K by forming composites g f of f with arbitrary
homomorphisms ¢g: H — K. It would be nice to know whether there exists one
pair (H, f) which satisfies (3.2.1) and is universal for this condition, in the sense
that given any other pair (K, h) satisfying it, there is a unique homomorphism
¢g: H — K making the diagram below commute. (In that diagram, “Vh...” is
short for, “For all homomorphisms h: G — K such that (Vi€ I) h(z;) = h(y;)”,
while “31” is a common abbreviation for “there exists a unique”.)

G ! H
Yh... |3lg
K

It is not hard to prove the existence of such a universal pair directly, either by a
“group-theoretic terms modulo an equivalence relation” construction, as in §2.2, or
by an “image in a big direct product” construction, analogous to that of §2.3. But
let us look at the problem another way. Condition (3.2.1) is clearly equivalent to

(3.2.2) Viel) flziy;t) = e

So we are looking for a universal homomorphism which annihilates (sends to e) a
certain family of elements of |G|. We know that the set of elements annihilated by
a group homomorphism is always a normal subgroup, so this is equivalent to saying
that f should annihilate the normal subgroup of G generated by {z;y; Yiery,
referred to at the end of the preceding section. And in fact, the pair (G/N, q),
where N is this normal subgroup, G/N is the quotient group, and ¢: G — G/N
is the quotient map, has precisely the universal property we want:

q

G G/N

Yh... |3lg

K

So this quotient group is the solution to our problem.

If we had never seen the construction of the quotient of a group by a normal
subgroup, an approach like the above would lead to a motivation of that construc-
tion. We would ask, “What do we know about a group H, given that it has a
homomorphism of G into it satisfying (3.2.1)?” We would observe that H con-
tains an image f(a) of each a € G, and that two such images are equal if they
belong to the same coset of the normal subgroup generated by the z;y; Ls. We
would discover how the group operations must act on these images-of-cosets, and
conclude that this set of cosets, under these operations, was a universal example of
this situation.

Let us assume even a little more naiveté in
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Exercise 3.2:1. Suppose in the above situation that we had not been so astute,
and had only noted that f(a) = f(b) must hold in H whenever ab~! lies in

the subgroup generated by {z;y;'}. Attempt to describe the group operations
on the set of equivalence classes under this relation, show where this description
fails to be well-defined, and show how this “failure” could lead us to discover the
normality condition needed.

The construction we have described is called imposing the relations x; = y;
(¢ € I) on G. We can abbreviate the resulting group by G/(x; = y; | i € I).

For the next exercise, recall that if G is a group, then a G-set means a pair
S = (]S, m), where |S| is a set and m: |G| x |S| — |S| is a map, which we shall
abbreviate by writing m(g, s) = g s, satisfying
(3.23) (Vs e[Sl 9.9 €lGl) g(g's) = (99)s,

o (VselS]) es = s

in other words, a set on which G acts by permutations [32, §I.5], [30, §I1.4] [27,
§1.7]. (We remark that this structure on the set |S| can be described in two
other ways: as a homomorphism from G to the group of permutations of |S|, and
alternatively, as a system of unary operations ¢, on [S|, one for each ¢ € |G|,
satisfying identities corresponding to all the relations holding in G.)

A homomorphism S — S’ of G-sets (for a fized group G) means a map
a: |S] — |5’ satisfying

(3.2.4) (Vsel|S],ge|G|) al(gs) = gal(s).

If H is a subgroup of the group G, let |G/H| denote the set of left cosets of
H in G. We shall write a typical left coset as [g] = gH. Then |G/H| can be made
the underlying set of a left G-set G/H, by defining ¢[¢'] = [g¢']

Exercise 3.2:2. Let H be any subgroup of G. Find a universal property char-
acterizing the pair (G/H, [e]). In particular, what form does this universal

mapping property take in the case where H = {(x; Yy | i € Ty for some set
{(i, wi) [1€ I} S |G x |G| 7

With the concept of imposing relations on a group under our belts, we are
ready to consider

3.3. Groups presented by generators and relations

To start with a concrete example, suppose we are curious about groups G
containing two elements a and b satisfying the relation

(3.3.1) ab = ba.

One may investigate the consequences of this equation with the help of the group
laws. What we would be investigating is, I claim, the structure of the group with
a ungversal pair of elements satisfying (3.3.1).

More generally, let X be a set of symbols (in the above example, X = {a, b}),
and let T be the set of all group-theoretic terms in the elements of X. Then
formal group-theoretic relations in the elements of X mean formulae “s = ¢7,
where s, ¢t € T. Thus, given any set R C T x T of pairs (s, t) of terms, we



3.3. PRESENTATIONS OF GROUPS 39

may consider groups H with X-tuples of elements v: X — |H| satisfying the
corresponding set of relations

(3.3.2) (V(s,t) €ER) sy = ty.

(So (3.3.1) is the case of (3.3.2) where X = {a, b} and R is the singleton
{(ab, b%a)}.) In this situation, we have

ProproOSITION 3.3.3. Let X be a set, T the set of all group-theoretic terms in
X, and R a subset of T xT. Then there exists a universal example of a group with
an X -tuple of elements satisfying the relations “s = t” ((s,t) € R). Le., there
exists a pair (G, u), where G is a group, and u a map X — |G| such that

(V (s, t) € R) sy = tu,
and such that for any group H, and any X-tuple v of elements of H satisfy-
ing (3.3.2), there exists a unique homomorphism f: G — H satisfying v= fu (in

other words, having the property that the X -tuple v of elements of H 1is the image
under [ of the X-tuple u of elements of G).

x —4 lel G

Vou... Jf

|H| q

Further, the pair (G, w) is determined up to canonical isomorphism by these
properties, and the group G is generated by u(X).

THREE METHODS OF PROOF. Clearly, two methods that we may use are the
constructions of §2.2 and §2.3, applied essentially word-for-word, with the fur-
ther condition (3.3.2) added to the group axioms throughout. (Note that unlike
(2.2.1)-(2.2.8), the set of equations (3.3.2) involves no universal quantification over
T; we only require the relations in R to hold for the particular X-tuple v of
elements of each group H.)

However, we can now, alternatively, get the pair (G, u) with less work. Let
(F, ur) be the free group on X, let N be the normal subgroup of F' generated by
{supty} | (s,t) € R}, ie., by the set of elements of F that we want to annihilate.
Let G = F/N, let q: F — F/N be the canonical map, and let u = qup. That
(G, u) has the desired universal property follows immediately from the universal
properties of free groups and quotient groups.

u
X —F s p| 1

lel F G

Vou.> 31 f

[H|

Having constructed (G, u) by any of these three methods, let us now prove the
final sentence of the proposition. If (G’, u’) is another pair with the same universal
property, then by the universal property of G there exists a homomorphism i: G —
G’ such that iu = v/, and by the universal property of G’, an i': G’ — G such
that i'u’ = u. These are inverses of one another; indeed, note that i'1u = i'u’ = u,
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hence by the uniqueness condition in the universal property of G, i'i equals the
identity map of G; by a like argument, i’ is the identity of G’ so i is invertible,
yielding the asserted isomorphism.

That G is generated by u(X) can be seen directly from each of our con-
structions, but let us also show from the universal property that this must be so.
Consider the subgroup <(u(X)) of G generated by u(X). The universal property
of G gives a homomorphism j: G — {(u(X)) which is the identity on elements of
u(X). Following it by the inclusion of (u(X)) in G yields an endomorphism of
G which agrees with the identity map on «(X), and so, by the uniqueness asser-
tion in the universal property, is the identity. So the inclusion of (u(X)) in G is
surjective, as desired. |

Though we implied above that the advantage of getting our construction by
combining two known constructions was that this was less work than constructing
it from scratch, another general advantage of that approach, which we shall see in
later sections, is that we can apply results about the known constructions to the
new one.

The group G of the preceding proposition is called the group presented by the
generators X and relations R. A common notation for this is

(3.3.4) G = (X | R).

For example, the universal group with a pair of elements satisfying (3.3.1) would
be written
{a, b|ab = ba).

In a group presented by generators and relations (3.3.4), one often uses the
same symbols for the elements of X and their images in |G|, even if the map u is
not one-to-one. For instance, from the well-known lemma saying that if an element
n of a group (or monoid) has both a left inverse £ and a right inverse ¢, then
& = ¢, it follows that in the group {z,y, z | xy = e = y2), one has u(z) = u(z).
Unless there is a special need to be more precise, we may express this by saying “in
{x,y,z|xzy=e=yz), one has z =2z.”

Given a group G, one can find a family of generators for G, and then take a
family of relations which imply all the group-theoretic relations satisfied in G by
those generators; in other words, an expression for G in the form (3.3.4). This is
called a presentation of the group G.

Recall that the concept of group-theoretic term was introduced both for the
consideration of what relations hold among all families of elements of all groups,
and to write specific relations that hold among particular families of elements in
particular groups. For the purpose of discussing identities holding in all groups,
it was necessary to distinguish between expressions such as (zy)~! and y~lz71,
between (zy)z and z (y z), etc.. But in considering relations in particular groups
we can generally take for granted the group identities, i.e., not distinguish pairs of
expressions that have the same evaluations in all groups. For example, in (3.3.1),
the right hand side could be replaced by b(ba) without changing the effect of
the condition. Hence in considering groups presented by generators and relations,
one often considers the relations to be given by pairs, not of terms, but of their
equivalence classes under the relation of having equal values in all groups — in other
words pairs (s, t) € |F|x|F|, where F is the free group on X. For such (s, t), an
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X-tuple v of elements of a group G is considered to “satisfy s =t” if h(s) = h(¢),
for h the homomorphism F — G induced by v as in Definition 2.1.3.

Whether s and ¢ are group-theoretic terms as in Proposition 3.3.3, or elements
of a free group as in the above paragraph, we should note that there is a certain
abuse of language in saying that a family v of elements of a group G “satisfies
the relation s = ¢”, and in writing equations “s = t” in presentations of groups.
What we mean in such cases is that a certain equation obtained from the pair (s, t)
and the X-tuple v holds in G; but the equality s =t between terms or free group
elements is itself generally false! As with other convenient but imprecise usages,
once we are conscious of its impreciseness, we may use it, but should be ready
to frame more precise statements when imprecision could lead to confusion (for
instance, if we also want to discuss which of certain terms, or elements of a free
group, are really equal).

We have noted that a relation (s, t) is satisfied by an X-tuple v of elements
of a group G if and only if (st~ !), = e in G; in other words, if and only if
the relation (st~!, e) is satisfied by v. Thus, every presentation of a group can
be reduced to one in which the relations occurring all have the form (r, e) for
terms (or free-group elements) r. The elements r are then called the relators in
the presentation, and in expressing the group, one may list relators rather than
relations. E.g., the group we wrote earlier as {a, b | ab = b%a) would, in this
notation, be written <a, b | aba=1b=2). However, I will stick to equational notation
in these notes.

Exercise 3.3:1. Show that the three groups described below are isomorphic (as
groups, ignoring the maps “ X — |G|” etc. coming from the presentations of the
first two).

(a) G=<a,b|a®=e, ab=">b"1a).
(b) H={(s,t]|s>=t>=¢e).
(¢) D = {distance-preserving permutations of the set Z}, i.e., the group consist-

ing of all translation-maps n — n+c (¢ € Z) and all reflection-maps n — —n+d
(deZ).

The universal property of a group presented by generators and relations is
extremely useful in considerations such as that of

Exercise 3.3:2. Find all endomorphisms of the group of the preceding exercise.
Describe the structure of the monoid of these endomorphisms.

Returning to the example with which we started this section —

Exercise 3.3:3. Find a normal form or other convenient description for the group
presented by two generators a, b and the one relation (3.3.1): ab = b%a.

The following question, suggested by a member of the class some years ago, is
harder, but has a nice solution:

Exercise 3.3:4. (D.Hickerson.) Do the same for <a, b | ab = b%*a?).

Any group G can be presented by some system of generators and relations.
E.g., take |G| itself for generating set, and the multiplication table of G as a set of
relations. But it is often of interest to find concise presentations for given groups.
Note that the free group on a set X may be presented by the generating set X
and the empty set of relations!
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Exercise 3.3:5. Suppose f(z, y) and ¢(y) are group-theoretic terms in two and
one variables respectively. What can you prove about the group with presentation

w, z,y|lw= f(z,y), v = g(y)?
Generalize if you can.

Exercise 3.3:6. Consider the set Z x Z of “lattice points” in the plane. Let G be
the group of “symmetries” of this set, i.e., maps Z x Z — Z x 7Z which preserve
distances between points.

(i) Find a simple description of G. (Cf. the description of the group of symme-
tries of the set Z in terms of translations and reflections in Exercise 3.3:1(c).)

(ii) Find a simple presentation for G, and a normal form for elements of G in
terms of the generators in your presentation.

Exercise 3.3:7. Suppose G is a group of n elements. Then the observation made
above, on how to present any group by generators and relations, yields upper
bounds on the minimum numbers of generators and relations needed to present
G. Write down these bounds; then see to what extent you can improve on them.

The above exercise shows that every finite group is finitely presented, i.e., has
a presentation in terms of finitely many generators and finitely many relations. Of
course, there are also finitely presented groups which are infinite. The next two
exercises concern the property of finite presentability. (The first is not difficult; the
second requires some ingenuity, or experience with infinite groups.)

Exercise 3.3:8. Show that if G is a group which has some finite presentation,
and if {(x1, ..., x, | R) is any presentation of G using finitely many generators,
then there is a finite subset Ry C R such that {(zq, ..., z, | Ry) is also a
presentation of G.

Exercise 3.3:9. Find a finitely generated group that is not finitely presented.

Another kind of question one can ask is typified by
Exercise 3.3:10. Is the group

(,ylazyz™t = y% yayt = 2?)
trivial (= {e})? What about
oy laye™ =9 yayt = a®)?

(If you prove either or both of these groups trivial, you should present your
calculation in a way that makes it clear, at each stage, which defining relation
you are applying, and to what part of what expression.)

For the group-theory buff, here are two harder, but still tractable examples. In
part (ii) below, note that Z is a common notation in group theory for the infinite
cyclic group. (The similarity to Z as a symbol for the integers is a coincidence:
The latter is based on German Zahl, meaning “number” while the group-theoretic
symbol is based on on zyklisch, meaning “cyclic”. Although the additive group
of integers is an infinite cyclic group, a group denoted Z can either be written
additively, or multiplicatively, e.g. as {z°|i € Z}.) The finite cyclic group of order
n is likewise denoted Z,,.

Exercise 3.3:11. (J.Simon [113].)

(i) Is either of the groups <a, b| (b= a)*a=3 =e = b (b=1a)"3), or
la,b| (ba~HBa2=e=0b"(ba"1)*) trivial?
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(i) In the group <a,b | ba=*bab~'a = e), is the subgroup generated by
ba(b~ta)? and a®b~! isomorphic to Z x Z?

Suppose G is a group with presentation (X | R). An interesting consequence
of the universal property of characterizing G in Proposition 3.3.3 is that for any
group H, the set of homomorphisms Hom(G, H) is in natural one-to-one corre-
spondence with the set of X-tuples of elements of H satisfying the relations R.

For instance, if n is a positive integer, and we write Z, = (z | 2™ = e)
for the cyclic group of order n, then we see that for any group H, we have a
natural bijection between Hom(Z,, H) and {a € |H| | a™ = e}, each a in the
latter set corresponding to the unique homomorphism Z,, — H carrying = to a.
(Terminological note: a group element a € |H| which satisfies a™ = e is said to
have exponent n. This is equivalent to its having order dividing n.)

Similarly, one finds that {z,y | xy = yz) is isomorphic to Z x Z, hence
Hom(Z x Z, H) corresponds to the set of all ordered pairs of commuting elements
of H.

Thus, presentations of groups by generators and relations provide a bridge
between the internal structure of groups, and their “external” behavior under ho-
momorphisms. This will be particularly valuable when we turn to category theory,
which treats mathematical objects in terms of the homomorphisms among them.

The last exercise of this section describes a very interesting group, though most
of its striking properties cannot be given here.

Exercise 3.3:12. Let G = (v, y |y~ '2?y =272, a7 1y?z = y=2).
(i) Find a normal form or other convenient description for elements of G. Verify
from this description that G has no nonidentity elements of finite order.
(ii) Calling the group characterized in several ways in Exercise 3.3:1 “D”, show
that G has exactly three normal subgroups N such that G/N = D, and that
the intersection of these three subgroups is {e}.
(iii) It follows from (ii) above that G can be identified with a subgroup of
D x D x D. Give a criterion for an element of D x D x D to lie in this subgroup,
and prove directly from this criterion that no element of this subgroup has finite
order.

The study of groups presented by generators and relations is called Combinato-
rial Group Theory, and there are several books with that title. An interesting text
which assumes only an undergraduate background, but goes deep into the tech-
niques of the subject, is [31]. There is also a web-page on the area, [146], including
a list of open questions.

Though group presentations often yield groups for which a normal form can be
found, it has been proved by Novikov, Boone and Britton that there exist finitely
presented groups G such that no algorithm can decide whether an arbitrary pair
of terms of G represent the same element. A proof of this result is given in the
last chapter of [33].

3.4. Abelian groups, free abelian groups, and abelianizations
An abelian group is a group A satisfying the further identity
(Vo,y€|A]) zy = y=.

The discussion of §2.1 carries over without essential change and gives us the
concept of a free abelian group (F, u) on a set X; the method of §2.2 establishes
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the existence of such groups by constructing them as quotients of sets T of terms
by appropriate equivalence relations, and the method of §2.3 yields an alternative
construction as subgroups of direct products of large enough families of abelian
groups. We may clearly also obtain the free abelian group on a set X as the group
presented by the generating set X and the relations st =t s, where s and ¢ range
over all elements of T. This big set of relations is easily shown to be equivalent, for
any X-tuple of elements of any group, to the smaller family zy =yz (x, y € X);
so the free abelian group on X may be presented as

Xlzy =yz (v,y€X)).

To investigate the structure of free abelian groups, let us consider, say, three
elements a, b, ¢ of an arbitrary abelian group A, and look at elements g € A
that can be obtained from these by group-theoretic operations. We know from
§2.4 that any such g may be written either as e, or as a product of the elements
a,a” ', b, b7, ¢, c'. We can now use the commutativity of A to rearrange this
product so that it begins with all factors a (if any), followed by all factors a=! (if
any), then all factors b (if any), etc.. Now performing cancellations if both @ and
a~' occur, or both b and b~! occur, or both ¢ and ¢! occur, we can reduce
g to an expression a’b’ c¥, where i, j and k are integers (positive, negative,
or 0; exponentiation by negative integers and by 0 being defined by the usual
conventions). Let us call the set of such expressions Tpp-red, and define composition,
inverse, and an identity element on this set by

(3.4.1) (@b *) o (a" V'K = @t It KR
(3.4.2) (@' ) = a7 p Ik,
(3.4.3) e = a’b° L.

Note that ® and (=) are here different operations from those represented by the

same symbols in §2.4, but that the idea is as in that section; in particular, it is clear
that for any map v of {a, b, ¢} into an abelian group, one has (s-t), = (s ®© t),
and (s71), = (5(’))v. It is now easy to verify that under these operations, Tup-red
itself forms an abelian group F. This verification does not require any analog of
“van der Waerden’s trick” (§2.4); rather, the result follows from the known fact
that the integers (which appear as exponents) do form an abelian group under +,
—, and 0.

It follows, as in §2.4, that this F is the free abelian group on {a, b, ¢}, and
thus that the set Thp-req Of terms a®d’ ¢F is a normal form for elements of the free
abelian group on three generators.

The above normal form is certainly simpler than that of the free group on
{a, b, c}. Yet there is a curious way in which it is more complicated: It is based on
our choice to use alphabetic order on the generating set {a, b, ¢}. Using different
orderings, we get different normal forms, e.g., b cF a?, etc.. If we want to generalize
our normal form to the free abelian group on a finite set X without any particular
structure, we must begin by ordering X, say writing X = {z1, 29, ..., z,}. Only
then can we speak of “the set of all expressions xzf ...xin” If we want a normal
form in the free abelian group on an infinite set X, we must again choose a total
ordering of X, and then either talk about “formally infinite products with all
but finitely many factors equal to e”, or modify the normal form, say to “e or
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@) W) 242 where z < y < --- < z € X, and all exponents shown are
nonzero” (the last two conditions to ensure uniqueness!)

We may be satisfied with one of these approaches, or we may prefer to go to a
slightly different kind of representation for F, which we discover as follows: Note
that if g is a member of the free abelian group F on X, then for each = € X,
the exponent i(x) to which x appears in our normal forms for g is the same for
these various forms; only the position in which z**) is written (and if i(z) = 0,
whether it is written) changes from one normal form to another. Clearly, any of our
normal forms for g, and hence the element ¢ itself, is determined by the X-tuple
of exponents (i(x))zex. So let us “represent” g by this X-tuple; that is, identify
F with a certain set of integer-valued functions on X. It is easy to see that the
group operations of F' correspond to componentwise addition of such X-tuples,
componentwise additive inverse, and the constant X-tuple 0; and that the X-tuple
corresponding to each generator x € X is the function 6, having value 1 at =z
and 0 at all other elements y € X. The X-tuples that correspond to members
of I are those which are nonzero at only finitely many components. Thus we get
the familiar description of the free abelian group on X as the subgroup of ZX
consisting of all functions having finite support in X. (The support of a function

f means {x | f(z) #0}.)

Exercise 3.4:1. If X is infinite, it is clear that the whole group Z¥ is not a free
abelian group on X under the map x — J,, since it is not generated by the J,.
Show that ZX is in fact not a free abelian group on any set of generators. You
may assume X countable if you wish.

(For further results on ZX and its subgroups when X is countably infinite,
see Specker [130]. Among other things, it is shown there that the uncount-

able group ZX has only countably many homomorphisms into Z, though its
countable subgroup F' clearly has uncountably many! It is also shown that the
subgroup of bounded functions on X is free abelian, on uncountably many gen-
erators. This fact was generalized to not necessarily countable X by Nobeling
[117]. For a simpler proof of this result, using ring theory, see [42, §1].)

The concept of the abelian group presented by a system of generators and
relations may be formulated exactly like that of a group presented by generators
and relations. It may also be constructed analogously: as the quotient of the free
abelian group on the given generators by the subgroup generated by the relators
st~! (we don’t have to say “normal subgroup” because normality is automatic for
subgroups of abelian groups); or alternatively, as the group presented by the given
generators and relations, together with the additional relations saying that all the
generators commute with one another.

Suppose now that we start with an arbitrary group G, and impose relations
saying that for all z, y € |G|, x and y commute: zy = yz. That is, we form the
quotient of G by the normal subgroup generated by the elements (yx)~!(zy) =
x 'y lzy. As noted in the paragraph introducing Exercise 2.4:2, these elements
are called commutators, and often written

ey = [z, 9]

(Another common notation is (z, y), but we will not use this, to avoid confusion
with ordered pairs.) The normal subgroup that these generate is called the commu-
tator subgroup, or derived subgroup of G, written [G, G], and often abbreviated by
group theorists to G’. The quotient group, G*® = G/[G, G], is an abelian group

x’ly*
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with a homomorphism ¢ of the given group G into it which is universal among
homomorphisms of G into abelian groups A, the diagram for the universal prop-

erty being q

G Gab

Yo 3 f

A.

This group G® (or more precisely, the pair (G2, ¢), or any isomorphic pair)
is called the abelianization or commutator factor group of G.

Suppose now that we write down any system of generators and relations for a
group, and compare the group G and the abelian group H that these same gen-
erators and relations define. By the universal property of G, there will exist a
unique homomorphism r: G — H taking the generators of G to the correspond-
ing generators of H. It is easy to check that (H, r) has the universal property
characterizing the abelianization of G. So this gives another way of describing
abelianization. Note, as a consequence, that given an arbitrary system of gener-
ators and group-theoretic relations, the group these present will determine, up to
natural isomorphism, the abelian group that they present (but not vice versa).

Exercise 3.4:2. Find the structures of the abelianizations of the groups presented
in Exercises 3.3:1, 3.3:3, 3.3:4, 3.3:10, and 3.3:11(i). (This is easier than deter-
mining the structures of the groups themselves, hence I am giving as one exercise
the abelianized versions of those many earlier exercises.)

Exercise 3.4:3. Show that any group homomorphism f: G — H induces a ho-
momorphism of abelian groups f2: G®» — H?2P. State precisely the condition
relating f and f2P. Show that for a composite of group homomorphisms, one
has (fg)*® = f2P¢2®. Deduce that for any group G, there is a natural homo-
morphism of monoids, End(G) — End(G®"), and a natural homomorphism of
automorphism groups, Aut(G) — Aut(G?P).

(Here End(G) denotes the set of endomorphisms of G, regarded as a monoid
under composition, while Aut(G) denotes the group of automorphisms of G, i.e.,
the group of invertible elements of End(G).)

Exercise 3.4:4. For G as in Exercises 3.3:1 and 3.3:2, is the natural homomor-
phism Aut(G) — Aut(G®P) of the above exercise one-to-one?

Exercise 3.4:5. If H is a subgroup of G, what can be said about the relation
between H®" and G®"? Same question if H is a homomorphic image of G.

Exercise 3.4:6. Let K be a field, n a positive integer, and GL(n, K) the group
of invertible n X n matrices over K. Determine as much as you can about the
structure of GL(n, K)P.

Exercise 3.4:7. If G is a group, will there exist a universal homomorphism of G
into a solvable group, G — G*°V? What if G is assumed finite?
Does there exist a “free solvable group” on a set X, or some similar con-
struction?
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Exercise 3.4:8. Show that the free abelian group on n generators cannot be pre-
sented as a group by fewer than n generators and n(n — 1)/2 relations.

3.5. The Burnside problem

In 1902, W. Burnside [62] asked whether a finitely generated group, all of whose
elements have finite order, must be finite. This problem was hard to approach
because, with nothing assumed about the values of the finite orders of the elements,
one had no place to begin a calculation. So Burnside also posed this question under
the stronger hypothesis that there be a common finite bound on the orders of all
elements of G.

The original question with no bound on the orders was suddenly answered
negatively in 1964, with a counterexample arising from the Golod-Shafarevich con-
struction [81]; there is a short and fairly self-contained presentation of this material
in the last chapter of [29]. In the opposite direction, Burnside himself proved that
if G is a finitely generated group of matrices over a field, and all elements of G
have finite order, then G is finite [63]. On the other hand, his question is still open
for finitely presented groups [147].

Turning to the question for a general group G with a common bound on the
orders of its elements, note that if m is such a bound, then m! is a common
exponent for these elements; while if n is a common exponent, it is also a bound
on their orders. So “there is a common bound on the orders of all elements” is
equivalent to “all elements have a common exponent”. The latter condition is more
convenient to study, since the statement that x has exponent n has the form of
an equation. So for any positive integer n, one defines the Burnside problem for
exponent n to be the question of whether every finitely generated group satisfying
the identity
(3.5.1) Vz) 2" =e
is finite.

For n = 1, the answer is trivially yes, for n = 2 the same result is an easy
exercise, for n = 3 it is not very hard to show, and it has also been proved for
n =4 and n = 6. On the other hand, it has been shown in recent decades that
the answer is negative for all odd n > 665 [35], and for all n > 8000 [108] (cf.
[91]). This leaves a large but finite set of cases still open: all odd values from 5
to 663, and all even values from 8 to 8000. We won’t go into these hard group-
theoretic problems here. But the concept of universal constructions does allow us to
understand the nature of the question better. Call a group G an n-Burnside group
if it satisfies (3.5.1). One may define the free n-Burnside group on any set X by
the obvious universal property, and it will exist for the usual reasons. In particular,
it can be presented, as a group, by the generating set X, and the infinite family of
relations equating the n-th powers of all terms in the generators to e. I leave it to
you to think through the following relationships:

Exercise 3.5:1. Let n and r be positive integers.
(i) What implications can you prove among the following statements?
(a) Every n-Burnside group which can be generated by r elements is finite.
(b) The free n-Burnside group on r generators is finite.
(¢) The group {x1, ...,z |2} = - =z =¢) is finite.
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(d) There exists a finite r-generator group having a finite presentation (a
presentation by those r generators and finitely many relations) in which all
relators are n-th powers, (x1, ..., z, | w} =--- = w? =e) (where each wj
is a term in x1, ..., x,.. Cf. Exercises 3.3:7 and 3.3:8.)
(e) There exists an integer N such that all n-Burnside groups generated by r
elements have order < N.
(f) There exists an integer N such that all finite n-Burnside groups generated
by r elements have order < N (“the restricted Burnside problem”).
(ii) What implications can you prove among cases of statement (a) above in-
volving the same value of n but different values of r 7 involving the same value
of r but different values of n?

(iii) I described [108] above as proving a negative answer to the Burnside prob-
lem for all m > 8000. Actually, the result proved there only applies to those
n > 8000 which are multiples of 16. Show, however, that this result, and the
corresponding result for odd n > 665 proved in [35], together imply the asserted
result for all n > 8000.

Note that if for a given n and r we could find a normal form for the free
n-Burnside group on r generators, we would know whether (b) was true! But
except when n or r is very small, such normal forms are not known. For further
discussion of these questions, see [36], [28, Chapter 18]. Recent results, including
a solution to the restricted Burnside problem ((f) above), some negative results on
the word problem for free Burnside groups, and the result that for p > 107> there
exist infinite groups of exponent p all of whose proper subgroups are cyclic (“Tarski
Monsters”), can be found in [72], [98], [114], [118], [137], [138], and references
given in those works.

A group G is called residually finite if for any two elements x # y € |G|, there
exists a homomorphism f of G into a finite group such that f(z) # f(y).

Exercise 3.5:2. Investigate implications involving conditions (a)-(f) of the preced-
ing exercise, together with
(g) The free n-Burnside group on r generators is residually finite.

Exercise 3.5:3. (i) Restate Exercise 2.4:3 as a question about residual finiteness
(showing, of course, that your restatement is equivalent to the original question).

(ii) If G is a group, does there exist a universal homomorphism G — G*f, of
G into a residually finite group?

3.6. Products and coproducts

Let G and H be groups. Consider the following two situations:
(a) a group P given with a homomorphism pg: P — G and a homomorphism
py: P — H, and
(b) a group @ given with a homomorphism ¢g: G — @, and a homomorphism
qu: H — Q.
(Diagrams below.)

Note that if in situation (a) we choose a homomorphism a of any other group
P’ into P, then P’ also acquires homomorphisms into G and H, namely pga
and py a. Similarly, if in situation (b) we choose any homomorphism b of @ into
a group ', then @’ acquires homomorphisms bgg and bqy of G and H into
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it:

G G q
PH\~H H%’

So we may ask whether there exists a universal example of a P with maps into
G and H, that is, a 3-tuple (P, pg, pr) such that for any group P’, every pair
of maps pl,: P’ — G and ply: P’ — H arises by composition of pg and py with
a unique homomorphism a: P’ — P; and, dually, whether there exists a universal
example of a group @ with maps of G and H into it.

In both cases, the answer is yes. The universal P is simply the direct product
group G x H, with its projection maps pg and ppy onto the two factors; the
universal property is easy to verify. The universal ), on the other hand, can be
constructed by generators and relations. It has to have for each g € |G| an element
gc(g) — let us abbreviate this to § — and for each h € |H| an element qg(h) —

b
Q—«

call this h. So let us take for generators a set of symbols
(3.6.1) {9, hlg€lGl|, helH[}

The relations these must satisfy are those saying that ¢z and ¢y are homomor-
phisms:

(3.6.2) 99 = 99 (9.9 €|Gl), hW = hi' (h, b’ € |H]).

It is immediate that the group presented by generators (3.6.1) and relations (3.6.2)
has the desired universal mapping property. (We might have supplemented (3.6.2)

with the further relations eg =e, eg =e, gl =g !, h-1 = h~!. But these are
implied by the relations listed, since, as is well known, any set map between groups
which preserves products also preserves neutral elements and inverses.) More gen-
erally, if G is a group which can be presented as (X | R), and if, similarly,
H = (Y | S), then we may take for generators of @ a disjoint union X UY, and
for relations the union of R and S. For instance, if

G=2s={r|2®>=¢) and H = Zy = (x| 2? = e),
then @ may be presented as
(e, 2’ |23 =€, 2'2 = e),

with g¢ and gy determined by the conditions = — x and z — z’, respectively.
You should be able to verify the universal property of ) from this presentation.
(If you are not familiar with the concept of a “disjoint union” X UY of two
sets X and Y, I hope that the above context suggests the meaning. Explicitly, it
means the union of a bijective copy of X and a bijective copy of Y, chosen to be
disjoint. So, if X ={a, b, ¢}, Y ={b, ¢, d, e} where a, b, ¢, d, e are all distinct,
then their ordinary set-theoretic union is the 5-element set X UY = {a, b, ¢, d, e},
but an example of a “disjoint union” would be any set of the form X UY =
{a, b, ¢, V', ', d, e} where a,b, c, V', ,d, e are distinct, given with the obvious
maps taking X to the 3-element subset {a, b, ¢} of this set and Y to the disjoint
4-element subset {V', ¢, d, e}. Though there is not a unique way of choosing a
disjoint union of two sets, the construction is unique in the ways we care about.
E.g., note that in the above example, any disjoint union of X and Y will have
|X|4+]Y| = 7 elements. Hence one often speaks of “the” disjoint union. We will see,
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a few sections from now, that disjoint union of sets is itself a universal construction
of set theory.)

To see for general G and H what the group determined by the above universal
property “looks like”, let us again think about an arbitrary group ) with homo-
morphisms of G and H into it, abbreviated g — g and h +— h. The elements of
(@@ which we can name in this situation are, of course, the products

(3.6.3) aflall . 2f' with z;€{g, h|gel|G|, he|H|}, and n>0.

n—1
(Notational remark: In §2.4, T generally kept n > 1, and introduced “e¢” as a
separate kind of expression. Here I shall adopt the convenient convention that the
“ )

product of the empty (length 0) sequence of factors is e, so that the case “e” may
be absorbed in the general case.)

Now for any g € |G| or h € |H| we have noted that §—* =g~ and h~! = h—1
in @; hence the inverse of any member of the generating set {7, h | g € |G|, h e
|H|} is another member of that set. So we may simplify any product (3.6.3) to one
in which all exponents are +1, and so write it without showing these exponents.
We also know that € = € = e, so wherever instances of € or e occur in such a
product, we may drop them. Finally, if two factors belonging to {g | g € |G|}
occur in immediate succession, the relations (3.6.2) allow us to replace these by
a single such factor, and, likewise, we may do the same if there are two adjacent
factors from {h | h € |H|}. So the elements of @ that we can construct can all be
reduced to the form

Ty ..

where n >0, 2, €{g|ge|G —{e}}U{h|he|H|-{e}}, and no
two successive x’s come from the same set, {g | g € |G| — {e}} or
{h|helH|—{e}}.
We can express the product of two elements (3.6.4) as another such element, by
putting the sequences of factors together, and reducing the resulting expression to
the above form as described above; likewise it is clear how to find expressions of
that form for inverses of elements (3.6.4), and for the element e. In any particular
group @ with homomorphisms of G and H into it, there may be other elements
than those expressed by (3.6.4), and there may be some equalities among such
products. But as far as we can see, there don’t seem to be any cases left of two
expressions (3.6.4) that must represent the same element in every such group Q.
If in fact there are none, then, as in §2.4, the expressions (3.6.4) will correspond to
the distinct elements of the universal (Q we are trying to describe, and thus will
give a normal form for the elements of this group.

To show that there are no undiscovered necessary equalities, we can use the
same stratagem as in §2.4 — it was for this situation that van der Waerden devised
it!

. Ty

(3.6.4)

PROPOSITION 3.6.5 (van der Waerden [139]). Let G, H be groups, and Q the
group with a universal pair of homomorphisms G — Q, H — Q, written g — g,
h— h. Then every element of Q can be written uniquely in the form (3.6.4).

PROOF. Let us, as before, introduce an additional symbol a, and now denote
by A the set of all symbols

Zn ... 21 a, where x1, ..., z, are asin (3.6.4) (the n = 0 case being

(3.6.6) interpreted as the bare symbol a).
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We would like to describe actions of G and H on this set. It is clear what
these actions should be, but an explicit description is a bit messy, because of the
need to state separately the cases where the element of A on which we are acting
does or does not begin with an element of the group we are acting by, and if it
does, the cases where this beginning element is or is not the inverse of the element
by which we are acting. This messiness in the definition makes still more messy the
verification that the “actions” give homomorphisms of G and of H into the group
of permutations of A.

We shall get around these annoyances (which are in any case minor compared
with the difficulties of doing things without van der Waerden’s method) by another
trick. Let us describe a set Ag which is in bijective correspondence with A: For
those elements b € A which already begin with a symbol § (¢ € |G| — {e}),
we let Ag contain the same element b. For elements b which do not, let the
corresponding element of Ag be the expression €b. Thus every element of Ag
begins with a symbol § (g € |G]), and we can now describe the action of ¢’ € |G|
on Ag as simply taking an element gc to g’ge. It is trivial to verify that this is
a homomorphism of G into the group of permutations of Ag. This action on Ag
now induces, in an obvious way, an action on the bijectively related set A.

Likewise, an action of H on A can be defined, via an action on the analogously
constructed set Ag.

Thus we have homomorphisms of both G and H into the permutation group
of A; this is equivalent to giving a homomorphism of the group @) we are interested
in into this group of permutations. Further, given any element (3.6.4) of @, it is
easy to see by induction on n that its image in the group of permutations of A
sends the “starting point” element a to precisely z, ... x1a. Hence two distinct
expressions (3.6.4) correspond to elements of @ having distinct actions on a, hence
these elements of @) are themselves distinct. So not only can every element of @) be
written in the form (3.6.4), but distinct expressions (3.6.4) correspond to distinct
elements of @), proving the proposition. ([l

For a concrete example, again let G = Z3 = (x| 2®> =€) and let H = Z, =
(y | y> = e). Then A will consist of strings such as a, ya, zyr?a, etc.. (We

can drop “~7” and “7 7 here because |G| — {e} and |H|— {e} use no symbols in
xb
common.) The element = of G = Z3 will act on this set by 3-cycles, b . l ,

22 b
one for each string b not beginning with x, while the element y of H = Z5 acts
by transposing pairs of symbols b =— y b, where b does not begin with y. If we
want to see that say, yxyx? and 22yzy have distinct actions on A, we simply
note that the first sends the symbol a to the symbol yxyx2a, while the second
takes it to 22y xya. A picture of the @Q-set A, for this G and H, looks like some
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kind of seaweed:

your
are here

(G acts by rotating
the triangles, H by
transposing pairs of

points marked ———=.)

We recall that the universal group “P” considered at the beginning of this
section turned out to be the direct product of G and H. Since @ is characterized
by a dual universal property, we shall call it the coproduct of G and H.

Because of the similarity of the normal form of this construction to that of
free groups, group-theorists have long called it the free product of the given groups.
However, the constructions for sets, commutative rings, abelian groups, topological
spaces, etc. characterized by this same universal property show a great diversity
of forms, and have been known under different names in the respective disciplines.
The use of the term “coproduct”, introduced by category theory (Chapter 6 below),
unifies the terminology, and we shall follow it. On the other hand, the “P” con-
structions look very similar in all these cases, and have generally all had the name
“direct product”, which is retained (shortened to “product”) by category theory.

In both our product and coproduct constructions, the pair of groups G and
H may be replaced by an arbitrary family (G;);e;. The universal example of a
group P given with an I-tuple of maps p;: P — G; is again the classical direct
product T[T, G; with its I-tuple of projection maps. The coproduct @ = I, G;,
generated by the images of a universal family of maps G; — Q (i € I) can be
constructed, as above, using strings of nonidentity elements from a disjoint union
of the underlying sets of these groups, such that two factors from the same group
G; never occur consecutively. The coproduct symbol ]| is, of course, the direct
product symbol TT turned upside-down.

Exercise 3.6:1. If X isa set, then a coproduct of copies of the infinite cyclic group
Z, indexed by X, Il,Z, will be a free group on X. Show this by universal
properties, and describe the correspondence of normal forms. Can you find any
other families of groups whose coproduct is a free group?

Exercise 3.6:2. Let us here (following group-theorists’ notation) write coproducts
of finite families of groups as Q = Gx H, Q = F x G x H, etc.. Prove that for
any three groups F, G and H, one has (FxG)xH 2 FxG+H =2 Fx(GxH),
using (a) universal properties, and (b) normal forms.

Exercise 3.6:3. For any two groups G and H, show how to define natural iso-
morphisms ig, g : G x H=H x G, and jo, g : G* H = H*G. What form do
these isomorphisms take when G = H ? (Describe them on elements.)
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It is sometimes said that “We may identify G x H with H x G, and G*x H
with H * G, by treating the isomorphisms ig, g and jg, g as the identity, and
identifying the corresponding group elements.” Is this reasonable when G = H?

Exercise 3.6:4. Show that in a coproduct group G H, the only elements of finite
order are the conjugates of the images of elements of finite order of G and H.
(First step: Find how to determine, from the normal form of an element of G H,
whether it is a conjugate of an element of G or H.)

Can you similarly describe all finite subgroups of G« H?

There is a fact about the direct product group which one would not at first
expect from its universal property: It also has two natural maps into it: fg : G —
GxH and fg: H — GxH, givenby g— (g, ) and h — (e, h). (Note that there
are no analogous maps into a direct product of sets.) To examine this phenomenon,
we recall that the universal property of G x H says that to map a group A into
G x H is equivalent to giving a map A — G and a map A — H. Looking at fg,
we see that the two maps it corresponds to are the identity map idg: G — G,
defined by idg(g) = g, and the trivial map e: G — H, defined by e(g) = e. The
map fg is characterized similarly, with the roles of G and H reversed.

The group G x H has, in fact, a second universal property, in terms of this
pair of maps. The 3-tuple (G x H, fg, fu) is universal among 3-tuples (K, a, b)
such that K is a group, a: G — K and b: H — K are homomorphisms, and the
images in K of these homomorphisms centralize one another:

(Vg € |G|, he |H|) a(g)b(h) = b(h)a(g),

equivalently:

[a(G), b(H)] = {e}.
(The notation [—,—] for commutators of elements and subgroups of a group was
defined in the paragraph preceding Exercise 2.4:2.)

If P=TI,G; is a direct product of arbitrarily many groups, one similarly has
natural maps f;: G; — P, but if the index set [ is infinite, the images of the
fi will not in general generate P, and it follows that P cannot have the same
universal property. But one finds that the subgroup P, of P generated by the
images f;(G;) (which consists of those elements of P having only finitely many
coordinates # e) is again a universal group with maps of the G, into it having
images that centralize one another.

Exercise 3.6:5. (i) Prove the above new universal property of G x H.
(ii) Describe the map
m:GxH — G x H

which the universal property of G x H associates to the above pair of maps fg,
fr, and deduce that this map m is surjective, and that its kernel is the normal

subgroup of G * H generated by the commutators [g, h] (g € |G|, h € |H|).

(iii) Give versions of the above results for products and coproducts of possibly
infinite families (G})ier.

One may wonder why commutativity suddenly came up like this, since the
original universal property by which we characterized G x H had nothing to do
with it. The following observation throws a little light on this. The set of relations
that will be satisfied in G x H by the images of elements of G and H under the
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two maps fo and fg defined above will be the intersection of the sets of relations
satisfied by their images in K under a: G — K, b: H — K, in the two cases

(3.6.7) K=G, a=idg, b=c¢,

(368) K =H; a=e b=idy.

(Why?)

And what are such relations? Clearly a(g)b(h) = b(h)a(g) holds in each case.
The above second universal property of G x H is equivalent to saying that no
relations hold in both cases except these relations and their consequences.

A coproduct group G x H similarly has natural maps ug: G * H — G and
ug : Gx H — H, constructed from the identity maps of G and H and the trivial
maps between them; but ug and uy have no unexpected properties that I know of.

Exercise 3.6:6. For every group G, construct a map G — G x G and a map
G * G — G using universal properties, and the identity map of G, but not using
the trivial map of G. Describe how these maps behave on elements.

Exercise 3.6:7. Suppose (G;)icr is a family of groups, and we wish to consider
groups G given with homomorphisms G; — G such that the images of certain
pairs G;, G; commute, while no condition is imposed on the remaining pairs.
To formalize this, let J C I x I be a symmetric antireflexive relation on our
index set I (antireflexive means (Vi € I) (4, i) ¢ J); and let H be the universal
group with homomorphisms r;: G; — H (i € I) such that for (i, i) € J,
[ri(G:), rir (Gir)] = {e}.

Study the structure of this H, and obtain a normal form if possible. You
may assume the index set [ finite if this helps.

3.7. Products and coproducts of abelian groups

Let A and B be abelian groups. Following the model of the preceding section,
we may look for abelian groups P and @ having universal pairs of maps:

A q
\A;Q
B aB

Again abelian groups with both these properties exist — but this time, they
turn out to be the same group, namely A x B! (The reader should verify both
universal properties.) To look at this another way, if we construct abelian groups
P and () with the universal properties of the direct product and coproduct of A
and B respectively, and then form the homomorphism m: P — @ analogous to
that of Exercise 3.6:5, this turns out to be an isomorphism.

Note that though A x B is the universal abelian group with homomorphisms of
A and B into it, this is not the same as the universal group with homomorphisms
of A and B into it — that group, A B, constructed in the preceding section, will
generally not be abelian when A and B are. Thus, the coproduct of two abelian
groups A and B as abelian groups is generally not the same as their coproduct as
groups. Rather, we can see by comparing universal properties that the coproduct as
abelian groups is the abelianization of the coproduct as groups: Ax B = (A B)P.

Hence, in using the coproduct symbol “]|”, we have to specify what kind
of coproduct we are talking about, J_I_gpAl- or Il gpAi, unless this is clear from

PA A
P/
pB\-B
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context. On the other hand, a direct product of abelian groups as abelian groups is
the same as their direct product as groups.

For a not necessarily finite family (A4;);c; of abelian groups, the coproduct
still embeds in the direct product under the map m. It can in fact be described
as the subgroup of that direct product group consisting of those elements almost
all of whose coordinates are e. When abelian groups are written additively, this
coproduct is generally called the “direct sum” of the groups, and denoted @; A;.
In the case of two groups, this is written A @ B, which thus has the same meaning
as A x B.

Notes on confused terminology: Some people extend the term “direct sum” to
mean “coproduct” in all contexts — groups, rings, etc.. Other writers, because of
the form that “direct sum” has for finite families of abelian groups, use the phrase
“direct sum” as a synonym of “direct product”, even in the case of infinite families
of groups. The coproduct of an infinite family of abelian groups is sometimes called
their “restricted direct product” or “restricted direct sum”, the direct product
then being called the “complete direct product” or “complete direct sum”. In these
notes, we shall stick with the terms “product” and “coproduct”, as defined above
(except that we shall often expand “product” to “direct product”, to avoid possible
confusion with meanings such as a product of elements under a multiplication).

What is special about abelian groups, that makes finite products and coprod-
ucts come out the same; and why only finite products and coproducts? One
may consider the key property to be the fact that homomorphisms of abelian
groups can be added; i.e., that given two homomorphisms f, g: A — B, the map
f+g: A— B defined by (f+g)(a) = f(a)+g(a) is again a homomorphism. (The
corresponding statement is not true for nonabelian groups.) Temporarily writing
*abgp for the coproduct of two abelian groups, one finds, in fact, that the map
m: G *abep H — G x H referred to in the second paragraph of this section has an
inverse, given by the sum

gapc +qupa: G X H = G*apep H,

hence it is an isomorphism, allowing us to identify the above two groups. For
coproducts of noncommutative groups, the corresponding map is not a group ho-
momorphism, while for coproducts of infinite families of abelian groups, no analog
of the above map can be constructed because one cannot in general make sense of
an infinite sum of homomorphisms. So it is only when the coproduct is taken in the
class of abelian groups, and the given family is finite, that we get this identification.
Part (ii) of the next exercise concerns a subtle but interesting distinction.

Exercise 3.7:1. (i) Show that for any groups G and H one has (G * H)> =
(G x H)* = G*> x H2b,
(ii) Given an infinite family of groups (G;), is it similarly true that (J_I_ngi)
U, (G2°) (e, DGE), and that (TTG,)* = TT(G5P)? If one of these iso-

morphisms is not always true, can you establish any general results on when it
holds, and when it fails?

ab ~

3.8. Right and left universal properties

The universal property of direct products differs in a basic way from the other
universal properties we have looked at so far. In all other cases, we constructed
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an object (e.g., a group) F with specified “additional structure” or conditions
(e.g., a map of a given set X into it) such that any instance of a structure of
that sort on any object A could be obtained by a unique homomorphism from the
universal object F' to the object A. A direct product P = G x H is an object
with the opposite type of universal property: all groups with the specified additional
structure (a map into G, and a map into H) are obtained by mapping arbitrary
groups A into the universal example P. Thus, while the free group on a set X,
the abelianization of a group G, the coproduct of two groups G and H, etc., can
be thought of as “first” or diagrammatically “leftmost” groups with given kinds
of structure, the direct product G x H is the “last” or “rightmost” group with
maps into G and H. We shall refer to these two types of conditions as “left” and
“right” universal properties respectively. (This terminology is based on thinking of
arrows as going from left to right, though it happens that in most of the diagrams
in sections before 3.6, the arrow from the left universal object to the general object
was drawn downward.)

The philosophy of how to construct objects with properties of either kind is in
broad outline the same: Figure out as much information as possible about an arbi-
trary object (not assumed universal) with the given sort of “additional structure”,
and see whether that information can itself be considered as a description of an
object. If it can, this object will in general turn out to be universal for the given
structure! In the case of “left universal” constructions (free groups, coproducts,
etc.), this “information” means answers to the question, “What elements do we
know exist, and what equalities must hold among them?” (cf. remark 2.2.13). In
the right universal case, on the other hand, the corresponding question is, “Given an
element of our object, what data can one describe about it in terms of the additional
structure?”

Let us illustrate this with the case of the direct product of groups. Given groups
G and H, consider any group P with specified homomorphisms pg, py into G
and H respectively. What data can we find about an element z of P using these
maps? Obviously, we can get from z a pair of elements (g, h) € |G| x |H|, namely

g =rpc(@) €|G|, h = pn(z)€|H]|

Can we get any more data? We can also obtain elements pg(x?), pg(x~!),
etc.; but these can be found by group operations from the elements g = pg(x) and
h = py(z), so they give no new information about z. All right then, let us agree
to classify elements of P according to the pairs (g, h) € |G| x |H| which they
determine.

Now suppose x € |P| gives the pair (g, h), and y gives the pair (¢’, #’). Can
we find from these the pair given by zy € |P|? the pair given by 271 ? Clearly so:
these will be (gg’, hh'), and (g1, h™!) respectively. And we can likewise write
down the pair that e € |P| yields: (eq, en).

Very well, let us take the “data” by which we have classified elements of our
arbitrary P, namely the set of pairs (g, h) (g € |G|, h € |H|) — together with
the law of composition we have found for these pairs, namely (g, h) - (¢’, h') =
(gg’, hR'), the inverse operation (g, h) — (g%, h™1), and the neutral element
pair (eq, ey) — and ask whether this data forms a group. It does! And, because
of the way this group was constructed, it will have homomorphisms into G and
H, and we find it is universal for this property. It is, of course, the product group
G x H.
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Here is a pair of examples we have not yet discussed. Suppose we are given a

homomorphism of groups
f: G — H.

Now consider
(a) homomorphisms a: A — G, from arbitrary groups A into G, whose compos-
ites with f are the trivial homomorphism, i.e., which satisfy fa =e; and
(b) homomorphisms b: H — B, from H into arbitrary groups B, whose compos-
ites with f are the trivial homomorphism, i.e., which satisfy bf = e.

Given a homomorphism of the first sort, one can get further homomorphisms
with the same property by composing with homomorphisms A’ — A, for arbitrary
groups A’; so one may look for a pair (A, a) with the right universal property that
every such pair (A’, a’) arises from (A, a) via a unique homomorphism A’ — A.
For (b), one would want a corresponding left universal B.

To try to find the right-universal A, we ask: Given an arbitrary homomorphism
A — G with fa =e asin (a), what data can we attach to any element x € |A|?
Its image g = a(z), certainly. This must be an element which f carries to the
neutral element, since fa = e; thus the set of possibilities is {g € |G| | f(g) = e}.
We find that this set forms a group (with a map into G, namely the inclusion)
having the desired universal property. This is the kernel of f.

We get the left universal example of (b) by familiar methods: Given arbitrary
b: H — B with bf = e as in (b), B must contain an image h = b(h) of each
element h € |H|. The fact that bf = e tells us that the images in B of all elements
of f(G) must be the neutral element, and we quickly discover that the universal
example is the quotient group B = H/N, where N is the normal subgroup of H
generated by f(G). This group H/N is called the cokernel of the map f.

Right universal constructions are not as conspicuous in algebra as left universal
constructions. When they occur, they are often fairly elementary and familiar con-
structions (e.g., the direct product of two groups; the kernel of a homomorphism).
However, we shall see less trivial cases in later chapters; some of the exercises below
also give interesting examples.

Exercise 3.8:1. Let G be a group, and X a set. Show that there exist
(i) a G-set S with a universal map f:|S| — X, and
(ii) a G-set T with a universal map g: X — |T,

and describe these G-sets. Begin by stating the universal properties explicitly.

(Hint to (i): Given any G-set S with amap f:|S| — X, an element s € |S|
will determine not only an element x = f(s) € X, but for every g € |G| an
element x, = f(gs) € X. From the family of elements, (z,),¢|c determined by
an s € S, can one describe the family determined by hs for any h € |G| ?)

One can carry the idea of the above exercise further in several directions:
(a) Given a group homomorphism ¢: G; — Ga, note that from any Ga-set S one
can get a G-set Sy, by taking the same underlying set, and defining for g € |G|,
s € |9
gs = ¢(g)s.

Now given a G'1-set X, one can look for a Ga-set S with a universal homomorphism
of Gy-sets S, — X, or for a Ga-set T' with a universal homomorphism of G:-sets
X — T,. The above exercise corresponds to the cases where G; = {e}, since an
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{e}-set is essentially a set with no additional structure. You should verify that for
G = {e}, the universal questions just mentioned reduce to those of that exercise.

(b) Instead of looking at sets S on which a group G acts by permutations, one
can consider abelian groups or vector spaces on which G acts by automorphisms.
Such structures are called linear representations of G. In this case, the univer-
sal constructions analogous to those of (a) above are still possible, and they give
two concepts of “induced representations” of a group, important in modern group
theory.

(¢) The preceding point introduced extra structure on the sets on which our groups
act. One can also consider the situation where one’s groups G have additional
structure, say topological or measure-theoretic, and restrict attention to continuous,
measurable, etc., G-actions on appropriately structured spaces S. The versions of
“induced representation” that one then obtains are at the heart of the modern
representation theory of topological groups.

Exercise 3.8:2. Let G be a group. As discussed in the last two sentences of
point (a) above, the ideas described there, applied to the unique homomorphism
{e} — G, lead to the two universal constructions of Exercise 3.8:1. Apply the
same ideas to the unique homomorphism G — {e} (again combining them with
the observation that an {e}-set is essentially the same as a set) and describe the
resulting constructions explicitly.

Exercise 3.8:3. Formulate right universal properties analogous to the left univer-
sal property defining free groups and the abelianization of a group, and show
that no constructions exist having these properties. What goes wrong when we
attempt to apply the general approach of this section?

Exercise 3.8:4. If X is a set and S a subset of X, then given any set map
f:Y — X, one gets a subset of Y, T = f~1(S). Does there exist a universal
pair (X, S), such that for any set Y, every subset T C Y is induced in this
way via a unique set map f:Y — X7

Exercise 3.8:5. Let A, B be fixed sets. Suppose X is another set, and f: A x
X — B is a set map. Then for any set Y, and map m: Y — X, a set map
AXY — B isinduced. (How?) Does there exist, for each A and B, a universal
set X and map f as above, i.e., an X and an f such that for any Y, all maps
A XY — B are induced by unique maps Y — X ?

Exercise 3.8:6. Let R be aring with 1. (Commutative if you like. If you consider
general R, then for “module” understand “left module” below.) Before attempt-
ing each of the following questions, formulate precisely the universal property
desired.

(i) Given a set X, does there exist an R-module M with a universal set map
M| — X7

(ii) If M is an R-module, let M,qq denote the underlying additive group of M.
Given an abelian group A, does there exist an R-module M with a universal
homomorphism of abelian groups Maqq — A7

(iii) and (iv): What about the left universal analogs of the above right universal
questions?
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3.9. Tensor products

Let A, B and C be abelian groups, which we shall write additively. Then by
a bilinear map B: (A, B) — C' we shall mean a set map (: |A4| x |B| — |C| such
that
(i) for each a € |A|, the map B(a,—): |B| — |C| (that is, the map taking each
element b € |B| to f(a,b) € |C]) is a linear map (homomorphism of abelian
groups) from B to C, and
(ii) for each b € |B|, the map B(—, b): |A| — |C| is a linear map from A to C.

This is usually called a bilinear map “from A x B to C.” (I usually call it
that myself.) However, that terminology misleads some students into thinking that
it has something to do with the group A x B. In fact, although the definition
of bilinear map involves the group structures of A and B, and involves the set
|A| x |B|, it has nothing to do with the structure of direct product group that one
can put on this set. This is illustrated by:

Exercise 3.9:1. Show that for any abelian groups A, B, C, the only map |A| X
|B| — |C| which is both a linear map A x B — C, and a bilinear map (A4, B) —
C' is the zero map.

As examples to keep in mind, take any ring R = (|R|, +, -, —, 0, 1), and let
R,4a denote the additive group (|R|, +, —, 0). Then the maps (z, y) — z+y and
(z, y) = = —y are group homomorphisms Radq X Radd — Radd, but not bilinear
maps; while the multiplication map (z, y) — z-y is a bilinear map (Radd, Radd) —
R.44, but not a group homomorphism R,qq X Raqd — Radd-

I am speaking about abelian groups to keep the widest possible audience. How-
ever, abelian groups can be regarded as Z-modules, and everything I have said and
will say about bilinear maps of abelian groups applies, more generally, to bilinear
maps of modules over an arbitrary commutative ring, and in particular, of vector
spaces over a field, with the adjustment that “linear map” in (i) and (ii) above
should be understood to mean module homomorphism. (There are also extensions
of these concepts to left modules, right modules, and bimodules over noncommuta-
tive rings, which we will look at with the help of a more sophisticated perspective
in §9.8; but we won’t worry about these till then.)

Given two abelian groups A and B, let us construct an abelian group A ® B
(called the tensor product of A and B) as follows: We present it using a set
of generators which we write a ® b, one for each a € |A|, b € |B], and defining
relations which are precisely the conditions required to make the map (a, b) — a®b
bilinear; namely

(a+d)®b = a®b+d @b,

a®(b+0b) = ab+a®.
(If we are working with R-modules, we also need the R-module relations

(ra)@b = r(a®b) = a®(rbd) (a €|4],be |B|, r€|R|).

To indicate that one is referring to the tensor product as R-modules rather than
the tensor product as abelian groups, one often writes this A ®g B.)

(a, ' € |A], b, ¥ € |B|).
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By construction, A ® B will be an abelian group with a bilinear map
®: (A, B) = A® B; and the universal property arising from its presentation trans-
lates to say that the map ® will be universal among bilinear maps on (4, B).

,b)—a®b
(AB)(a)—a,A@B
VA ... J1f
C.

We can get a simpler presentation of this group if we are given presentations of
A and B. To describe this, let us write our presentation of A as a representation
A= F(X)/{S), where F(X) is the free abelian group on the set X of generators,
and {S) is the subgroup of F(X) generated by the family S of relators (elements
that are required to go to 0). If A is so presented, and likewise B is written as
F(Y)/{T, then it is not hard to show (and you may do so as the next exercise)
that

(3.9.1) A®B =~ F(X)@F(Y)/(S®Y UX & T),

where S ®Y means {s®@y | s € S,y € Y} C |[F(X)® F(Y)|, and X ® T
is defined analogously. One finds that F(X) ® F(Y) is a free abelian group on
its subset X ® Y (more precisely: it is a free abelian group on X x Y via the
mapping (x, y) — u(x)®v(y), where u: X — |F(X)| and v: Y — |F(Y)]| are the
universal maps associated with the free groups F(X) and F(Y)). Hence (3.9.1) is
equivalent to a presentation of A ® B by the generating set X x Y and a certain
set of relations.

In the following exercises, unless the contrary is stated, you can, if you wish,
substitute “R-module” for “abelian group”, and prove the results for this more
general case.

Exercise 3.9:2. Prove (3.9.1), and the assertion that F(X)® F(Y) is free abelian
on X x Y. Can the “denominator” of (3.9.1) be replaced simply by (S ®T)?

Exercise 3.9:3. (i) Given abelian groups A and C, is there a universal pair
(B, B), of an abelian group B and a bilinear map S8: (A, B) — C?
(ii) Given an abelian group C, is there a universal 3-tuple (A4, B, ), such that
A and B are abelian groups and ( a bilinear map (A, B) — C'?
Before answering each part, say what the universal property would be and
whether it would be a right or left universal property. Try the approach suggested
in the preceding section for finding such objects.

Why have we defined bilinear maps only for abelian groups? This is answered
by
Exercise 3.9:4. Let F, G and H be not necessarily abelian groups (so this ex-
ercise has no generalization to R-modules), and suppose §: |F| X |G| — |H]| is a
map such that
(V f € |F|) themap g+ B(f, g) is a group homomorphism G — H,

(3.9.2) (Vg € |G|) themap f +— B(f, g) is a group homomorphism F — H.
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(i) Show that the subgroup Hy of H generated by the image of § is abelian.
(ii) Deduce that the map 8 has a natural factorization

!
FIxi6) — (et D ) — 1),

where [’ is bilinear. Thus, the study of maps satisfying (3.9.2) is reduced to the
study of bilinear maps of abelian groups. This makes it easy to do

(iii) For general groups F and G, deduce a description of the group H with a
universal map [ satisfying (3.9.2), in terms of tensor products of abelian groups.
(iv) Deduce from (iii) or show directly that if from the definition of a ring one
drops the assumption the addition is commutative, this will in fact follow from
the other assumptions. (Recall that we assume throughout that rings have 1.)

(Nonetheless, there are sometimes ways of generalizing a concept other than the
obvious ones, and some group-theorists have introduced a version of the concept
of bilinear map which does not collapse in the manner described above in the
noncommutative case; see [61] and papers referred to there.)

Although the image of every group homomorphism is a subgroup of the
codomain group, this is not true of images of bilinear maps:

Exercise 3.9:5. (i) Let U, V, W be finite-dimensional vector spaces over a
field, and consider composition of linear maps as a set map Hom(U, V) x
Hom(V, W) — Hom(U, W). Note that if we regard these hom-sets as additive
groups, this map is bilinear. Suppose V is one-dimensional; describe the range
of this composition map. Is it a subgroup of Hom(U, W)?

(ii) If A and B are abelian groups, does every element of A® B have the form
a®b for some a € |A|, be|B|? (Prove your answer, of course.)

Another important property of tensor products is noted in

Exercise 3.9:6. If A, B and C' are abelian groups, show that there is a natural
isomorphism Hom(A ® B, C) = Hom(A, Hom(B, C)).
State an analogous result holding for sets A, B, C' and set maps.

A class of tensor products that is easy to describe is noted in

Exercise 3.9:7. Show that for any abelian group A and any nonnegative integer
n, one has A® Z, = A/nA, where Z, denotes the cyclic group of order n.

An interesting problem is

Exercise 3.9:8. Investigate conditions on abelian groups (or R-modules) A and
B under which A® B = {0}.

Although I pointed out earlier that the condition that a set map 5: |A|x|B| —
|C| be a bilinear map (A4, B) — C' is not defined in terms of the group structure of
the direct product group, A x B, there are certain relations between these concepts:

Exercise 3.9:9. (i) Show that if A and B are abelian groups, and 8: (4, B) —
C' a bilinear map, then [, regarded as a map on underlying sets of groups,
|Ax B| — |C|, satisfies nontrivial identities. That is, show that for some m and
n one can find a derived m-ary operation s, and n derived m-ary operations
t1, ..., tn, for abelian groups, such that

s(B(t1(x1y ooy Tm))y ooy Bltn(T1, ooy Tm))) = 0
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holds for all zq, ..., x, € |A x B|, with the t’s evaluated using the group
structure of A x B; but such that the corresponding equation does not hold for
arbitrary maps S: |D| — |C| of underlying sets of abelian groups.

(ii) On the other hand, show that the bilinearity of 8 cannot be characterized in
terms of such identities; in other words, that there exist maps §: |A| x |B| — |C|
which are not bilinear maps (A, B) — C, but which satisfy all identities that
are satisfied by bilinear maps.

(iii) Can you find a list of identities which imply all identities satisfied by bilinear
maps [, in the sense described in (i)?

In subsequent sections, we shall occasionally refer again to bilinear maps. In
those situations, we may use either the notation “ (A, B) — C'” introduced here,
or the more standard notation “A x B — C”. (Of course, if all we have to say
is something like “this map |A| x |B| — |C| is bilinear”, we will not need either
notation.)

3.10. Monoids

So far, we have been moving within the realm of groups. It is time to broaden
our horizons. We begin with semigroups and monoids, objects which are very much
like groups in some ways, and quite different in others.

We recall that a semigroup means an ordered pair S = (|S], ) such that |S| is
aset and - amap |S|x|S| — |S| satisfying the associative identity, while a monoid
is a 3-tuple S = (|S], -, e) where |S| and - are as above, and the third component,
e, is a neutral element for the operation -. As with groups, the multiplication of
semigroups and monoids is most often written without the “-” when there is no
need to be explicit. A homomorphism of semigroups f: S — T means a set map
f:1S| = |T| which respects “-”; a homomorphism of monoids is required to respect
neutral elements as well: f(eg) = er.

(I have long considered the use of two unrelated terms, “semigroup” and
“monoid”, for these very closely related types of objects to be an unnecessary
proliferation of terminology. In most areas of mathematics, distinctions between
related concepts are made by modifying phrases, e.g., “abelian group” versus “not
necessarily abelian group”, “ring with 1” versus “ring without 17, “manifold with
boundary” versus “manifold without boundary”. The author of a paper consid-
ering one of these concepts will generally begin by setting conventions, such as
“In this note, unless the contrary is stated, rings will have unit element, and ring
homomorphisms will be understood to respect this element”. In papers of mine
where monoids came up, I followed the same principle for a long time, calling them
“semigroups with neutral element” or, after saying what this would mean, simply
“semigroups”. I did the same in these notes through 1995. However, it seems the
term “monoid” is here to stay, and I now follow standard usage, given above.)

The concept of monoid seems somewhat more basic than that of semigroup. If
X is any set, then the set of all maps X — X has a natural monoid structure,
with functional composition as the multiplication and the identity map as the neu-
tral element, and more generally, this is true of the set of endomorphisms of any
mathematical object. Sets whose natural structure is one of semigroup and not
of monoid tend to arise as subsidiary constructions, when one considers those ele-
ments of a naturally occurring monoid that satisfy some restriction which excludes
the neutral element; e.g., the set of maps X — X having finite range, or the set of
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even integers under multiplication. However, “semigroup” is the older of the two
terms, so the study of semigroups and monoids is called “semigroup theory”.

If (]S, -, e) is a monoid, one can, of course, look at the semigroup (|S], -),
while if (|S], -) is a semigroup, one can “adjoin a neutral element” and get a monoid
(IS| U {e}, -, €). Thus, most results on monoids yield results on semigroups, and
vice versa. To avoid repetitiveness, I will focus here on monoids, and mention
semigroups only when there is a contrast to be made. Most of the observations
we will make about monoids have obvious analogs for semigroups, the exceptions
being those relating to invertible elements.

The concept of a free monoid (F, u) on a set X is defined using the expected
universal property (diagram below).

X u

|F| F
& J1f

5] S

Free monoids on all sets exist, by the general arguments of §2.2 and §2.3. One
also has a normal form in the free monoid on X, analogous to that of §2.4 but
without any negative exponents. That is, every element can be written uniquely as
a product,

Tp ... T,

where z1, ..., x, € |X], and n > 0 (the product of 0 factors being understood
to mean the neutral element). Multiplication is performed by juxtaposing such
products. “Van der Waerden’s trick” is not needed to establish this normal form,
since there is no cancellation to complicate a direct verification of associativity.
From this normal form and that of free groups, we see that the free monoid on
X is in fact isomorphic to the submonoid generated by X within the free group
on X.

If X isaset,and R a set of pairs of monoid terms in the elements of X, there
will likewise exist a monoid determined by “generators X and relations R”,i.e., a
monoid S with a map u: X — |S]| such that for each of the pairs (s, t) € R, one
has s, =t, in S, and which is universal for this property. As in the group case,
this S can be obtained by a direct construction, using terms modulo identifications
deducible from the monoid laws and the set of relations R, or as a submonoid of a
large direct product, or by taking the free monoid F on the set X, and imposing
the given relations.

But how does one “impose relations” on a monoid? In a group, we noted that
any relation = =y was equivalent to xy~! = e, so to study relations satisfied in a
homomorphic image of a given group G, it sufficed to study the set of elements of
G that went to e; hence, the construction of imposing relations reduced to that of
dividing out by an appropriate normal subgroup. But for monoids, the question of
which elements fall together does not come down to that of which elements go to
e. For instance, let S be the free monoid on {z, y}, and map S homomorphically
to the free monoid on {z} by sending both z and y to z. Note that any product
of m xz’s and n y’s goes to ™1™ under this map. So though the only element
going to e is e itself, the homomorphism is far from one-to-one.

¢
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So to study relations satisfied in the image of a monoid homomorphism f: S —
T, one should look at the whole set

Ky = {(s,0) [ f(s) = f()} < [S]x]S].
We note the following properties of K :
(3.10.1) (Vse€S) (s, s) € Ky.

(3.10.2) (Vs,teS) (s,t)e Ky = (t, s) € Ky.
(3.10.3)  (Vs,t,ueS) (s,t)e Ky, (t,u) e Ky = (s, u) € Ky.

(3.104) (Vs,t, ¢, ¢ €8) (s,t)e Ky, (s',t)e Ky = (s¢,tt) € Ky.

Here (3.10.1)-(3.10.3) say that K is an equivalence relation, and (3.10.4) says that
it “respects” the monoid operation.

I claim, conversely, that if S is a monoid, and K C |S| x |S| is any sub-
set satisfying (3.10.1)-(3.10.4), then there exists a homomorphism f of S into
a monoid 7' such that K; = K. Indeed, since K is an equivalence relation on
|S], we may define |T| = |S|/K and let f: |S| — |T| be the map taking each
x € |S| to its equivalence class [z] € |T|. It is easy to see from (3.10.4) that the
formula [s] - [t] = [st] defines an operation on |T|, and to verify that this makes
T = (|T), -, [e]) a monoid such that f is a homomorphism, and K; = K.

Exercise 3.10:1. (i) Compare this construction with that of §2.2. Why did we
need the conditions (2.2.1)-(2.2.3) in that construction, but not the corresponding
conditions here?

(ii) Given two monoid homomorphisms f: S — T and f': S — T’, show that
there exists an isomorphism between their images making the diagram below
commute if and only if K¢ = K.

f1(s) ¢ 1

DEFINITION 3.10.5. For any monoid S, a binary relation K on |S| satisfying
(3.10.1)-(3.10.4) above is called a congruence on S. The equivalence class of an
element is called its congruence class under K; the monoid T constructed above
is called the quotient or factor monoid of S by K, written S/K.

Given a set R of pairs of elements of a monoid S, it is clear that one can
construct the least congruence K containing R by closing R under four operations
corresponding to conditions (3.10.1)-(3.10.4). The quotient S/K has the correct
universal property to be called the monoid obtained by imposing the relations R
on the monoid S. We shall sometimes denote this S/R, or S/(s=1t] (s, t) € R),
or, if the elements of R are listed as (s;, t;) (i € 1), as S/(s; =t; |i € I).

Returning to the point that led us to this discussion of congruences, by im-
posing relations on a free monoid, we can get a monoid presented by any family of
generators X and family of relations R. Like the corresponding construction for
groups, this is written (X | R). When there is danger of ambiguity, the group-
and monoid-constructions can be distinguished as (X | R)gp and <X | R)md.
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Exercise 3.10:2. Given congruences K and K’ on a monoid S, will there exist a
least congruence containing both K and K’? A greatest congruence contained
in both? Will set-theoretic union and intersection give such congruences? If not,
what useful descriptions can you find for them? Is there a least congruence on
S7? A greatest?

If K is a congruence on S, characterize congruences on T'= S/K in terms
of congruences on S.

Exercise 3.10:3. If S is a monoid and X a subset of |S| x |S|, will there be a
largest congruence contained in X ? If not, will this become true under addi-
tional assumptions, such as that X is an equivalence relation on |S|, or is the
underlying set of a submonoid of S x S7?

Some general observations: One can speak similarly of congruences on groups,
rings, lattices, etc.. They are defined in each case by conditions (3.10.1)-(3.10.3),
plus a family of conditions analogous to (3.10.4), one for each operation of positive
arity on our algebras. The special fact that allowed us to give a simpler treatment
in the case of groups can now be reformulated, “A congruence K on a group G is
uniquely determined by the congruence class of the neutral element e € |G|, which
can be any normal subgroup N of G. The congruence classes of K are then the
cosets of N in G.” Hence in group theory, rather than considering congruences,
one almost always talks about normal subgroups.

Since a ring R has an additive group structure, a congruence on a ring will in
particular be a congruence on its additive group, and hence will be determined by
the congruence class J of the additive neutral element 0. The possibilities for J
turn out to be precisely the ideals of R, so in ring theory, one works with ideals
rather than congruences. (However, historically, the congruence relation “a = b
(mod n)” on the ring Z of integers was talked about before one had the concept
of the ideal nZ. Ring theorists still sometimes write ¢ = b (mod J) rather than
a—belJ)

On the other hand, on objects such as monoids and lattices, congruences cannot
be reduced to anything simpler, and are studied as such.

As usual, questions of the structure of monoids presented by generators and
relations must be tackled case by case. For example:

Exercise 3.10:4. Find a normal form or other description for the monoid pre-
sented by two generators a and b and the one relation ab = e.

(Note that in the above and the next few exercises, letters a through d denote
general monoid elements, but e is always the neutral element. If you prefer to
write 1 instead of e in your solutions, feel free to do so, but point out that you
are using that notation.)

Exercise 3.10:5. (i) Same problem for generators a, b, ¢, d and relations
ab=ac=dc=e.
(ii) Same problem for generators a, b, ¢, d and relations
ab=ac=cd=e.

Exercise 3.10:6. Same problem for generators a, b, ¢ and relations
ab=ac, ba =bc, ca=ch

Exercise 3.10:7. Same problem for generators a, b and the relation ab = b? a.
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Exercise 3.10:8. (i) Find a normal form for the monoid presented by two gen-
erators a,b, and the one relation abba = baab. (This is hard, but can be done.)
(ii) (Victor Maltcev) Does there exist a normal form or other useful description
for the monoid presented by generators a,b and the relation abbab = baabb? (I
do not know the answer.)

One may define the direct product and the coproduct of two (or an arbitrary
family) of monoids, by the same universal properties as for groups,

SXT/S S\S*T.
\T T/

These turn out to have the same descriptions as for groups: The direct product
of an I-tuple of monoids consists of all I-tuples such that for each i € I, the
i-th position is occupied by a member of the i-th monoid, with operations defined
componentwise; the coproduct consists of formal products of strings of elements,
other than the neutral element, taken from the given monoids, such that no two
successive factors come from the same monoid. Van der Waerden’s method is used
in establishing this normal form, since multiplication of two such products can
involve “cancellation” if any of the given monoids have elements satisfying a b = e.

On monoids, as on groups, one has the construction of abelianization, gotten
by imposing the relations ab = ba for all a, b € |5].

One may also define the kernel and cokernel of a monoid homomorphism
f: 8 — 8" as for groups:

(3.10.6) Ker f = submonoid of S with underlying set {s € |S| | f(s) = e},
(3.10.7) Cokf = S'/(f(s)=€e|s€e]|S).

But we have seen that the structure of the image of a monoid homomorphism f
is not determined by the kernel of f, and it follows that not every homomorphic
image T of a monoid S’ can be written as the cokernel (3.10.7) of a homomor-
phism of another monoid S into S” (e.g., the image of S’ under a non-one-to-one
homomorphism with trivial kernel cannot). Hence these concepts of kernel and
cokernel are not as important in the theory of monoids as in group theory.

We have noted that for f a homomorphism of monoids, a better analog of the
group-theoretic concept of kernel is the congruence

(3.10.8) Kp = {(s, 1) | £(s) = O} € IS x|].

Note that K¢ is the underlying set of a submonoid of S x S, which we may call
Cong f. Likewise, since to impose relations on a monoid we specify, not that some
elements should go to e, but that some pairs of elements should fall together, it
seems reasonable that a good generalization of the cokernel concept should be, not
an image ¢(S) universal for the condition ¢ f = e, where f is a given monoid
homomorphism into S, but an image ¢(S) universal for the condition ¢ f = qg,
for some pair of homomorphisms

(3.10.9) fig:T—8S.

Given f and g as above, ¢(S) may be constructed as the quotient of the monoid
S by the congruence generated by all pairs (f(t), g(t)) (¢t € |T]). Postponing till
the end of this paragraph the question of what ¢(S) will be called, let us note
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that there is a dual construction: Given f, ¢ as in (3.10.9), one can get a universal
map p into T such that fp = gp. This will be given by in inclusion in T of
the submonoid whose underlying set is {t | f(t) = g(t)}, called the equalizer of f
and g¢. Dually, the ¢(S) constructed above is called the coequalizer of f and g.

Exercise 3.10:9. Let f: S — T be a monoid homomorphism.

(i) Note that there is a natural pair of monoid homomorphisms from Cong f to
S. Characterize the 3-tuple formed by Cong f and these two maps by a universal
property.

(i) What can be said of the equalizer and coequalizer of the above pair of maps?
(iii) Can you construct from f a monoid CoCong f with a pair of maps into
it, having a dual universal property? If so, again, look at the equalizer and
coequalizer of this pair.

Exercise 3.10:10. The definition of equalizer can be applied to groups as well
as monoids. If G is a group, investigate which subgroups of G can occur as
equalizers of pairs of homomorphisms on G.

3.11. Groups to monoids and back again

If S is a monoid, we can get a group S®P from S by “adjoining inverses”
to all its elements in a universal manner. Thus, S®P is a group G having a map
q:|S| — |G| which respects products and neutral elements, and is universal among
all such maps from S to groups.

But what kind of a map, exactly, is ¢? Since S = (|S], -, €) is a monoid while
SeP = G = (|G], -, 71, e) is a group, we cannot call it a group homomorphism
or a monoid homomorphism from S to G. But it is more than just a set map,
since it respects - and e. The answer is that ¢ is a monoid homomorphism from
S to the monoid (|G|, -, e) (i.e., (|G|, ta, eq)). So for an arbitrary group H =
(|H|, pm, LtH, €m), let us write Hyg for (|H|, pm, eq), that is, “ H considered as
a monoid”. We can now state the universal property of 5% and ¢ neatly: S&P
is a group G, and ¢ is a monoid homomorphism from S to Gpg, such that for
any group H and any monoid homomorphism a: .S — Hyq, there exists a unique
group homomorphism f: G — H such that a = fq: S — Hpq.

s —14 Cond G

Va J1f

Hpyg H

We shall call S8 the universal enveloping group of the monoid S. It may be
presented as a group by taking a generator for each element of |S|, and taking for
defining relations the full multiplication table of S. More generally, if we are given
some presentation of S by generators and relations as a monoid, G will be the
group presented by the same generators and relations.

Exercise 3.11:1. Show that a monoid S is “embeddable in a group” (meaning
embeddable in the monoid Hy,q for some group H) if and only if the universal
map ¢: |S| — |S®P| is one-to-one.
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Exercise 3.11:2. Describe the universal enveloping groups of the monoids of Ex-
ercises 3.10:4-3.10:7, and also of the monoid presented by generators a, b, ¢ and
the one relation ab=ac.

The last part of the above exercise reveals one necessary condition for the
one-one-ness of the exercise preceding it to hold: The monoid S must have the
cancellation property zy = vy’ = y = y'. An interesting way of obtaining
a full set of necessary and sufficient conditions for the universal map of a given
monoid into a group to be one-to-one was found by A.I. Mal’cev ([110], [111]; also
described in [6, §VIL.3]).

Exercise 3.11:3. Let G be a group and S a submonoid of G,q, which generates
G as a group. Observe that the inclusion of S in Gyq induces a homomorphism
S8P — (G. Will this in general be one-to-one? Onto?

If you have done Exercise 3.3:3, consider the case where G is the group
of that exercise, and S the submonoid generated by a and ba. Describe the
structures of S and of S®P.

Suppose S is an abelian monoid. In this situation, important applications of
the universal enveloping group construction have been made by A.Grothendieck;
the group S®P for S an abelian monoid is therefore often called “the Grothendieck
group K(S)”. This group is also abelian, and has a simple description: Using
additive notation, and writing @ for ¢(a), one finds that every element of K(S) can
be written @—b (a, b € |S]), and that one has equality @—b = a’ —b’ between two
such elements if and only if there exists ¢ € |S| such that a4+ +c¢=a'+b+c [32,
p-40]. (If you have seen the construction of the localization RS™! of a commutative
ring at a multiplicative subset S, you will see that these constructions are closely
related. In particular, the multiplicative group of nonzero elements of the field
of fractions F' of a commutative integral domain R is the Grothendieck group
of the multiplicative monoid of nonzero elements of R.) The application of this
construction to the abelian monoid of isomorphism classes of finite-dimensional
vector bundles on a topological space X, made a monoid under the operation
corresponding to the construction “@®” on vector bundles, is the starting point
of K-theory. But perhaps this idea has been pushed too much — it is annoyingly
predictable that when I mention to a fellow algebraist a monoid of isomorphism
classes of modules under “@”, he or she will say, “Oh, and then you take its
Grothendieck group,” when in fact I wanted to talk about the monoid itself.

Given a monoid S, there is also a right-universal way of obtaining a group:
The set of invertible elements (“units”) of S can be made a group U(S) in an

obvious way, and the inclusion i: U(S) — S is universal among “homomorphisms
of groups into 57, in the sense indicated in the diagram below.

Gmd G
Vh J1f
1

US)pa — S U(S)

Exercise 3.11:4. Let S be the monoid defined by generators x, y, z and relations
ryz=e, zxy = e. Investigate the structures of S and its abelianization S2P.
Describe the groups U(S), U(S)2P, and U(S2P).
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The two constructions that relate semigroups to monoids mentioned near the
beginning of the preceding section are related to each other in a way paralleling the
relation between ( )8 and ( ) :

Exercise 3.11:5. (i) If S = (|S], ) is a semigroup, describe how to extend the
multiplication “-” to |S|U{e} so that (|S|U{e}, -, e) becomes a monoid.
Let us call the monoid resulting from the above construction S™9, while if
S"= (5], -, e) is a monoid, let us write S;, for the semigroup (|S’], ).
(i) Show that given a semigroup S, the monoid S™? is universal among
monoids T' given with semigroup homomorphisms S — Ti,.
(iii) Given a monoid S = (]S], -, €), what is the relation between the monoids

S and (Ssg)™4? Is there a natural homomorphism in either direction between
them?

3.12. Associative and commutative rings

An associative ring R means a 6-tuple
R = (|R‘7 + 07 1)

such that (|R|, +, —, 0) is an abelian group, (|R], -, 1) is a monoid, and the monoid
operation -: |R|x|R| — |R] is bilinear with respect to the additive group structure.
(Dropping the “1” from this definition, one gets a concept of “ring without 17,
but we shall not consider these except in one exercise near the end of this section.)
A ring homomorphism is a map of underlying sets respecting all the operations,
including 1. (Some writers, although requiring their rings to have 1, perversely
allow “homomorphisms” that may not preserve 1; but we shall stick to the above
more sensible definition.) An associative ring is called commutative if the multipli-
cation - is so.

“Commutative associative ring” is usually abbreviated to “commutative ring”.
Depending on the focus of a given work, either the term “associative ring” or the
term “commutative ring” is usually shortened further to “ring”; an author should
always make clear what his or her usage will be. Here, I shall generally shorten
“associative ring” to “ring”; though I will sometimes retain the word “associative”
when I want to emphasize that commutativity is not being assumed.

(When one deals with nonassociative rings — which we shall not do in this
chapter — it is the associativity condition on the multiplication that is removed.
Frequently one then considers in its place other identities, which may involve both
addition and the multiplication; for instance, the identities of Lie rings, which we
will introduce in §8.7, or of Jordan rings, mentioned at the end of that section. In
the definition of a given kind of nonassociative ring, it may or may not be natural
to have a 1 or other distinguished element. The assumption that (|R|, 4+, —, 0)
is an abelian group, and that multiplication is bilinear with respect to this group
structure, is made in all versions of ring theory: commutative, associative and
nonassociative. If weaker assumptions are made, in particular, if this abelian group
structure is replaced by a monoid or semigroup structure, and/or if multiplication
is only assumed linear in one of its two arguments, the resulting structures are given
names such as “semiring”, “half-ring” or “near-ring”.)

If k£ is a fixed commutative ring, then k-modules form a natural generalization
of abelian groups, on which a concept of bilinear map is also defined, as noted
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parenthetically in §3.9 above. Hence one can generalize the definition of associative
ring by replacing the abelian group structure by a k-module structure, and the
bilinear map of abelian groups by a bilinear map of k-modules. The result is the
definition of an associative algebra over k. The reader familiar with these concepts
may note that everything I shall say below for rings remains valid, mutatis mu-
tandis, for k-algebras. (An associative k-algebra is sometimes defined differently,
as ring R given with a homomorphism of % into its center; but the two formu-
lations are equivalent: Given a k-algebra R in the present sense of a ring with
appropriate k-module structure, the map ¢ — clr (c € k) is easily shown to be
a homomorphism of k into the center of R, while given a homomorphism ¢ of
k into the center of a ring R, the definition ¢-r = g(¢)r gives an appropriate
module structure, and these constructions are inverse to one another. For algebras
without 1, and for nonassociative algebras, this equivalence does not hold, and the
“ring with k-module structure” definition is then the useful one.)

The subject of universal constructions in ring theory is a vast one. In this
section and the next, we will mainly look at the analogs of some of the constructions
we have considered for groups and monoids.

First, free rings. Let us begin with the commutative case, since that is the more
familiar one. Suppose R is a commutative ring, and x, y, z are three elements of
R. Given any ring-theoretic combination of x, y and z, we can use the distributive
law of multiplication (i.e., bilinearity of -) to expand this as a sum of products
of z, y and z (monomials) and additive inverses of such products. Using the
commutativity and associativity of multiplication, we can write each monomial so
that all factors = come first, followed by all y’s, followed by all z’s. We can then
use commutativity of addition to bring together all occurrences of each monomial
(arranging the distinct monomials in some specified order), and finally combine
occurrences of the same monomial using integer coefficients. If we now consider all
ring-theoretic terms in symbols x, y and z, of the forms to which we have just
shown we can reduce any combination of elements x, y and z in any ring, we see,
by the same argument as in §2.4, that the set of these “reduced terms” should give
a normal form for the free commutative ring on three generators z, y and z — if
they form a commutative ring under the obvious operations. It is, of course, well
known that the set of such expressions does form a commutative ring, called the
polynomial ring in three indeterminates, and written Z[x, y, z].

So polynomial rings over Z are free commutative rings. (More generally, the
free commutative k-algebra on a set X is the polynomial algebra k[X].) The
universal mapping property corresponds to the familiar operation of substituting
values for the indeterminates in a polynomial.

q

X |Z[X]| Z[X]

Va J1f
R R
When we drop the commutativity assumption and look at general associative

rings, the situation is similar, except that we cannot rewrite each monomial so
that “all z’s come first” etc.. Thus we end up with linear combinations (with
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coefficients in Z) of arbitrary products of our generators. We claim that formal
linear combinations of such products give a normal form for elements of the free
associative ring on the set X. This ring is written Z{X ), and sometimes called
the ring of noncommuting polynomials in X.

We were sketchy in talking about Z[X] because it is a well-known construction,
but let us stop and sort out just what we mean by the above description of Z{X),
before looking for a way to prove it.

We could choose a particular way of arranging the parentheses in every mono-
mial term (say, nested to the right), a particular way of arranging the different
monomials, and of arranging the parentheses in every sum or difference, and so
obtain a set of ring-theoretic terms to which every term could be reduced, which we
would prove constituted a normal form for the free ring. But observe that the ques-
tion of putting parentheses into monomial terms is really just one of how to write
elements in a free monoid, while the question of expressing sums and differences is
that of describing an element of the free abelian group on a set of generators. Let
us therefore assume that we have chosen one or another way of calculating in free
abelian groups — whether using a normal form, or a representation by integer-valued
functions with only finitely many nonzero values, or whatever — and likewise that
we have chosen a way of calculating in free monoids. Then we can calculate in free
rings! A precise statement is

LEMMA 3.12.1. Let Z{X) denote the free ring on the set X. Then the additive
group of Z{(X) is a free abelian group on the set of products in Z{X) of elements
of X (including the empty product, 1), and this set of products forms, under the
multiplication of Z{X), a free monoid on X.

PROOF. Let S denote the free monoid on X, and F(|S|) the free abelian
group on the underlying set of this monoid. We shall begin by describing a map
F(SD] = [Z(X0).

If we write u for the universal map X — |Z<{X)|, then by the universal
property of free monoids, u induces a homomorphism «’ from the free monoid S
into the multiplicative monoid of Z{X). Hence by the universal property of free
abelian groups, there exists a unique abelian group homomorphism «” from the
free abelian group F'(]S|) into the additive group of Z{(X) whose restriction to
|S] is given by u'. Clearly the image of the monoid S in Z{X) is closed under
multiplication and contains the multiplicative neutral element; it is easy to deduce
from this and the distributive law that the image of the abelian group F(|S]) is
closed under all the ring operations. (Note that our considerations so far are valid
with Z{X) and u replaced by any ring R and set map X — |R|.) Since this image
contains X, and Z{X) is generated as a ring by X, the image is all of |Z{X)|,
i.e., u” is surjective. (The above argument formalizes our observation that every
element of the subring generated by an X-tuple of elements of an arbitrary ring
R can be expressed as a linear combination of products of elements of the given
X-tuple.)

We now wish to show that u” is one-to-one. To do this it will suffice to show
that there is some ring R with an X-tuple v of elements, such that under the
induced homomorphism Z{X) — R, any two elements of Z{X ) which are images
of distinct elements of F(|S|) are mapped to distinct elements of R.

How do we find such an R? Van der Waerden’s trick for groups suggests that
we should obtain it from some natural representation of the desired free ring. We
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noted in §2.4 that the group operations and identities arise as the operations and
identities of the permutations of a set, so for “representations” of groups, we used
actions on sets. The operations and identities for associative rings arise as the
natural structure on the set of all endomorphisms of an abelian group A — one
can compose such endomorphisms, and add and subtract them, and under these
operations they form a ring End(A). So we should look for an appropriate family
of endomorphisms of some abelian group to represent Z{X).

Let us, as in (2.4.5), introduce a symbol a; let Sa denote the set of symbols
Tn...210 (x; € X, n > 0); and this time let us further write F(Sa) for the
free abelian group on this set Sa. For every = € X, let T: Sa — Sa denote the
map carrying each symbol b € Sa to the symbol xb. This extends uniquely (by
the universal property of free abelian groups) to an additive group homomorphism
ZT: F(Sa) — F(Sa). Thus (T)zex is an X-tuple of elements of the associative
ring End(F'(Sa)).

Taking R = End(F(Sa)), the above X-tuple induces a homomorphism

f: Z(X) — R.
Now given any element of F'(|S]), which we may write
(3.12.2) T =3 5| s (ns €Z, almost all ng = 0),

we verify easily that the element f(u’(r)) € End(F(Sa)) carries a to Y ngsa.
Hence distinct elements (3.12.2) must give distinct elements v’ (r) € Z{X), which
proves the one-one-ness of v and establishes the lemma. O

For many fascinating results and open problems on free algebras, see [70], [71].
For a smaller dose, you could go to my paper [41], which answers the question,
“When do two elements of a free algebra commute?” That problem is not of great
importance itself, but it leads to the development of a number of beautiful and
useful ring-theoretic tools.

Exercise 3.12:1. Let « denote the automorphism of the polynomial ring Z[z, y]
which interchanges x and y. It is a standard result that the fixed ring of «,
ie., {p €Zzx, y] | a(p) = p}, can be described as the polynomial ring in the two
elements =z +y and xy.

(i) Consider analogously the automorphism [ of the free associative ring
Z{x,y) interchanging = and y. Show that the fixed ring of [ is generated
by the elements z + vy, 22 + 3%, 22 + 43, ..., and is a free ring on this infinite
set.

(ii) Observe that the homomorphism Z<{x, y) — Z[xz, y] taking = to = and y
to y must take the fixed ring of [ into the fixed ring of «. Will it take it onto
the fixed ring of a?

(iii) If G is the free group on generators x and y, and if ~ is the automorphism
interchanging = and y in this group, describe the fixed subgroup of «. Do the
same for the free abelian group on x and y. (The analog of (ii) for groups is
trivial to answer when this has been done.)

The preceding description of the free ring on a set X involved the free monoid
on X, and we can see that our earlier description of the free commutative ring (the
polynomial ring) bears an analogous relationship to the free commutative monoid.
These connections between rings and monoids can be explained in terms of another
universal construction:
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If R=(|R|,+, ,—,0,1) is an associative ring, let Ry denote its multi-
plicative monoid, (|R|, -, 1). Then for any monoid S, there will exist, by the usual
arguments, a ring R with a universal monoid homomorphism «: S — Ryt

U

S Rmult R
& J1f
;nult R

To study this object, let us fix S, and consider any ring R’ with a homomor-
phism S — R/ ... The elements of R’ that we can capture using this map are the
linear combinations of images of elements of S, with integer coefficients. (Why is
there no need to mention products of such linear combinations?) One finds that
the universal such ring R will have as additive structure the free abelian group on
|S], with multiplicative structure determined by the condition that the given map
|S| — |R| respect multiplication, together with the bilinearity of multiplication.
The result is called the monoid ring on S, denoted Z S.

Given a presentation of S by generators and relations (written multiplica-
tively), a presentation of Z S as a ring will be given by the same generators and
relations. In particular, if we take for S the free monoid on a set X, presented
by the generating set X and no relations, then Z S will be presented as a ring by
generators X and no relations, and so will be the free ring on X, which is just
what we saw in Lemma 3.12.1. If we take for S a free abelian monoid, then S may
be presented as a monoid by generators X and relations zy = yx (z, y € X),
hence this is also a presentation of Z S as a ring. Since commutativity of a set
of generators of a ring is equivalent to commutativity of the whole ring, the above
presentation makes Z S the free commutative ring on X.

If S is a monoid, then a “linear action” or “representation” of S on an abelian
group A means a homomorphism of S into the multiplicative monoid of the endo-
morphism ring End(A4) of A. By the universal property of Z .S, this is equivalent
to a ring homomorphism of Z S into End(A4), which is in turn equivalent to a
structure of left Z S-module on the abelian group A. In particular, to give an ac-
tion of a group G by automorphisms on an abelian group A corresponds to making
A a left module over the group ring Z G. Much of modern group theory revolves
around linear actions, and hence is closely connected with the properties of Z G
(and more generally, with group algebras kG where k is a commutative ring, so
that left &k G-modules correspond to actions of G on k-modules). For some of the
elementary theory, see [32, Chapter XVIII]. A major work on group algebras is
[119].

In the above discussion, we “factored” the construction of the free associative
or commutative ring on a set X into two constructions: the free (respectively, free
abelian) monoid construction, which universally closes X under a multiplication
with a neutral element, and the monoid-ring construction, which brings in an ad-
ditive structure in a universal way. These constructions can also be factored the
other way around! Given a set X, we can first map it into an abelian group in
a universal way, getting the free abelian group A on X, then form a ring (re-
spectively a commutative ring) R with a universal additive group homomorphism
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A — R,qq. For any abelian group A, the associative ring with such a universal
homomorphism is called the tensor ring on A, because its additive group structure
turns out to have the form

ZOA®(ARA) © (ARARA) @ ...,

though we shall not show this here. The corresponding universal commutative ring
is called the symmetric ring on A; its structure for general A is more difficult to
describe. For more details see [32, §§XVI.7, 8] or [55]. Thus, a free associative ring
can be described as the tensor ring on a free abelian group, and a polynomial ring
as the symmetric ring on a free abelian group.

On to other constructions. Suppose R is a commutative ring, and (f;, ¢;)
(i € I) a family of pairs of elements of R. To impose the relations f; = g; on
R, one forms the factor-ring R/J, where J is the ideal generated by the elements
fi—g;. This ideal is often written (f;—g;)icr. Another common notation, preferable
because it is more explicit, is Y ;.; R(fi — gi), or, if we set Y = {f; —g; | i € I},
simply RY. It consists of all sums

(3.12.3) S ri(fi —gi) (i € |R|, nonzero for only finitely many i € I).

The construction of imposing relations on a noncommutative ring R is of the
same form, but with “ideal” taken to mean a two-sided ideal — an additive subgroup
of R closed under both left and right multiplication by members of R. The two-
sided ideal generated by {f; —g; | i € I} is also often written (f; — g:)icr, and
again there is a more expressive notation, >, ; R(f; —g:;) R, or RY R. This ideal
consists of all sums of products of the form r(f; —¢g;)r’ (i € I, r, v € R). Note,
however, that in the noncommutative case, it is not in general enough to have, as
in (3.12.3), one such summand for each ¢ € I. For instance, in Z{x, y), the ideal
generated by the one element = contains the element xy + yx, which cannot be
simplified to a single product rzr’.

Exercise 3.12:2. Let R be a commutative ring. Will there, in general, exist a
universal homomorphism of R into an integral domain R'? If not, can you find
conditions on R for such a homomorphism to exist? Suggestion: Consider the
cases R=7, Zg, Z4.

Exercise 3.12:3. (i) Obtain a normal form for elements of the associative ring
A presented by two generators x, y, and one relation yx —xy = 1.
(ii) Let Z[z]aaa be the additive group of polynomials in one indeterminate x.
Show that there exists a homomorphism f of the ring A of part (i) into the
endomorphism ring of this abelian group, such that f(z) is the operation of
multiplying polynomials by z in Z[z], and f(y) the operation of differentiating
with respect to z. Is this homomorphism one-to-one?

The ring of the above example, or rather the corresponding algebra over a
field k, is called the Weyl algebra. It is of importance in quantum mechanics,
where multiplication of the wave-function of a particle by the coordinate function
x corresponds to measuring the particle’s z-coordinate, while differentiating with
respect to x corresponds to measuring its momentum in the z-direction. The fact
that these operators do not commute leads, via the mysterious reasoning of quantum
mechanics, to the impossibility of measuring those two quantities simultaneously,
the simplest case of the “Heisenberg uncertainty principle”.
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Direct products TI; R; of associative rings or commutative rings turn out, as
expected, to be gotten by taking direct products of underlying sets, with compo-
nentwise operations.

Exercise 3.12:4. (Andreas Dress)
(i) Find all subrings of Z x Z. (Remember: a subring must have the same
multiplicative neutral element 1. Try to formulate your description of each such
subring R as a necessary and sufficient condition for an arbitrary (a, b) € Z X Z
to lie in |R].)
A much harder problem is:
(ii) Is there a similar characterization of all subrings of Z X Z x Z?

Exercise 3.12:5. Show that the commutative ring presented by one generator x,

and one relation x? = x, is isomorphic (as a ring) to the direct product ring
Z x 7.

Exercise 3.12:6. Given generators and relations for two rings, R and .5, show
how to obtain generators and relations for R x S.

Exercise 3.12:7. Describe

(i) the commutative ring A presented by one generator z, and one relation
2x =1, and
(ii) the commutative ring B presented by one generator = and two relations
4r =2, 22% = x. (Note that both of these relations are implied by the relation
of (i).)

Your descriptions in parts (i) and (ii) should make it clear whether these
rings are isomorphic.
(iii) Show that each of these rings has the property that for any ring R (com-
mutative if you wish) there is at most one homomorphism of the indicated ring
(A, respectively B) into R.

Exercise 3.12:8. Suppose R is a ring whose underlying abelian group is finitely
generated. Show that as a ring, R is finitely presented. (You may use the fact
that every finitely generated abelian group is finitely presented.)

If you are comfortable with algebras over a commutative ring k, try to
generalize this result to algebras over some or all such k.

In discussing universal properties, I have neglected to mention some trivial
cases. Let me give these in the next two exercises. Even if you do not write them
up, think through the “ring” cases of parts (i) and (ii) of the next exercise, since
some later exercises use them.

Exercise 3.12:9. (i) Consider the free group, the free monoid, the free associa-
tive ring, and the free commutative ring on the empty set of generators. Refor-
mulate the universal properties of these objects in as simple a form as possible.
Display the group, monoid, ring, and commutative ring characterized by these
properties, if they exist.

(ii) State, similarly, the universal properties that would characterize the product
and coproduct of an empty family of groups, monoids, rings, or commutative
rings, and determine these objects, if any.

(iii) Give as simple as possible a system of defining generators and relations for
the rings Z and Z/nZ.

The next exercise concerns semigroups, and rings without neutral elements.
Note that when we say “without 17 etc., this does not forbid the existence of an
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element 1 satisfying (Vz) 1o = 2 = 1. It just means that we don’t require the
existence of such elements, and that when they exist, we don’t give them a special
place in the definition, or require homomorphisms to respect them.

Exercise 3.12:10. Same as parts (i) and (ii) of the preceding exercise, but for
semigroups, and for rings without 1. Same for sets. Same for G-sets for a fixed
group G.

Exercise 3.12:11. Suppose that, as some (misguided) authors do, we required
rings to have 1 but did not require ring homomorphisms to preserve 1. Show that
under this definition, there would exist no free commutative ring on one generator.
(In fact, there wouldn’t be free rings on any positive number of generators; but
this case is enough to prove.)

Now back to rings with 1, and homomorphisms preserving 1.

3.13. Coproducts and tensor products of rings

We have noted that the descriptions of coproducts vary from one sort of alge-
braic object to another, so it will not be surprising to find that they have different
forms for commutative and noncommutative rings. Let us again start with the
commutative case.

Suppose S and T are fixed commutative rings, and we are given homomor-
phisms s — 5 and ¢+ ¢ of these into a third commutative ring R. What elements
of R can we capture? Obviously, elements 5 (s € |S|) and ¢ (¢t € |T]). From
these we can form products s¢, and we can then form sums of elements of all these
sorts:

(3.13.1) S+t+S1t 4+ Snbn.

We don’t get more elements by multiplying such sums together, because a product
(5t )(3't') reduces to ss’tt’. Let us also note that the lone summands 3 and ¢ in
(3.13. 1) can actually be written in the same form as the other summands, because

1g = 1T = 1g, hence 5= slT and t = Igt. So the subring of R that we get is
generated as an additive group by the image of the map

(3.13.2) (s,t) — 5t

of |S|x|T| into |R|. If we look for equalities among sums of elements of this form,
we find o
(s+s)t = 5t +3t and 35(t+t) = 5t+ 5t

in other words, relations saying that (3.13.2) is bilinear. These relations and their
consequences turn out to be all we can find, and one can show that the universal
R with ring homomorphisms of S and T into it, that is, the coproduct of S and
T as commutative rings, has the additive structure of the tensor product of the
additive groups of S and T. The elements that we have written 5 and t are, as
the above discussion implies, s ® 17 and 1g ® t respectively; the multiplication is
determined by the formula

(3.13.3) (s@t)(sfat) = ss @ttt/
which specifies how to multiply the additive generators of the tensor product group.
For a proof that this extends to a bilinear operation on all of S ® T, and that this

operation makes the additive group S®T into a ring, see Lang [32, §XVI.6]. (Note:
Lang works in the context of algebras over a ring k, and he defines such an algebra
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as a homomorphism f of k into the center of a ring R — what I prefer to call,
for intuitive comprehensibility, a ring R given with a homomorphism of £ into
its center; cf. parenthetical remark near the beginning of §3.12 above. Thus, when
he defines the coproduct of two commutative k-algebras to be a certain map, look
at the codomain of the map to see the ring that he means. Or, instead of looking
in Lang for this construction, you might do Exercise 3.13:5 below, which gives a
generalization of this result.)
This coproduct construction is called the “tensor product of commutative

rings”.
Exercise 3.13:1. If m and n are integers, find the structure of the tensor product

ring (Z/mZ) ® (Z/nZ) by two methods:

(i) By constructing the tensor product of the abelian groups Z,, and Z,, and

describing the multiplication characterized above.

(ii) By using the fact that a presentation of a coproduct can be obtained by
“putting together” presentations for the two given objects. (Cf. Exercise 3.12:9.)

Exercise 3.13:2. Let Z[i] denote the ring of Gaussian integers (complex numbers
a+bi such that a and b are integers). This may be presented as a commutative
ring by one generator i, and one relation i2 = —1. Examine the structures of
the rings Z[i] ® (Z/pZ) (p a prime). E.g., will they be integral domains for all
p? For some p?

The next two exercises concern tensor products of algebras over a field k,
for students familiar with this concept. Tensor products of this sort are actually
simpler to work with than the tensor products of rings described above, because
every algebra over a field k is free as a k-module (since every k-vector-space has
a basis), and tensor products of free modules are easily described (cf. paragraph
containing (3.9.1) above).

Exercise 3.13:3. Let K and L be extensions of a field k. A compositum of

K and L means a 3-tuple (F, f, g) where E is a field extension of k, and
f: K —FE, g: L - F are k-algebra homomorphisms such that FE is generated
by f(IK]) Ug(]L]) as a field (i.e., under the ring operations, and the partial
operation of multiplicative inverse).
(i) Suppose K and L are finite-dimensional over k, and we form their tensor
product algebra K ®; L, which is a commutative k-algebra, but not necessarily
a field. Show that up to isomorphism, all the composita of K and L over k
are given by the factor rings (K ®, L)/P, for prime ideals P C K ®; L. (First
write down what should be meant by an isomorphism between composita of K
and L.)

(i) What if K and L are not assumed finite-dimensional?

Exercise 3.13:4. (i) Determine the structure of the tensor product C ®g C,
where C is the field of complex numbers and R the field of real numbers. In
particular, can it be written as a nontrivial direct product of R-algebras?

(ii) Do the same for Q(2'/%) @g Q(2'/?).
(iii) Relate the above results to the preceding exercise.

You can carry this exercise much farther if you like — find a general description
of a tensor product of a finite Galois extension with itself; then of two arbitrary
finite separable field extensions (by taking them to lie in a common Galois extension,
and considering the subgroups of the Galois group they correspond to); then try
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some examples with inseparable extensions... . In fact, one modern approach to
the whole subject of Galois theory is via properties of such tensor products. (E.g.,
see [105], starting around §11 (p. 105).)

If S and T are arbitrary (not necessarily commutative) associative rings, one
can still make the tensor product of the additive groups of S and T into a ring
with a multiplication satisfying (3.13.3). It is not hard to verify that this will be
universal among rings R given with homomorphisms f: S — R, g: T — R such
that all elements of f(S) commute with all elements of ¢(T). (Cf. the “second
universal property” of the direct product of two groups, end of §3.6 above. In fact,
some early ring-theorists wrote S x T' for what we now denote S ® T, considering
this construction as the ring-theoretic analog of the direct product construction
on groups.) This verification is the exercise mentioned earlier as an alternative to
looking in Lang for the universal property of the tensor product of commutative
rings:

Exercise 3.13:5. Verify the above assertion that given rings S and 7, the uni-
versal ring with mutually commuting homomorphic images of S and T has the
additive structure of S ® T, and multiplication given by (3.13.3). (Suggestion:
map the additive group S ® T onto that universal ring R, then use “van der
Waerden’s trick” to show the map is an isomorphism.) Obtain as a corollary the
characterization of the coproduct of commutative rings referred to earlier.

Exercise 3.13:6. Show that if S and T are monoids, then the monoid ring con-
struction (§3.12) satisfies ZS Q@ ZT = Z(S x T).

Exercise 3.13:7. Suppose S and T are associative rings, and we form the addi-
tive group Ragd = Sadd ® Taqq- Is the multiplication described above in general
the unique multiplication on R,qq which makes it into a ring R such that the
maps s — s® 1y and t — 1g® s are ring homomorphisms? You might look, in
particular, at the case S = Z[z], T = Z[y].

Let us now look at coproducts of not necessarily commutative rings, writing
these S T as for groups and monoids. They exist by the usual general nonsense,
and again, a presentation of S %7 can be gotten by putting together presentations
of S and T. But the explicit description of these coproducts is more complicated
than for the constructions we have considered so far. For S and T arbitrary
associative rings, there is no neat explicit description of S *T. Suppose, however,
that the additive group of S is free as an abelian group on a basis containing the
unit element, {l1g} U Bg, and that of T is free as an abelian group on a basis of
the same sort, {17} U By. (For example, the rings S = Z[z] and T = Z[i] have
such bases, with Bg = {z, 2%, ...} and By = {i}.) Then we see that given a
ring R and homomorphisms S — R, T — R, written s — 5 and ¢ t, the
elements of R that we get by ring operations from the images of S and T can
be written as linear combinations, with integer coefficients, of products z, ...z
where x; € Bs U By (i.e., {b|b € Bs}uU{b | b€ Br}), and no two factors
from the same basis-set occur successively. (In thinking this through, note that a
product of two elements from Bg can be rewritten as a linear combination of single
elements from Bg U {1s}, and that occurrences of 1g can be eliminated because
in R, 1g = 1gr; and the same considerations apply to elements from B\; In this
description we are again considering 1r as the “empty” or “length 0” product.)
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And in fact, the coproduct of S and T as associative rings turns out to have
precisely the set of such products as an additive basis.

Exercise 3.13:8. Verify the above assertion, using an appropriate modification of
van der Waerden’s trick.

Exercise 3.13:9. (i) Study the structure of the coproduct ring Z[i] *Z[i], where
Z[i] denotes the Gaussian integers as in Exercise 3.13:2. In particular, try to
determine its center, and whether it has any zero-divisors.

(ii) In general, if S and T are rings free as abelian groups on two-element bases

of the forms {1, s} and {1, ¢}, what can be said about the structure and center
of SxT7?

The next part shows that the above situation is exceptional.

(iii) Suppose as in (ii) that S and T each have additive bases containing 1,
and neither of these bases consists of 1 alone, but now suppose that at least one
of them has more than two elements. Show that in this situation, the center of
S*T is just Z.

When the rings in question are not free Z-modules, the above description does
not work, but in some cases the result is nonetheless easy to characterize.

Exercise 3.13:10. (i) Describe the rings Q*Q and Q® Q.
(ii) Describe the rings (Z/nZ) * Q and (Z/nZ) ® Q, where n is a positive
integer.

Some surprising results on the module theory of ring coproducts are obtained
in [44]. (That paper presumes familiarity with basic properties of semisimple artin
rings and their modules. The reader who is familiar with such rings and modules,
but not with homological algebra, should not be deterred by the discussion of homo-
logical properties of coproducts in the first section; that section gives homological
applications of the main result of the paper, but the later sections, where the main
result is proved, do not require homological methods.)

3.14. Boolean algebras and Boolean rings

Let S be a set, and let P(S) denote the power set of S, that is, {T'| T C S}.
There are various natural operations on P(S): union, intersection, complement
(iie., T ={s € S| s ¢ T}), and the two zeroary operations, ) € P(S) and
S = ) € P(S). Thus we can regard P(S) as the underlying set of an algebraic
structure

(3.14.1) (P(S), U, n, <, 0, 9).

This structure, or more generally, any 6-tuple consisting of a set and five op-
erations on that set, of arities 2, 2, 1, 0, 0, satisfying all the identities satisfied by
structures of the form (3.14.1) for sets .S, is called a Boolean algebra.

Such 6-tuples do not quite fit any of the pigeonholes we have considered so far.
For instance, neither of the operations U, N is the composition operation of an
abelian group, hence a “Boolean algebra” is not a ring.

However, there is a way of looking at P(S) which reduces us to ring theory.
There is a standard one-to-one correspondence between the power set P(S) of a set
S and the set of functions 2%, where 2 means the 2-element set {0,1}; namely,
the correspondence associating to each T' € P(S) its characteristic function (the
function whose value is 1 on elements of 7" and 0 on elements of °T). If we try to
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do arithmetic with these functions, we run into the difficulty that the sum of two
{0, 1}-valued functions is not generally {0, 1}-valued. But if we identify {0,1} with
the underlying set of the ring Z/27Z rather than treating it as a subset of Z, this
problem is circumvented: 2° becomes the ring (Z/2Z)° — the direct product of an
S-tuple of copies of Z/2Z. Moreover, it is possible to describe union, intersection,
etc., of subsets of S in terms of the ring operations of (Z/2Z)%. Namely, writing
a for the characteristic function of a C S, we have

(3.14.2) anb =ab, aUb=1a+b+ab, Sa=1+a 0 =0 S =1
Conversely, each ring operation of (Z/2Z)°, translated into an operation on
subsets of S, can be expressed in terms of our set-theoretic Boolean algebra opera-

tions. The expressions for multiplication, for 0, and for 1 are clear from (3.14.2);
additive inverse is the identity operation, and + is described by

(3.14.3) a+b = (ancb)U(canNb).
(The set (aN°b)U(°anbd) is called the “symmetric difference” of the sets a and b.)
Note that the ring B = (Z/27)% = (2°,+, -, —, 0, 1), like Z/27Z, satisfies

(3.14.4) (Vx € |B|) 2? = z,

from which one easily deduces the further identities,

(Va,y€[Bl) zy =y,

(Vze|B|) v4+2 =0 (equivalently: 1+1=0 in B).

An associative ring satisfying (3.14.4) (and so also (3.14.5)) is called a Boolean ring.
We shall see below (Exercise 3.14:2) that the identities defining a Boolean ring, i.e.,
the identities of associative rings together with (3.14.4), imply all identities satisfied
by rings (Z/2Z)°. Hence we shall see that Boolean rings and Boolean algebras are
essentially equivalent — we can turn each into the other using (3.14.2) and (3.14.3).

(3.14.5)

Exercise 3.14:1. The free Boolean ring F(X) on any set X exists by the usual
general arguments. Find a normal form for the elements of F(X) when X
is finite. To prove that distinct expressions in normal form represent distinct
elements, you will need some kind of representation of F(X); use a representation
by subsets of a set S.

Exercise 3.14:2. Assume here the result which follows from the indicated ap-
proach to the preceding exercise, that the free Boolean ring on any finite set X
can be embedded in the Boolean ring of subsets of some set S.

(i) Deduce that all identities satisfied by the rings (Z/27Z)° (S a set) follow
from the identities by which we defined Boolean rings.

(ii) Conclude that the free Boolean ring on an arbitrary set X can be embedded
in the Boolean ring of {0, 1}-valued functions on some set (if you did not already
prove this as part of your proof of (i)).

(iii) Deduce that there exists a finite list of identities for Boolean algebras which
implies all identities holding for such structures (i.e., all identities holding in sets
P(S) under U, N, ¢, 0 and 1).

Exercise 3.14:3. An element a of a ring (or semigroup or monoid) is called idem-
potent if a® = a. If R is a commutative ring, let us define

Idpt(R) = {a€ R| a®> =a}, +, -, =, 0, 1),
where a + b=a+b—2ab and ~a = a.



3.14. BOOLEAN ALGEBRAS AND BOOLEAN RINGS 81

(i)  Verify that each of the above operations carries the set [Idpt(R)| into itself.

(ii) Show that if a € |[Idpt(R)|, then R can (up to isomorphism) be written
Ry x Ry for some rings R;, Ry, in such a way that the element a has the
form (0,1) in this direct product. Deduce that if ai, ..., a; € |Idpt(R)|, then
R can be written as a finite direct product in such a way that each a; has each
coordinate 0 or 1. This result can be used to get a proof of the next part that
is conceptual rather than purely computational:

(iii) Show that for any commutative ring R, Idpt(R) is a Boolean ring.

(iv) Given any Boolean ring B, show that there is a universal pair (R, f) where
R is a commutative ring, and f: B — Idpt(R) a homomorphism.

(v) Investigate the structure of the R of the above construction in some simple
cases, e.g., B=17/27, B=(Z/27)% B = (Z/2Z)".

(Students familiar with algebraic geometry will recognize that the idempo-
tent elements of a commutative ring R correspond to the continuous {0, 1}-valued
functions on Spec(R). Thus the Boolean rings Idpt(R) of the above exercise have
natural representations as Boolean rings of {0, 1}-valued functions on sets.)

Exercise 3.14:4. (i) If f: U — V is a set map, describe the homomorphism it
induces between the Boolean rings (Z/2Z)Y and (Z/2Z)Y. (You first have to
decide which way the homomorphism will go.)

(i) Let B be a Boolean ring. Formulate universal properties for a “universal
representation of B by subsets of a set”, in each of the following senses:
(a) A universal pair (S, f), where S is a set, and f a Boolean ring homo-
morphism B — (Z/27)5.
(b) A universal pair (7, g), where T is a set, and g a Boolean ring homo-
morphism (Z/27)" — B.
(iii) Investigate whether such universal representations exist. If such represen-
tations are obtained, investigate whether the maps f, g will in general be one-
to-one and/or onto.

Exercise 3.14:5. (i) Show that every finite Boolean ring is isomorphic to one of
the form 2° for some finite set S.

(ii) For what finite sets S is the Boolean ring 2° free? How is the number of
free generators determined by the set S 7

Exercise 3.14:6. A subset T of a set S is said to be cofinite in S if T (taken
relative to S, i.e., S —T) is finite. Show that {T"C Z | T is finite or cofinite }
is the underlying set of a Boolean subring of 2%, which is neither free, nor
isomorphic to a Boolean ring 2V for any set U.

Exercise 3.14:7. It is not hard to see (as for groups, monoids, rings, and commu-
tative rings) that any two Boolean rings By and Bs will have a coproduct as
Boolean rings.

(i) WIill this coproduct in general coincide with the coproduct of B; and Bs
as rings? As commutative rings?
(i) Suppose B; and B, are finite, so that we can take B; = 2%, By = 27
for finite sets S and 7. Can you describe the coproduct of these two Boolean
rings, and the canonical maps from those rings into their coproduct, in terms of
S and T'7?

For additional credit you might see whether the result you get in (ii) extends,
in one way or another, to Boolean rings 2° and 27 for infinite sets S and T, or
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to other sorts of infinite Boolean rings, such as those described in the preceding
exercise.

Above, I have for purposes of exposition distinguished between the power set
P(S) of a set S and the function-set 2. But these notations are often used
interchangeably, and I may use them that way myself elsewhere in these notes.

3.15. Sets

The objects we have been studying have been sets with additional operations.
Let us briefly note the forms that some of the sorts of constructions we have dis-
covered take for plain sets.

Given a family of sets (S;);er, the object with the universal property charac-
terizing products is the usual direct product, TT,.5;, which may be described as
the set of functions on I whose value at each element i belongs to the set S;. The
projection map p; in the statement of the universal property takes each such func-
tion to its value at i. Note that the product of the vacuous family of sets (indexed
by the empty set!) is a one-element set.

The coproduct of a family of sets (S;)ier is their disjoint union | |; S;, to
which we referred in passing in §3.6. If the S; are themselves disjoint, one can take
for this set their ordinary union; the inclusions of the S; in this union give the
universal family of maps ¢;: S; = [;Si (j € I). A construction that will work
without any disjointness assumption is to take

(3.15.1) L;Si = {(,s)]|iel, se€S;}
with universal maps given by
(3.15.2) qi(s) = (i,8) (iel,ses;).

A frequent practice in mathematical writing is to assume (“without loss of
generality”) that a family of sets is disjoint, if this would be notationally convenient,
and if there is nothing logically forcing them to have elements in common. When
this disjointness condition holds one can, as noted, take the universal maps involved
in the definition of a coproduct of sets to be inclusions. But in other cases — for
instance if we want to consider a coproduct of a set with itself, or of a set and a
subset — a construction like (3.15.1) is needed. Note that when a construction is
described “in general” under such a disjointness assumption, and is later applied in
a situation where one cannot make that assumption, one must be careful to insert
q; ’s where appropriate.

Exercise 3.15:1. Investigate laws such as associativity, distributivity, etc. which
are satisfied up to natural isomorphism by the constructions of pairwise product
and coproduct of sets.

Examine which of these laws are also satisfied by products and coproducts
of groups, and which are not.

Sets can also be constructed by “generators and relations”. If X is a set, then
relations are specified by a set R of ordered pairs of elements of X, which we
want to make fall together. The universal image of X under a map making the
components of each of these pairs fall together is easily seen to be the quotient of
X by the least equivalence relation containing R.

The constructions named in this section — direct product of sets, disjoint union,
and quotient by the equivalence relation generated by a given binary relation — were
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taken for granted in earlier sections. So the point of this section was not to introduce
the reader to those constructions, but to note their relation to the general patterns
we have been seeing.

3.16. Some algebraic structures we have not looked at

... lattices ([3], [12], and Chapter 5 below), modular lattices, distributive lattices;
partially ordered sets (Chapter 4 below); cylindric algebras [85]; heaps (Exer-
cise 8.6:10 below); loops [6, p.52]; Lie algebras ([92], §8.7 below), Jordan alge-
bras [93], general nonassociative algebras; rings with polynomial identity [126],
rings with involution, fields, division rings, Hopf algebras [133]; modules, bi-
modules (§§9.8-9.9 below); filtered groups, filtered rings, filtered modules; graded
rings, graded modules; ordered groups, right-ordered groups, lattice-ordered groups
[80], ....

As noted, we will consider some of these in later chapters.

On the objects we have considered here, we have only looked at basic and
familiar universal constructions. Once we develop a general theory of universal
constructions, we shall see that they come in many more varied forms.

For diversity, I will end this chapter with two examples for those who know
some general topology.

3.17. The Stone-Cech compactification of a topological space

We know that the real line R, as a topological space, is not compact. But
when studying the limit-behavior of R-valued functions or sequences, it is frequently
convenient to adjoin to R an additional point, “occ”, obtaining the compact space

R U {oo} shown below.
00

R U {oo}:

2-191°2

At other times, one adjoins to R two points, +00 and —oo, getting a compact
space

R U {400, —c0} :

e BT R oo

Note that R U {co} may be obtained from R U {+o0,—o0} by an identifi-
cation. Hence R U {+00, —0c0} can be thought of as making finer distinctions in
limiting behavior than R U {oo}.

One might imagine that R U {+o00, —oo} makes “the finest possible distinc-
tions”. A precise formulation of this would be a conjecture that for any continuous
map f of R into a compact Hausdorff space K, the closure of the image of R
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should be an image of RU {400, —oc}; i.e., that the map f should factor through
the inclusion R C RU {400, —oo}. Here is a picture of an example for which this
is true:

R RU —
c {400, —o0}

But by thinking about either of the following pictures, you can see that the
above conjecture is not true in general:

(3.17.1) /V\NW

However, we can still ask whether there is some compactification of R which
makes “the most possible distinctions”. Let us raise this question with R replaced
by a general topological space X, and give the desired object a name.

DEFINITION 3.17.2. Let X be a topological space. A Stone- x u C
Cech compactification of X will mean a pair (C, u), where

C is a compact Hausdorff space and u a continuous map Vo aif
X — C, wuniversal among all continuous maps of X into

compact Hausdorff spaces K (diagram at right). K

Exercise 3.17:1. Show that if a pair (C, u) as in the above definition exists, then
w(X) is dense in C. In fact, show that if (C, u) has the indicated universal
property but without the condition of uniqueness of factoring maps g (see above
diagram), then
(i) uniqueness of such maps holds if and only if «(X) is dense in C; and
(ii) if €’ is the closure of u(X) in C, the pair (C’, u) has the full universal
property.

We now want to determine whether such compactifications always exist.
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The analog of our construction of free groups from terms as in §2.2 would be
to adjoin to X some kinds of “formal limit points”. But limit points of what? Not
every sequence in a compact Hausdorff space K converges, nor need every point
of the closure of a subset J C K be the limit of a sequence of points of J (unless
K is first countable); so adjoining limits of sequences would not do. The approach
of adjoining limit points can in fact be made to work, but it requires considerable
study of how such points may be described; the end result is a construction of the
Stone-Cech compactification of X in terms of ultrafilters. We shall not pursue that
approach here; it is used in [135, Theorem 17.17 et seq.]. (NB: The compactification
constructed there may not be Hausdorff when X is “bad”, so in such cases it will
not satisfy our definition.)

The “big direct product” approach is more easily adapted. If v;: X — K; and
vg: X — Ko are two continuous maps of X into compact Hausdorff spaces, then
the induced map (v, v2): X — K; x Ky will “make all the distinctions among
limit points made by either v; or wvy”, since the maps v; and vy can each be
factored through it; further, if we let K’ denote the closure of the image of X
in K7 x Ko under that map, and v': X — K’ the induced map, then all these
distinctions are still made in K’, and the image of X is dense in this space. We
can do the same with an arbitrary family of maps v;: X — K; (i € I), since
Tychonoff’s Theorem tells us that the product space TI, K; is again compact.

As in the construction of free groups, to obtain our Stone-Cech compactification
by this approach we have to find some set of pairs (K, v;) which are “as good as”
the class of allmaps v of X into all compact Hausdorff spaces K. For this purpose,
we want a bound on the cardinalities of the closures of all images of X under maps
into compact Hausdorff spaces K. To get this, we would like to say that every point
of the closure of the image of X somehow “depends” on the images of elements
of X, in such a fashion that different points “depend” on these differently; and
then bound the number of kinds of “dependence” there can be, in terms of the
cardinality of X. The next lemma establishes the “different points depend on X
in different ways” idea, and the corollary that follows gives the desired bound.

LEMMA 3.17.3. Let K be a Hausdorff topological space, and for any k € |K]|,
let N(k) denote the set of all open neighborhoods of k (open sets in K containing
k). Then for any map v from a set X into K, and any two points ki # ko of the
closure of v(X) in K, one has v"1(N(k1)) # v~ (N(k2)) (where by v=1(N(k))
we mean {v=Y(U) | U € N(k)}, a subset of P(X)).

PRrROOF. Since k; (i =1, 2) is in the closure of v(X), every neighborhood of
k; in K has nonempty intersection with v(X), i.e., every member of v=(N(k;))
is nonempty. Since N(k;) is closed under pairwise intersections, so is v=1(N(k;)).
But since K is Hausdorff and ki # ko, these two points possess disjoint neigh-
borhoods, whose inverse images in X will have empty intersection. If the sets
v (N (k1)) and v~ (N (ky)) were the same, this would give a contradiction to the
above nonemptiness observation. O

Thus, we can associate to distinct points of the closure of v(X) distinct sets
of subsets of X. Hence,

COROLLARY 3.17.4. In the situation of the above lemma, the cardinality of the

QCard X

closure of v(X) in K is <2 . O
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So now, given any topological space X, let us choose a set S of cardinality
22““1‘)(‘, and let A denote the set of all pairs a = (K,, u,) such that K, is a
compact Hausdorff topological space with underlying set |K,| C S, and u, is a

continuous map X — K,. (We no longer need to keep track of cardinalities, but if
seard | X|

we want to, card A < 22 , assuming X infinite. The two additional expo-
nentials come in when we estimate the number of topologies on a set of < g2 IX
elements.) Thus, if v is any continuous map of X into a compact Hausdorff space
K, and we write K’ for the closure of v(X) in K, then the pair (K’, v) will be
“isomorphic” to some pair (K,, u,) € A, in the sense that there exists a homeo-

morphism between K’ and K, making the diagram below commute.

K C K
. c
T
K,

We now form the compact Hausdorff space P = 'I_I'ae 4Kq4, and the map
u: X — P induced by the u,’s, and let C C P be the closure of u(X). It
is easy to show, as we did for groups in §2.3, that the pair (C, u) satisfies the
universal property of Definition 3.17.2. Thus:

THEOREM 3.17.5. Every topological space X has a Stone-Cech compactification
(C, u) in the sense of Definition 3.17.2. O

Exercise 3.17:2. Show that in the above construction, u(X) will be homeomor-
phic to X under wu if and only if X can be embedded in a compact Hausdorff
space K (where an “embedding” means a continuous map f: X — K inducing
a homeomorphism between X and f(X), the latter set being given the topology
induced by that of K). Examine conditions on X under which these equivalent
statements will hold. Show that for any topological space X, there exists a uni-
versal map into a space Y embeddable in a compact Hausdorff space, and that
this map is always onto, but that it may not be one-to-one. Can it be one-to-one
and onto but not a homeomorphism?

Note: Most authors use the term “compactification” to mean a dense embedding
in a compact space. Hence, they only consider a space X to have a Stone-Cech
compactification if the map w that we have constructed is an embedding.

Exercise 3.17:3. Suppose we leave off the condition “Hausdorff” — does a space
X always have a universal map into a compact space C'? A compact T space

c? ...

Exercise 3.17:4. Let C be the Stone-Cech compactification of the real line R,
and regard R as a subspace of C.

(i) Show that C'—R has exactly two connected components.

(The above shows that there was a grain of truth in the naive idea that
R U {+00, —o0} was the universal compactification of R. Exercise 3.17:5 will
also be relevant to that idea.)
(ii) What can you say about path-connected components of C —R?

(iii) Show that no sequence in R converges to a point of C' — R.
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A continuous map of R into a topological space K may be thought of as an
open curvein K. If K is a metric space one can define the length (possibly infinite)
of this curve.

Exercise 3.17:5. Show that if v: R — K is a curve of finite length in a compact
(or more generally, a complete) metric space K, then v factors through the
inclusion of R in RU {400, —00}.

Is the converse true? I.e., must every map R — K which factors through
the inclusion of R in R U {400, —oo} have finite length?

Exercise 3.17:6. (Exploring possible variants of Exercise 3.17:4-3.17:5.) It would
be nice to get a result like the first assertion of the preceding exercise, but with a
purely topological hypothesis on the map v, rather than a condition involving a
metric on K. Consider, for instance, the following condition on a map v of the
real line into a compact Hausdorff space K :

For every closed set V C K, and openset U D V, theset v~ 1(U) C R

(3.17.6)  has only finitely many connected components that contain points of

v (V).
(You should convince yourself that this fails for the two cases shown in
(3.17.1).)
(i) Can we replace the assumptions in Exercise 3.17:5 that K is a metric space
and v has finite length by (3.17.6) or some similar condition?
(ii) In the plane R2, let X be the open unit disc, C' the closed unit disc, and
w: X — C the inclusion map. Does the pair (C, u) have any universal property
with respect to X, like that indicated for R U {400, —co} with respect to R in
the preceding exercise?
(iii) Does the open disc have a universal path-connected compactification?
(iv) In general, if C is the Stone-Cech compactification of a “nice” space X,

what can be said about connected components, path components, homotopy,
cohomotopy, etc. of C' — X ?

In §2.4 we saw that we could improve on the construction of the free group
on X from “terms” by noting that a certain subset of the terms would make do
for all of them. For the Stone-Cech compactification, the “big direct product”
construction is subject to a similar simplification. In that construction, we made
use of all maps (up to homeomorphism) of X into compact Hausdorff spaces of
reasonable size. I claim that we can in fact make all the “distinctions” we need
using maps into the closed unit interval, [0, 1]! The key fact is that any two points
of a compact Hausdorff space K can be separated by a continuous map into [0, 1]
(Urysohn’s Lemma). I will sketch how this is used.

Let X be any topological space, let W denote the set of all continuous maps
w: X — [0,1], let u: X — [0, 1] be the map induced by (w),ew, and let
C C [0, 1J" be the closure of u(X). It is immediate that C' has the property

Every continuous function of X into [0, 1] is the composite of u with
(3.17.7)  a unique continuous function C' — [0, 1] (namely, the restriction to
C of one of the projections [0, 1] — [0, 1]).

To show that C' has the universal property of the Stone-Cech compactification
of X, let K be a compact Hausdorff space. We can separate points of K by some
set S of continuous maps s: K — [0, 1], hence we can embed K in a “cube”
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[0, 1]%. (The map K — [0, 1]° given by our separating family of functions is one-
to-one; hence, as K is compact Hausdorff, it will be a topological embedding [96,
Theorem 5.8, p.141].) Let us therefore assume, without loss of generality, that
K is a subspace of [0, 1]°. Now given any map v: X — K, we regard it as a
map into the overspace [0, 1]S , and get a factorization v = gu for a unique map
g: C —[0,1]° by applying (3.17.7) to each coordinate. Because K is compact, it
is closed in [0, 1]%, so ¢ will take C, the closure of u(X), into K, establishing
the universal property of C. Cf. [96, pp. 152-153].

Another twist: Following the idea of Exercise 2.3:6, we may regard a point ¢
of the Stone-Cech compactification C' of a space X as determining a function ¢
which associates to every continuous map v of X into a compact Hausdorff space
K apoint ¢(v) € K — namely, the image of ¢ under the unique extension of v to
C. This map ¢ will be “functorial”, i.e., will respect continuous maps f: K1 — Ko,
in the sense indicated in the diagram below.

/’

X

Ki > E(U)

V™ K, 5 &(fv)

From Urysohn’s Lemma one can deduce that ¢ is determined by its behavior
on maps w: X — [0, 1], hence, more generally, by its behavior on maps w of X
into closed intervals [a, b] C R. We carry this observation further in

Exercise 3.17:7. A bounded real-valued continuous function on X can be re-
garded as a continuous map from X into a compact subset of R, and our ¢
can be applied to this map.

(i) Show that in this way one may obtain from ¢ a function from the set B(X)
of all bounded real-valued continuous functions on X to the real numbers R. (To
prove this function well-defined, i.e., that the result of applying ¢ to a bounded
function is independent of our choice of compact subset of R containing the
range of this function, use the functoriality property of ¢.)

(ii) Show that this map is a ring homomorphism B(X) — R (with respect to
the obvious ring structure on B(X)).

One can show, further, that every ring homomorphism B(X) — R is continu-
ous, and deduce that each such homomorphism is induced by a point of C. So one
gets another description of the Stone-Cech compactification C' of X, as the space
of homomorphisms into R of the ring B(X) of bounded continuous real-valued
functions on X. The topology of C is the function topology on maps of B(X)
into R.

Perhaps I have made this approach sound too esoteric. A simpler way of putting
it is to note that every bounded continuous real function on X (i.e., every con-
tinuous function which has range in a compact subset of R) extends uniquely
to a bounded continuous real function on its Stone-Cech compactification C, so
B(X) = B(C); and then to recall that for any compact Hausdorff space C, the
homomorphisms from the function-ring B(C') into R are just the evaluation func-
tions at points of C.

One can use this approach to get another proof of the existence of the Stone-
Cech compactification of a topological space [78, Chapter 6]. This homomorphism
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space can also be identified with the space of all mazimal ideals of B(X), equiva-
lently, of all prime ideals that are closed in the topology given by the sup norm.

Exercise 3.17:8. Suppose B’ is any R-subalgebra of B(X). Let C’ denote the
set of all maximal ideals of B’. Show that there is a natural map m: C — C’.
Show by examples that this map can fail to be one-to-one (even if B’ separates
points of X), or to be onto. Try to find conditions for it to be one or the other.

The Stone-Cech compactification of the topological space R is enormous, since
examples like (3.17.1) show that it has to be compatible with distinctions among
points made by a vast class of closures of images of R. One may wonder whether
any noncompact Hausdorff space has a Stone-Cech compactification that is more
modest. Can it add only one point to the space, for instance? The next exercise
finds conditions for this to happen. We shall see in Exercise 4.5:17 how to get a
space X that satisfies these conditions.

Exercise 3.17:9. Let X be a noncompact topological space which can be em-
bedded in a compact Hausdorff space. Show that the following conditions are
equivalent.

(a) The Stone-Cech compactification of X has the form u(X) U {y}, where u
is the universal map of X into that compactification, and y is a single point not
in u(X).

(b) Of any two disjoint closed subsets F, G C X, at least one is compact.

(¢) Every continuous function X — [0, 1] is constant on the complement of
some compact subset of X.

One can also consider universal constructions which mix topological and alge-
braic structure:

Exercise 3.17:10. Let G be any topological group (a group given with a Hausdorff
topology on its underlying set, such that the group operations are continuous).
Show that there exists a universal pair (C, h), where C is a compact topological
group, and h: G — C a continuous group homomorphism.

This is called the Bohr compactification of G.
Show that h(G) is dense in C. Is h generally one-to-one? A topological

embedding? What will be the relation between C' and the Stone-Cech compact-
ification of the underlying topological space of G?

If it helps, you might consider some of these questions in the particular case
where G is the additive group of the real line.

In [107, §41], the Bohr compactification of a topological group G is obtained
as the maximal ideal space of a subring of B(G), the subring of “almost periodic”
functions.

Most often, complex- rather than real-valued functions are used in the ring-of-
bounded-functions constructions we have discussed.

3.18. Universal covering spaces

Let X be a pathwise connected topological space with a basepoint (distin-
guished point) xg. (Formally, this would be defined as a 3-tuple (|X], T, xo),
where |X| is a set, T is a pathwise connected topology on |X|, and xy is an
element of |X|.)

A covering space of X means a pair (Y, ¢), where Y is a pathwise connected
space with a basepoint g, and c is a continuous basepoint-preserving map ¥ — X,
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such that every x € X has a neighborhood V' such that ¢=1(V) is homeomorphic,
as a space mapped to V, to a direct product of V' with a discrete space. (Draw
a picture!) Such a ¢ will have the unique path-lifting property: Given any con-
tinuous map p: [0, 1] = X taking 0 to xg, there will exist a unique continuous
map p: [0,1] — Y taking 0 to yo such that p = c¢p. Further, p will depend
continuously on p in the appropriate function-space topology.

Given X, consider any covering space (Y, ¢) of X, and let us ask what points
of Y we can “describe” in a well-defined manner.

Of course, we have the basepoint, yo. Further, for every path p in X starting
at the basepoint g, we know there will be a unique lifting of p to a path p in
Y starting from yg; so Y also has all points of this lifted path. It is enough,
however, to note that we have the endpoint p(1) of each such lifted path, since
all the other points of p can be described as endpoints of liftings of “subpaths” of
p. In fact, every y € Y will be the endpoint p(1) of a lifted path in X. For Y
was assumed pathwise connected, hence for any y € Y we can find a path ¢ in Y
with ¢(0) = yo, ¢(1) = y. Letting p = cq, a path in X, we see that ¢ = p, so
y = p(1).

Suppose p and p’ are two paths in X; when will p(1) and p’(1) be the same
point of Y ? Clearly, a necessary condition is that these two points have the same
image z in X : p(1) = p’(1) = . Assuming this condition, note that if p and p’
are homotopic in the class of paths in X from zy to x, then as one continuously
deforms p to p’ in this class, the lifted path in Y will vary continuously, hence its
endpoint in ¢~ (z) will vary continuously. But ¢~!(x) is discrete, so the endpoint
must remain constant. Thus, p’s being homotopic to p’ in the class of paths with
these specified endpoints implies p(1) = ];’(1)

So in general, we get a point of Y for every homotopy class [p] of paths in X
with initial point g and common final point. In a particular covering space Y,
there may or may not be further equalities among these points of Y’; but we can ask
whether, if we write U for the set of such homotopy classes of paths, and u for the
map from U to X defined by wu([p]) = p(1), we can make U a topological space
in such a way that the pair (U, u) is a covering space for X. Under appropriate
assumptions on the topology of X (the hypotheses used in [88] are that X is
connected, locally pathwise connected, and semi-locally simply connected), this
can indeed be done. The resulting covering space U has a unique continuous map
onto each covering space Y of X, which respects basepoints and respects the maps
into X. Hence (U, u) is called the universal covering space of X.

The universal covering space is a versatile animal — like the direct product of
groups, it has, in addition to the above left universal property, a right universal
one:

It is not hard to show that U is simply connected. Consider, now, pairs (S, ¢),
where S is a simply connected pathwise connected topological space with basepoint
so, and c¢: S — X a basepoint-respecting continuous map. Let us ask, for such
a space S, the question that we noted in §3.8 as leading to right universal con-
structions: If s is an arbitrary point of S, what data will it determine that can be
formulated in terms of the given space X 7 Well, obviously s determines the point
¢(s) € X. To get more information, note that since S is pathwise connected, there
will be some path ¢ in S connecting sy to s; and since S is simply connected, all
such paths ¢ are homotopic. Applying ¢ to these paths, we see that s determines
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a homotopy class of paths in X from zg to c¢(s). But as we have just noted, the
set of homotopy classes of paths from zy to points of X can (under appropriate
conditions) itself be made into a simply connected space, the universal covering
space of X. One deduces that this space U is right universal among simply con-
nected spaces with basepoint, given with maps into X (diagram below).

f

X U

Ve d1d

S

We could also look for a right universal covering space for X, or a simply
connected space with basepoint having a left universal map into X. But these turn
out to be uninteresting: They are X itself, and the one-point space.

There are many other occurrences of universal constructions in topology. Some,
like the two considered in this and the preceding section, can be approached in the
same way as universal constructions in algebra. Others, used in algebraic topology,
are different in that one is interested, not in maps being equal, unique, etc., but
homotopic, unique up to homotopy, etc.. These conditions can be brought into the
same framework as our other universal properties via the formalism of category
theory (Chapters 6 and 7 below), but the tasks of constructing and studying the
objects these conditions characterize require different approaches, which we will not
treat in this course.



Part 11

Basic tools and concepts.

In the next five chapters we shall assemble the concepts and tools needed for the
development of a general theory of algebras and of universal constructions among
them.

In Chapters 4 and 5, we discuss ordered sets, lattices, closure operators, and
related concepts, since these will be used repeatedly. Because of the relation be-
tween well-ordering and the Axiom of Choice, after discussing well-ordered sets, 1
take the occasion to review briefly the Zermelo-Fraenkel axioms for set theory, and
several statements equivalent to the Axiom of Choice.

Clearly, the general context for studying universal constructions should be some
model of “a system of mathematical objects and the maps among them”. This is
provided by the concept of a category. We develop the basic concepts of category
theory in Chapter 6, and in Chapter 7 we formalize universal properties in category-
theoretic terms.

Finally, in Chapter 8 we introduce the categories that will be of special interest
to us: the varieties of algebras.
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CHAPTER 4

Ordered sets, induction, and the Axiom of Choice

4.1. Partially ordered sets

We began Chapter 1 by making precise the concept of a group. Let us now do
the same for that of a partially ordered set.

A partial ordering on a set is an instance of a “relation”. This is a different sense
of the word from that of the last two chapters. These notes will deal extensively
with both kinds of “relations”; which sense is meant will generally be clear from
context. When there is danger of ambiguity, I will make the distinction explicit, as
I do, for instance, in the index.

Intuitively, a relation on a family of sets Xi, ..., X,, means a condition on
n-tuples (z1, ..., ) (1 € X1,...,2, € X,,). Since the information contained in
the relation is determined by the set of n-tuples that satisfy it, the relation is taken
to be this set in the formal definition, given below. That the relation is viewed as
a “condition” comes out in the notation and language used.

DEFINITION 4.1.1. If X4, ..., X,, are sets, a relation on Xq, ..., X,, means
a subset R C X1 x -+ X X,,. Relations are often written as predicates; i.e., the
condition (x1, ..., n) € R may be written R(xy, ..., xp), or Rxy... xp, or, if
n=2, as r1Rxs.

A relation on X, ..., X, i.e., a subset R C X", is called an n-ary relation
on X.

If R is an n-ary relation on X, and Y is a subset of X, then the restriction
of R to' Y means RNY™, regarded as an n-ary relation on Y.

‘We now recall

DEFINITION 4.1.2. A partial ordering on a set X means a binary relation “<”
on X satisfying the conditions

VreX) z<z (reflexivity),
Vz,yeX) z<y Ny<z = x=y (antisymmetry),
Ve,y,z€X) z<y, y<z = <z (transitivity).

A total ordering on X means a partial ordering which also satisfies
Vz,yeX) z<y ory<uz.

A partially (respectively totally) ordered set means a set X given with a partial
(total) ordering <. (“Partially ordered set” is often shortened to “poset”, though
we will not do so here.)

If X s partially ordered by <, and Y is a subset of X, then Y will be
understood to be partially ordered by the restriction of <, which will be denoted
by the same symbol unless there is danger of ambiguity. This is called the induced
ordering on Y.
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A more formal definition would make a partially ordered set a pair P = (|P|, <)
where < is a partial ordering on |P|. But for us, partially ordered sets will in
general be tools rather than the objects of our study, and it would slow us down to
always maintain the distinction between P and |P|; so we shall usually take the
informal approach of understanding a partially ordered set to mean a set P for
which we “have in mind” a partial ordering relation <. Occasionally, however, we
shall be more precise and refer to the pair (|P|, <).

Standard examples of partially ordered sets are the set of real numbers with
the usual relation <, the set P(X) of subsets of any set X under the inclusion
relation C, and the set of positive integers under the relation “|”, where m | n
means m divides n.

A total ordering is also called a linear ordering. The term “ordered” without
any qualifier is used by some authors as shorthand for “partially ordered”, and by
others for the stronger condition “totally ordered”; we will here generally specify
“partially” or “totally”.

The versions of the concepts of homomorphism and isomorphism appropriate
to partially ordered sets are given by

DEFINITION 4.1.3. If X and Y are partially ordered sets, an isotone map from
X to Y means a function f: X =Y such that ©1 <xo = f(x1) < f(x2).

An invertible isotone map whose inverse is also isotone is called an order iso-
morphism.

Exercise 4.1:1. Give an example of an isotone map of partially ordered sets which
is invertible as a set map, but which is not an order isomorphism.

Some well-known notation: When < is a partial ordering on a set X, one
commonly writes > for the opposite relation; i.e., z > y means y < z. Clearly the
relation > satisfies the same conditions of reflexivity, antisymmetry and transitivity
as <.

This leads to a semantic problem: As long as > is just an auxiliary notation
used in connection with the given ordering <, one thinks of an element = as being
“smaller” (or “lower”) than an element y # z if z < y. But the fact that > is
also reflexive, antisymmetric and transitive means that one can take it as a new
partial ordering on X, i.e., consider the partially ordered set (X, >), and one
should consider z as “smaller” than y in this partially ordered set if the pair
(x, y) belongs to this new ordering. Such properties as which maps X — Y are
isotone (with respect to a fixed partial ordering on Y') clearly change when one
goes from considering X under < to considering it under >.

The set X under the opposite of the given partial ordering is called the opposite
of the original partially ordered set. When one uses the formal notation P =
(|P], <) for a partially ordered set, one can write P°P = (|P|, >). One may also
replace the symbol > by <°P, writing P°P = (|P|, <°P). Thus, if z is smaller
than y in P, ie., x <y, then y is smaller than z in P°P, ie., y <°? z. (“Dual
ordering” is another term often used, and * is sometimes used instead of °P.)

In these notes we shall rarely make explicit use of the opposite partially ordered
set construction. But once one gets past the notational confusion, the symmetry
in the theory of partially ordered sets created by that construction is a useful tool:
After proving any result, one can say “By duality ...”, and immediately deduce
the corresponding statement with all ordering relations reversed.
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One also commonly uses x < y as an abbreviation for (z < y) A (z # y), and
of course « > y for (z > y) A (x # y). These relations do not satisfy the same
conditions as <. The conditions they satisfy are noted in

Exercise 4.1:2. Show that if < is a partial ordering on a set X, then the relation
< is transitive and is antireflezive, i.e., satisfies (Vx € X) z £ x. Conversely,
show that any transitive antireflexive binary relation < on a set X is induced
in the above way by a unique partial ordering <.

A relation < with these properties (transitivity and antireflexivity) might be
called a “partial strict ordering”. One can thus refer to “the partial strict ordering
< corresponding to the partial ordering <,” and “the partial ordering < corre-
sponding to the partial strict ordering <”. Of course, for a partial ordering denoted
by a symbol such as “|” (“divides”), or R (a partial ordering written as a binary
relation), there is no straightforward symbol for the corresponding partial strict
ordering.

Exercise 4.1:3. For partially ordered sets X and Y, suppose we call a function
f: X =Y a strict isotone map if x <y = f(x) < f(y). Show that

one-to-one and isotone = strict isotone = isotone,
but that neither implication is reversible.

In contexts where “<” already has a meaning, if another partial ordering has
to be considered, it is often denoted by a variant symbol such as <. One then uses
corresponding symbols >, <, > for the opposite order, the strict order relation,
etc.. (However, order-theorists dealing with a partial ordering < sometimes write
y = = to mean “y covers z”, that is “y > = and there is no z between y and
x”. When the symbol is used this way, it cannot be used for the strict relation
associated with a second ordering. We shall not use the concept of covering in these
notes.)

A somewhat confused situation is that of symbols for the subset relation. Most
often, the notation one would expect from the above discussion is followed: C is
used for “is a subset of”, D for the opposite relation, and C, D for strict inclusions.
We will follow these conventions here. However, many authors, especially in Eastern
Europe, write C for “is a subset of”, a usage based on the view that since this is
a more fundamental concept than that of a proper subset, it should be denoted by
a primitive symbol, not by one obtained by adding an extra mark to the symbol
for “proper subset”. Such authors use & (or typographical variants) for “proper
subset” (and the reversed symbols for the reversed relations). There was even at
one time a movement to make “<” mean “less than or equal to”, with S for strict
inequality. Together with the above set-theoretic usage, this would have formed a
consistent system, but the idea never got off the ground. Finally, many authors,
for safety, use a mixed system: C for “subset” and & for “proper subset”. (That
was the notation used in the first graduate course I took, and I sometimes follow it
in my papers. However, I rarely need a symbol for strict inclusion, so the question
of how to write it seldom comes up.)

Although partially ordered sets are not algebras in the sense in which we shall
use the term, many of the kinds of universal constructions we have considered for
algebras can be carried out for them. In particular

DEFINITION 4.1.4. Let (X;)ier be a family of partially ordered sets. Then
their direct product will mean the partially ordered set having for underlying set
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the direct product of the underlying sets of the X;, ordered so that (x;)icr < (¥i)ier
if and only if x; <y; for all i € 1.

Exercise 4.1:4. (i) Verify that the above relation is indeed a partial ordering on

the product set, and that the resulting partially ordered set has the appropriate
universal property to be called the direct product of the partially ordered sets X;.
(ii) Let X be a set and R a binary relation on X. Show that there exists a
universal example of a partially ordered set (Y, <) with a map u: X — Y such
that for all x1, 2o € X, one has (z1, 22) € R = wu(z1) < u(ze) in Y. This
may be called the partially ordered set presented by the generators X and the
relation-set R (analogous to the presentations of groups, monoids and rings we
saw in §§3.3, 3.10 and 3.12). Will the map u in general be one-to-one? Onto?
(iii) Determine whether there exist constructions with the universal properties
of the coproduct of two partially ordered sets, and of the free partially ordered
set on a set X. Describe these if they exist.
(iv) Discuss the problem of imposing a set R of further relations on a given
partially ordered set (X, <); i.e., of constructing a universal isotone map of X
into a partially ordered set Y such that the images of the elements of X also
satisfy the relations comprising R. If this can be done, examine the properties
of the construction.

We have noted that for any set X, the set P(X) of subsets of X is partially
ordered by C. Given a partially ordered set S, we may look for universal ways of
representing S by subsets of a set X. Note that if f: X — Y is a map between
sets, then f induces, in natural ways, both an isotone map P(X) — P(Y) and
an isotone map P(Y) — P(X), the first taking subsets of X to their images
under f, the second taking subsets of Y to their inverse images. Let us call these
the “direction-preserving construction” and the “direction-reversing construction”
respectively. Thus, given a partially ordered set S, there are four universal sets
we might look for: a set X having an isotone map S — P(X) universal in terms
of the direction-preserving construction of maps among power sets, a set X with
such a map universal in terms of the direction-reversing construction, and sets X
with isotone maps in the reverse direction, P(X) — S, universal for the same two
constructions of maps among power sets.

Exercise 4.1:5. (i) Write out the universal properties of the four possible con-
structions indicated.

(ii) Investigate which of the four universal sets exist, and describe these as far
as possible.

DEFINITION 4.1.5. Let X be a partially ordered set, S a subset of X, and s
an element of S. Then s is said to be minimal in S if there is no t € S with
t < s, while s is said to be the least element of S if for all t € S, s < t. The
terms maximal and greatest are used for the dual concepts.

(There was really no need to refer to X in the above definition, since the
properties in question just depend on the set S and the induced order relation on
it; but these concepts are often applied to subsets of larger partially ordered sets,
so I included this context in the definition.)

Exercise 4.1:6. Let X be a partially ordered set.

(i) Show that if X has a least element x, then x is the unique minimal element
of X.
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(ii) If X is finite, show conversely that a unique minimal element, if it exists,
is a least element.

(iii) Give an example showing that if X is not assumed finite, this converse is
false.

(T have included this exercise as a warning. I have many times found myself
unwittingly writing or saying “unique minimal element” when I meant “least
element”. It somehow sounds more precise; but it doesn’t mean the same thing.)

Exercise 4.1:7. Let (X, <) be a partially ordered set. Then the pair (X, <)
constitutes a presentation of itself as a partially ordered set in the sense of Ex-
ercise 4.1:4(ii); but of course, there may be proper subsets R of the relation <
such that (X, R) is a presentation of the same partially ordered set. (L.e., such
that R “generates” < in an appropriate sense.)

(i) If X isfinite, show that there exists a least subset of R which generates <.

(ii) Show that this is not in general true for infinite X.

Point (i) of the above exercise is the basis for the familiar way of diagraming
finite partially ordered sets. One draws a picture with vertices representing the
elements of the set, and edges corresponding to the members of the least relation
generating the partial ordering; i.e., the smallest set of order-relations from which
all the others can be deduced. The higher point on each edge represents the larger
element under the partial ordering. This picture is called the Hasse diagram of the
given partially ordered set.

For example, the picture below represents the set of all nonempty subsets of
{0, 1, 2}, partially ordered by inclusion. The relation {1} < {0, 1, 2} is not shown
explicitly, because it is a consequence of the relations {1} < {0, 1} < {0, 1, 2} (and
also of {1} < {1, 2} <{0, 1, 2}).

{0, 1,2}

{0, 1} {0,2) {1,2)

{0} {1} {2}

Here are a few more pieces of commonly used terminology.

DEFINITION 4.1.6. Let < be a partial ordering on a set X.

If x, y are elements of X with x < y, then the interval [z, y|] means the
subset {z € X | ¢ < z <y}, with the induced partial ordering <.

A subset C of a partially ordered set X which is totally ordered under the
induced ordering is called a chain in X.

Elements © and y of X are called incomparable if neither x <y nor y <z
holds. A subset Y C X 1is called an antichain if every pair of distinct elements of
Y is incomparable.

An element x € X 1is said to majorize a subset Y C X if forall y €Y, y < x.
One similarly says x majorizes an element y if y < x.

A subset Y of X is said to be cofinal in X if every element of X is majorized
by some element of Y.

Note that in addition to the above order-theoretic meaning of “chain”, there is
a nonspecialized use of the word; for instance, one speaks of a “chain of equalities
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1 = X9 = -+ = x,.” We shall at times use the term in this nontechnical way,
relying on context to avoid ambiguity.

Unfortunately, there are no standard terms for the duals of the concepts “ma-
jorize” and “cofinal”. One occasionally sees “minorize” and “coinitial”, but these
seem awkward. I often write “downward cofinal” for the dual of “cofinal”. The
best circumlocution I know for the dual of “majorizes” is, “is majorized by every
element of”.

The concept of cofinality, noted in the last sentence of Definition 4.1.6, probably
originated in topology: If s is a point of a topological space S, and N(s) the set of
all neighborhoods of s, then a neighborhood basis of s means a subset B C N(s)
cofinal in that set, under the ordering by reverse inclusion. The virtue of this
concept is that one can verify that a function on S approaches some limit at s by
checking its behavior on members of such a B. E.g., one generally checks continuity
of a function at a point s of the real line using the cofinal system of neighborhoods
{(s—e,s+¢)]|e>0}

Exercise 4.1:8. (i) Show that if X is a finite partially ordered set, then a subset
Y is cofinal in X if and only if it contains all maximal elements of X.
(ii) Show by example that this is not true for infinite partially ordered sets. Is
one direction true?

Exercise 4.1:9. Let X be a finite partially ordered set. One defines the height of
X as the maximum of the cardinalities of all chains in X, and the width of X
as the maximum of the cardinalities of all antichains in X.

(i) Show that card(X) < height(X) - width(X).

(The above result fails for infinite partially ordered sets, as will be shown in
Exercise 4.6:12(ii).)
(ii) Must every (or some) chain in X of maximal cardinality have nonempty
intersection with every (or some) antichain of maximal cardinality?

DEFINITION 4.1.7. Let < and < be partial orderings on a set X. Then one
says < is an extension or strengthening (or sometimes, a refinement) of < if it
contains the latter, as subsets of X x X; thatis, if t <y = z <uy.

The relation of “extension” is a partial ordering on the set of partial orderings
on X. This fact can be looked at as follows. If we regard each partial ordering
on X as a subset R C X x X, and partially order the class of all subsets of
X x X by inclusion (the relation C), then the relation of extension is the restriction
of this partial ordering to the subclass of those R C X x X which are partial
orders. This observation saves us the work of verifying that the concept of extension
satisfies the conditions for being a partial order, since we know that the restriction
of a partial order on a set to any subset is again a partial order. Many of the
partial orderings that arise naturally in mathematics are, similarly, restrictions of
the inclusion relation or of some other natural partial ordering on a larger set.

Exercise 4.1:10. Consider the set of all partial orderings on a set to be partially
ordered as above.
(i) Show that the mazimal elements in the set of all partial orderings on a set
X are precisely the total orderings.
(i) How many maximal elements does the set of partial orderings of a set of n
elements have?
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(iii) How many minimal elements does the set of partial orderings of a set of n
elements have?

(iv) Show that every partial ordering on a finite set X is the set-theoretic in-
tersection of a set of total orderings.

If < is a partial ordering on a finite set, the smallest number of total orderings

that can be intersected to get < is called the “order dimension” of the partially
ordered set. The next question is open-ended.
(v) What can you say about the order dimension function? (You might look for
general bounds on the order dimension of a partially ordered set of n elements,
try to evaluate the order dimensions of particular partially ordered sets, look at
the behavior of order dimension under various constructions, etc..)

Here is an outstanding open problem.

Exercise 4.1:11. Let (X, <) be a finite partially ordered set. Let N denote the
number of total orderings “<” on X extending < (“linearizations of <”) and
for z, y € X, let N, , denote the number of these extensions “ <” which satisfy
z <.

(i) Prove or disprove, if you can,
Fredman’s conjecture: For any (X, <) such that < is not a total order, there
exist elements x, y € X such that

(4.1.8) 1/3 < N, ,/N < 2/3.

If you cannot settle this open question, here are some special cases to look
at:
(ii) Let r be a positive integer, and let X be the partially ordered set consisting
of a chain of r elements, p; < --- < p,, and an element ¢ incomparable with all
the p,. What are N and the N, , in this case? Verify Fredman’s conjecture
for this partially ordered set.
(iii) Is the above example consistent with the stronger assertion that if X has
no greatest element, then an = and a y satisfying (4.1.8) can be chosen from
among the mazimal elements of X 7 With the assertion that for every two
maximal chains in X, one can choose an z in one of these chains and a y in
the other satisfying (4.1.8)7 If one or the other of these possible generalizations
of Fredman’s Conjecture is not excluded by the above example, can you find an
example that does exclude it?
(iv) Let r again be a positive integer, and let X be the set {1, ..., r} partially
ordered by the relation < under which ¢ < j if and only if j —i > 2 (where
in this definition > has the usual meaning for integers). Verify the conjecture
in this case as well. For how many two-element subsets {i, j} are ¢ and j
incomparable under =, and of these, how many satisfy (4.1.8)7
(v) If X is any partially ordered set such that the function N, ,/N never
takes on the value 1/2, define a relation <; on X by writing = <, y if either
r =y, or Ny ,/N > 1/2. Determine whether this is always, sometimes or
never a (total) ordering on X. Show that for any X which is a counterexample
to Fredman’s Conjecture, <; must be a total ordering on X.

Fredman’s conjecture arose as follows. Suppose that (X, <) is a finite totally
ordered set, but that one has only partial information on its ordering; namely, one
knows for certain pairs of elements x, y which element is greater, but not for all
pairs. This partial information is equivalent to a partial ordering < on X weaker
than <. Suppose one is capable of “testing” pairs of elements to determine their
relation under <, and one wants to fully determine < using a small number of
such tests. One would like to choose each test so that it approximately halves the
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number of candidate orderings. Examples show that one cannot do as well as that;
but Fredman’s Conjecture would imply that one can always reduce this number by
at least a third at each step. For some literature on the subject, see [60] and papers
referred to there, and more recently, [120].

Conceivably, one might be able to prove Fredman’s conjecture by assuming
one had a counterexample, and considering the peculiar place the relation <, of
part (v) of the above exercise would have to have among the total orderings on X
extending <. One can see something of the structure of the set of all total orderings
on a set from the next exercise.

Exercise 4.1:12. Define the distance between two total orderings <;, <; on a
finite set X as

d(<;, <;) = number of pairs of elements (z, y) such that x <; y, = >, y.
Show that d is a metric on the set of all total orderings, and that for any
partial ordering < on X, any two total orderings extending < can be connected
by a chain (not meant in the order-theoretic sense!) <j, ..., <, where each <;
is a total ordering extending =, and d(<;, <;41) =1 for i=1,...,n— 1.

Here is another open question.

Exercise 4.1:13. (Reconstruction problem for finite partially ordered sets.) Let P
and ) be finite partially ordered sets with the same number n > 3 of elements,
and suppose they can be indexed P = {p1, ..., pn}, @ ={aq1, ..., g} in such
a way that for each i, P—{p;} and Q—{q¢;} are isomorphic as partially ordered
sets. Must P be isomorphic to Q7

(Here nothing is assumed about what bijections give the isomorphisms
P—{p} = Q- {q}. We are definitely not assuming that they are the corre-
spondences p; «— ¢; (j # 1); if we did, the question would have an immediate
positive answer. A way to state the hypothesis without referring to such a corre-
spondence is to say that the families of isomorphism classes of partially ordered
(n—1)-element subsets of P and of @, counting multiplicities, are the same.)

If the above question has an affirmative answer, then “one can reconstruct
P from its (n—1)-element partially ordered subsets”, hence the name of the
problem. What is known on the subject is surveyed in [124].

(The analogous reconstruction problem for graphs is also open, and better
known [84].)

4.2. Digression: preorders

One sometimes encounters binary relations which, like partial orderings, are
reflexive and transitive, but which do not satisfy the antisymmetry condition. For
instance, although the relation “divides” on the positive integers is a partial order-
ing, the relation “divides” on the set of all integers is not antisymmetric, since every
n divides —n and vice versa. More generally, on the elements of any commutative
integral domain, “divides” is a reflexive transitive relation, but for every element x
and invertible element u, x and uz each divide the other. Similarly, on a set of
propositions (sentences in some formal language) about a mathematical situation,
the relation P = (@ is reflexive and transitive, but not generally antisymmetric:
Distinct sentences can each imply the other, i.e., represent equivalent conditions.

To cover such situations, one makes

DEFINITION 4.2.1. A reflexive transitive (not necessarily antisymmetric) binary
relation on a set X 1is called a preorder on X.
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The concept of a preordered set can be reduced in a natural way to a combi-
nation of two sorts of structure that we already know:

PROPOSITION 4.2.2. Let X be a set. Then the following data are equivalent.
(i) A preorder < on X.

(ii) An equivalence relation = on X, and a partial ordering < on the set X/~
of equivalence classes.

Namely, to go from (i) to (ii), given the preorder < define x ~ y to mean
(x 5 y)A(y < x), and for any two elements [x], [y] € X/~, define [z] < [y] in
X/~ to hold if and only if © <y holds in X.

Inversely, given, as in (ii), an equivalence relation = and a partial ordering
< on X/=, one gets a preorder < by defining x <Xy to hold in X if and only if
[z] < [y] in X/=. O

Exercise 4.2:1. Prove the above proposition. (This requires one verification of
well-definedness, and some observations showing why the two constructions, per-
formed successively in either order, return the original data.)

This is neat: A reflexive transitive relation (a preorder) decomposes into a re-
flexive transitive symmetric relation (an equivalence relation) and a reflexive tran-
sitive antisymmetric relation (a partial ordering).

As an example, if we take the set of elements of a commutative integral domain
R, preordered by divisibility, and divide out by the equivalence relation of mutual
divisibility, we get a partially ordered set, which can be identified with the set of
principal ideals of R partially ordered by reverse inclusion.

In view of Proposition 4.2.2, there is no need for a theory of preorders — that is
essentially subsumed in the theory of partial orderings. But it is valuable to have
the term “preorder” available when such relations arise.

The remainder of this section consists of some exercises on preorders which will
not be used in subsequent sections. Exercises 4.2:2-4.2:9 concern a class of preorders
having applications to ring theory, group theory, and semigroup theory. (Depen-
dencies within that group of exercises: All later exercises depend on 4.2:2-4.2:3, and
4.2:5 is also assumed in 4.2:6-4.2:9. If you wish to hand in one of these exercises
without writing out the details of others on which it depends, you should begin with
a summary of the results from the latter that you will be assuming. You might
check that summary with me first.) The last exercise of this section, in contrast,
will relate preorders and topologies.

Exercise 4.2:2. If f and g are nondecreasing functions from the positive integers
to the nonnegative integers, let us write f < ¢ if there exists a positive integer
N such that for all 4, f(i) < g(Ni).

(i) Show that =< is a preorder, but not a partial order, on the set of nonde-
creasing functions.

(ii) On the subset of functions consisting of all polynomials with nonnegative
integer coeflicients, get a description of < in terms of the expressions for these
polynomials, and determine its “decomposition” as in Proposition 4.2.2.

(iii) Do the same for the union of the set of polynomials of (ii), and the set of
exponential functions i — n' for all integers n > 1.

(iv) Show that the partial ordering < on equivalence classes induced by the
above preordering < on nondecreasing functions from positive integers to non-
negative integers is not a total ordering.
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(v) Regarding the nondecreasing functions from positive integers to nonnegative
integers as a monoid under addition, show that the equivalence relation ~ in-
duced by < is a congruence on this monoid, so that the factor set again becomes
an additive monoid.

Exercise 4.2:3. Let S be any monoid, and z1, ..., z,, elements of S, and for
each positive integer ¢, let g, .. 4, (i) denote the number of distinct elements of
S which can be written as words of length < ¢ in x1,...,x, (where factors may
occur more than once). This is a nondecreasing function from the positive integers
to the nonnegative integers, the growth function associated with x1,...,z,.
Show that if S is generated by zi, ..., x,, and if yi, ..., ym is any fi-
nite family of elements of S, then in the notation of the preceding exercise,
91, s ym = Gz1, ...z, Deduce that if zq, ..., z, and y1, ..., yn are two gen-
erating sets for the same monoid, then gz, .. ..~ Gy, ...y, Where =~ is the
equivalence relation determined as in Proposition 4.2.2 by the preorder <.

Thus, if S is finitely generated, the equivalence class [gy,, ... 4,] is the same
for all finite generating sets x1, ..., x, of S. This equivalence class is therefore an
invariant of the finitely generated monoid S, called its growth rate.

We see also that if a finitely generated monoid S is embeddable in another
finitely generated monoid T, then the growth rate of S must be < that of T.

Exercise 4.2:4. (i) Determine the structure of the partially ordered set consist-
ing of the growth rates of the free abelian monoids on finite numbers of generators
together with those of the free monoids on finite numbers of generators.

(if) With the help of the result of (i), show that the free abelian monoid on m
generators is embeddable in the free abelian monoid on n generators if and only
if m <n.

(iii) Verify that for any positive integer n, the map from the free monoid on n
generators i, ..., T, to the free monoid on 2 generators z, y taking z; to
ry’ (i=1,...,n) is an embedding. Is this consistent with the results of (i)?

This concept of growth rate is more often studied for groups and rings than
for monoids. Note that elements x1, ..., z, of a group G generate G as a
group if and only if x, xl_l, .oty Tp, T, 1 generate G as a monoid, so the group-
theoretic growth function of G with respect to {zi, ..., x,} may be defined
to be the growth function of G as a monoid with respect to the generating set
{z1, xfl, ..ty Ty, T, 1}, The equivalence class of the growth functions determined
in this way by generating sets for G is called the growth rate of the group G, which
is thus the same as the growth rate of G as a monoid. This concept of growth rate
has been applied, in particular, to fundamental groups of manifolds [144].

If R is an algebra over a field k, then in defining its growth rate as an algebra,
one lets gy, ... 2, (i) denote, not the number of distinct elements of R that can be
written as products of < 4 factors taken from {zy, ..., 2, }, but the dimension of
the k-vector space spanned in R by such products. The remainder of the definition
is as for monoids. Though it is a bit of a digression from the subject of preorders,
I will sketch in the next few exercises an important invariant obtained from these
growth rates, and some of its properties.

Exercise 4.2:5. If S is a monoid with finite generating set zi, ..., z,, the
Gel’fand-Kirillov dimension of S is defined as

n(ges, .20 ().

(4.2.3) GK(S) = limsup,; ()
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(Here “In” denotes the natural logarithm, and lim sup, a(i) means

lim;j s o0 SUp;>; a(i).
Thus, if a is a nonnegative function, limsup, a(i) is a nonnegative real number
or +00.)
(i) Show that the right hand side of (4.2.3) is a function only of the growth rate
[921, ..., 2, ], hence does not depend on the choice of generators 1, ..., z,; hence
that the Gel’fand-Kirillov dimension of a monoid is well defined.

(ii) Determine the Gel’fand-Kirillov dimensions of the free abelian monoid and
the free monoid on n generators.

Exercise 4.2:6. In the early literature on Gel’fand-Kirillov dimension, it was often
stated (in effect) that for monoids Si, Sa, one had GK(S; x S3) = GK(S7) +
GK(S3). Sketch an argument that seems to give this result, then point out the
fallacy, and if you can, find a counterexample. (Actually, the statement was
made for tensor products of algebras, rather than direct products of monoids,
but either case would imply the other.)

Exercise 4.2:7. (i) Show that if S is a finitely generated monoid and GK(S) <
2, then GK(S)=0 or 1.
(ii) Show, on the other hand, that there exist finitely generated monoids having
for Gel'fand-Kirillov dimensions all real numbers > 2, and +oo. (Suggestion:
begin by showing that for any finite or infinite set Y of elements of a free monoid
F, one can construct a homomorphic image S of F in which all elements not
having members of Y as subwords have distinct images, while all elements that
do have subwords in S have a common image, “0”.)
(iii) Show that there exist finitely generated monoids with distinct growth rates,
but the same finite Gel’fand-Kirillov dimension.

We haven’t seen any results on growth rates of k-algebras yet. If one is only
concerned with what growth rates occur, there is essentially no difference between
the cases of k-algebras and of monoids, as shown in

Exercise 4.2:8. Let k£ be any field.

Show that for every monoid S with generating set s1, ..., s,, there exists a
k-algebra R with a generating set ry, ..., r, such that for all 4, g,,, . ,. (i) =
Jsq,.... s, (1). Similarly, show that for every k-algebra R with generating set
r1, ..., T'n, there exists a monoid S with a generating set si, ..., sp+1 such

that for all 4, gs,, .. s..1(%1) = gry,...,r, (i) + 1. Deduce that the same sets of
growth rates occur for monoids and for nonzero k-algebras.

However, if one is interested in the growth of algebras with particular ring-
theoretic properties, these do not in general reduce to questions about monoids.
For instance, students familiar with transcendence degrees of field extensions might
do

Exercise 4.2:9. Show that if k£ is a field and R a finitely generated commutative
k-algebra without zero-divisors, then the Gel’fand-Kirillov dimension of R as a
k-algebra (defined, as for monoids, by (4.2.3)) equals the transcendence degree
over k of the field of fractions of R (hence is an integer).

For more on Gel'fand-Kirillov dimension in ring theory, see [101].

For students familiar with the definitions of general topology, another instance
of the concept of preorder is noted in:
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Exercise 4.2:10. (i) Show that if X is a topological space, and if for z, y € X,

we define y <z to mean “the closure of {x} contains y”, then < is a preorder
on X.

(ii) Show that if X is finite, the above construction gives a bijection between
topologies and preorders on X.

(iii) Under the above bijection, what classes of preorders correspond to Tp, re-
spectively T, respectively Tb topologies?

(iv) If X is infinite, is the above map from topologies to preorders one-to-one?
Onto? Can one associate to every preorder on X a strongest and/or a weakest
topology yielding the given preorder under this construction?

4.3. Induction, recursion, and chain conditions

The familiar principle of induction on the natural numbers (nonnegative inte-
gers) that one learns as an undergraduate is based on the order properties of that
set. In this and the next two sections, we shall examine more general kinds of
ordered sets over which one can perform inductive proofs. We shall also see that
analogous to inductive proofs there is a concept of recursive constructions, which
can be performed under similar hypotheses.

(Any students to whom the distinction between “minimal” and “least” elements
in a partially ordered set was new should review Definition 4.1.5 before going on.)

LEMMA 4.3.1. Let (X, <) be a partially ordered set. Then the following con-
ditions are equivalent:

(i)  Ewvery nonempty subset of X has a minimal element.

(ii) For every descending chain xg > x1 > -+ > x; > ... in X indexed by the
natural numbers, there is some n such that x, = T,41 =

(ii") Ewvery strictly descending chain xo > x1 > ... indexed by an initial subset of
the natural numbers (that is, either by {0, 1, ..., n} for some n, or by the set of
all nonnegative integers) is finite (that is, is in fact indexed by {0, 1, ..., n} for
some n).

(ii”) X has no strictly descending chains xo > x1 > ... indexed by the full set of
natural numbers.

PrROOF. (i) = (ii"”) < (ii') <= (ii) is straightforward. Now assume (ii"),
and suppose that (i) failed, i.e., that we had a nonempty subset ¥ C X with no
minimal element. Take any xg € Y. Since this is not minimal, we can find z; < xp.
Since this in turn is not minimal, we can find xo < z;. Continuing this process,
we get a contradiction to (ii”). O

DEFINITION 4.3.2. A partially ordered set X is said to have descending chain
condition (abbreviated “DCC”; called “minimum condition” by some authors) if it
satisfies the equivalent conditions of the above lemma.

Likewise, a partially ordered set X with the dual condition (every nonempty
subset has a mazimal element, equivalently, X has no infinite ascending chains)
is said to have ascending chain condition, or ACC, or maximum condition.

A well-ordered set means a totally ordered set with descending chain condition.

Remark: A chainin X, as defined following Definition 4.1.2, is a totally ordered
subset, and it is meaningless to call such a subset “increasing” or “decreasing”. In
the above lemma and definition, the phrases “descending chain” and “ascending
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chain” are used as shorthand for a chain which can be indexed in a descending,
respectively in an ascending manner by the natural numbers. (One may consider
this a mixture of the order-theoretic meaning of “chain” and the informal meaning,
referring to a sequence of elements indexed by consecutive integers with a speci-
fied relationship between successive terms.) But though this shorthand is used in
the fixed phrases “ascending chain condition” and “descending chain condition”,
we have made the meanings of these phrases explicit, via the above lemma and
definition.

That the natural numbers are well-ordered has been known in one form or
another for millennia, but the importance of ACC and DCC for more general par-
tially ordered sets was probably first noted in ring theory, in the early decades of
the twentieth century. Rings with these conditions on their sets of ideals, partially
ordered by inclusion, are called “Noetherian” and “Artinian” respectively, after
Emmy Noether and Emil Artin who studied them.

One does not need to formally state a “principle of induction over partially
ordered sets with ACC (or DCC)”. Rather, when one wishes to prove a result for
all elements of a partially ordered set X with, say, DCC, one can simply begin,
“Suppose there are elements of X for which the statement is false. Let x be
minimal for this property”, since if the set of such elements is nonempty, it must
have a minimal member. Then one knows the statement is true for all y < z; and if
one can show from this that it is true for x as well, one gets a contradiction, proving
the desired result. Since this is a familiar form of argument, one often abbreviates
it and says, “Assume inductively that the statement is true for all y < x”, proves
from this that it is true for x as well, and concludes that it is true for all elements
of X.

In the most familiar sort of induction on the natural numbers, one starts by
proving the desired result for 0 (or 1). Why was there no corresponding step in
the schema described above? The analog of the statement that our desired result
holds for 0 would be the statement that it holds for all minimal elements of X.
But if one proves that a statement is true for an element x whenever it is true
for all smaller elements, then in particular, one has it in the case where the set of
smaller elements is empty. Depending on the situation, the proof that a result is
true for x if it is true for all smaller elements may or may not involve a different
argument when x is minimal.

Exercise 4.3:1. A noninvertible element of a commutative integral domain C' is
called irreducible if it cannot be written as a product of two noninvertible ele-
ments. Give a concise proof that if C' is a commutative integral domain with
ascending chain condition on ideals (or even just on principal ideals), then every
nonzero noninvertible element of C' can be written as a product of irreducible
elements.

In addition to proofs by induction, one often performs constructions in which
each step requires that a set of preceding steps already have been done. The
definition of the Fibonacci numbers f; (i =0, 1, 2, ...) by the conditions

(433) fo = 0, f1 = ].7 fn+2 = fn+fn+1 for n Z 0

is of this sort. These are called recursive definitions or constructions, and we shall
now see that, like inductive proofs, they can be carried out over general partially
ordered sets with chain conditions.
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Let us analyze what such a construction involves in general, and then show how
to justify it. Suppose X is a partially ordered set with DCC, and suppose that we
wish to construct recursively a certain function f from X to a set T. To say that
for some x € X the value of f has been determined for all ¥ < x is to say that
we have a function fo,: {y |y < x} = T. So “a rule defining f at each z if it
has been defined at all y < x” can be formalized as a T-valued function r on the
set of all pairs (z, f<,) where z € X and f., is a function {y |y < =} — T.
In most applications, our rule defining f at x in terms of the values for y < =z
actually requires that these values satisfy some additional conditions, and we verify
these conditions inductively, as the construction is described recursively. But to
avoid complicating our abstract formalization, let us assume r defined for all pairs
(x, f<z) where z € X and f., is a function {y | y < z} — T. For if we have
a definition of r in “good” cases, we can extend it to other cases in an arbitrary
way (e.g., assume 0 € T and send (z, f<,) to 0 if f., is not “good”). Then
the inductive proof that f is “good” can be formally considered to come after the
recursive construction of f.

We see that the property characterizing the function f constructed recursively
as above is that for each x € X, f(z) is a certain function of the restriction of
f to {y |y < z}. For any function f: X — Y, and any subset Z of X, let us
denote the restriction of f to Z, a function Z — Y, by f|Z. (A variant symbol
which is sometimes used, but which we will not use, is f [ Z.)

We now justify recursive constructions by proving

LEMMA 4.3.4. Let X be a partially ordered set with descending chain condition,
T any set, and r a function associating to every pair (z, f<.) such that x € X,
and f<p is a function {y € X | y<z} — T, an element r(z, f<) € T. Then
there exists a unique function f: X — T such that for all x € X,

f(@) =@, fl{yly<z}).
PrOOF. Let X’ C X denote the set of all z € X for which there exists a
unique function f<,: {y|y <z} — T with the property that

(4.3.5) (Vy <) f<uly) = r(y, f<a {2 ]2<y}).

We claim, first, that for any two elements zo, 1 € X', the functions f<u,, f<u
agree on {y | y<xo A y<x1}. For if not, choose a minimal y in this set at which
they disagree. Then by (43.5), feuy(y) = (v, feuy |{z]2<y}), and fe () =
r(y, f<z, | {#]2<y}). But by choice of y, the restrictions of f<,, and f<,, to {z|
z <y} are equal, hence by the above equations, f<g,(y) = f<s,(y), contradicting
our choice of y.

Next, suppose that X’ were not all of X. Let z be a minimal element of
X — X'. Since, as we have just seen, the functions f<, for y < x agree on the
pairwise intersections of their domains, they piece together into one function f_,
on the union of their domains. (Formally, this “piecing together” means taking the
union of these functions, as subsets of X x T'.) If we now define f<, to agree with
this function fo, on {y | y < «}, and to have the value r(z, f<,) at x, we see
that this function satisfies (4.3.5), and is the unique function on {y | y < 2} which
can possibly satisfy that condition. This means x € X', contradicting our choice
of x.

Hence X’ = X. Now piecing together these functions f<, defined on the sets
{y| y <z}, we get the desired function f defined on all of X. a
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Note that most of the above proof consisted of an inductive verification that for
every = € X, there exists a unique function f<, satisfying (4.3.5). So recursion is
justified by induction.

Example: The Fibonacci numbers are defined recursively by using for X the
ordered set of nonnegative integers, and defining r(n, (fo, ..., fn—1)) to be 0 if
n=0, tobe 1 if n=1, and to be f,_o+ f,_1 if n>2.

The next exercise shows that recursive constructions are not in general possible
if the given partially ordered set does not satisfy descending chain condition.

Exercise 4.3:2. Show that there does not exist a function f from the interval
[0, 1] of the real line to the set {0,1} determined by the following rules:

(a) f(0)=0.
(b) For x >0, f(z)=1 iffor all y € [0, z), f(y) =0; otherwise, f(x)=0.

If you prefer, you may replace the interval [0, 1] in this example with the
countable set {0} U{l/n|n=1,2,3,...}.

Exercise 4.3:3. Generalizing the above exercise, show that if (X, <) is any par-
tially ordered set mot satisfying descending chain condition, then
(i) There exists a function r as in the statement of Lemma 4.3.4, with T =
{0, 1}, such that no function f satisfies the conditions of the conclusion of that
lemma.

(ii) There exists a function r as in the statement of Lemma 4.3.4, with T =

{0,1}, such that more than one function f satisfies the conditions of the con-
clusion of that lemma.

In a way, solving a differential equation with given initial conditions is like
a “recursive construction over an interval of the real numbers”. But precisely
because the real numbers do not have descending chain condition, the conditions
for existence and uniqueness of a solution, and the arguments needed to prove these,
are subtle. (A different sort of property of the real line, which plays a role in such
arguments, is connectedness.)

There is a situation at the very foundation of mathematics which can be in-
terpreted in terms of a partially ordered system with descending chain condition.
The Axiom of Regularity of set theory (which will be stated formally in the next
section) says that there is no “infinite regress” in the construction of sets; that is,
that there are no left-infinite chains of sets under the membership relation:

eSS, €--€85 €5 €5

This is not a difficult axiom to swallow, since if we had a set theory for which
it was not true, we could pass to the “smaller” set theory consisting of those sets
which admit no such chain to the left of them. The class of such sets would be
closed under all the constructions required by the remaining axioms of set theory,
and the “new” set theory would satisfy the Axiom of Regularity.

To interpret Regularity in the terms we have just been discussing, let us write
A < B, for sets A and B, if there is a chain of membership-relations, A = S €
Sy €--- €8, =B (n>0). This relation is clearly transitive. The Regularity
Axiom implies that < is antireflexive (if we had A < A, then a chain of membership
relations connecting A with itself could be iterated to give an infinite chain going to
the left), hence < is the partial strict ordering corresponding to a partial ordering
<; and Regularity applied again says that this partial ordering has descending chain
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condition. (Well, almost. We have only defined the concepts of partial ordering
and chain condition for sets, and the class of all sets is not a set. To get around
this problem we can translate these observations more precisely as saying that for
each set A, the collection {B | B < A} is itself a set, and has descending chain
condition under <.) This allows one to prove set-theoretic results by induction with
respect to this ordering, and likewise use it in recursive set-theoretic definitions.

We had another such situation in Chapter 1, when we talked about the set
T =Tx, ., e of group-theoretic terms in a set of symbols X. These also satisfy a
principle of regularity, in terms of the relation “s occurs in ¢”, which we denoted
t>s in Exercise 1.7:4. To show this, let 7" denote the set of elements of T
admitting no infinite descending > -chains to the right of them. One verifies that
T’ is closed under the operations of conditions (a) and (b) of the definition of T
(Definition 1.5.1), and concludes that if 7”7 were properly smaller than T, one
would have a contradiction to condition (c) of that definition. We only sketched
the construction of T in Chapter 1, but in §8.3 below we will introduce the concept
of “term” for general classes of algebras, and the above argument will then enable
us to perform recursion and induction on such terms.

One can, of course, do inductive proofs and recursive constructions over par-
tially ordered sets with ascending as well as descending chain condition. These
come up often in ring theory, where Noetherian rings, i.e., rings whose partially
ordered set of ideals has ACC, are important. In proving that a property holds for
every ideal I of such a ring, one may consider an ideal I, and assume inductively
that the desired property holds for all strictly larger ideals.

To get the result allowing us to perform recursive constructions in such situa-
tions, i.e., the analog of Lemma 4.3.4 with > replacing <, it is not necessary to
repeat the proof of that lemma; we can use duality of partially ordered sets. I will
give the statement and sketch the argument this once, to show how an argument by
duality works. After this, if I want to invoke the dual of an order-theoretic result
previously given, I shall consider it sufficient to say “by duality”, or “by the dual
of Proposition #.#.#”, or the like.

COROLLARY 4.3.6. Let X be a partially ordered set with ascending chain con-
dition, T any set, and r a function associating to every pair (z, fs.) consist-
ing of an element v € X and a function fs,: {y | y>x} = T an element
r(x, fsz) € T. Then there exists a unique function f: X — T such that for all
veX, fx)=r( fH{yly>z}).

SKETCH OF PROOF. The opposite of the partially ordered set X (the structure
with the same underlying set but the opposite ordering) is a partially ordered set
X°P with descending chain condition, and r can be considered to be a function
r’ with exactly the properties required to apply Lemma 4.3.4 to that partially
ordered set. That lemma gives us a unique function f’ from X°P to T satisfying
the conclusions of that lemma relative to 7/, and this is equivalent to a function f
from X to T satisfying the desired condition relative to 7. [

Example: The Fibonacci numbers f,, were defined above for n > 0. With
the help of downward recursion on the set of negative integers, one can now easily
verify that there is also a unique way of defining f, for negative n, such that
combining the values for negative and nonnegative n, we get a sequence (f;)icz
which satisfies fr,10 = fi + fng1 for all n.



4.3. INDUCTION, RECURSION, AND CHAIN CONDITIONS 109

Often the key to making an inductive argument or a recursive construction
work is a careful choice of a parameter over which to carry out the induction or
recursion, and an appropriate ordering on the set of values of that parameter. The
next definition describes a way of constructing partial orderings that is frequently
useful for such purposes. The well-ordered index set I in that definition can be as
simple as {0, 1}.

DEFINITION 4.3.7. Let (X;);er be a family of partially ordered sets, indexed by
a well-ordered set I. Then lexicographic order on TI, X; is defined by declaring
(z:) < (yi) to hold if and only if either (z;) = (yi), or for the least j € I such
that x; # 1y, one has x; <y; in Xj.

Note that if I = {1,...,n} with its natural order, then this construction
orders n-tuples (z1, ..., z,) € TI; X; by the same “left-to-right” principle that
is used to arrange words in the dictionary; hence the name of the construction.
The usefulness of this construction in obtaining orderings with descending chain
condition is indicated in part (iii) of

Exercise 4.3:4. Let (X;);er be as in Definition 4.3.7.

(i) Verify that the relation on TT, X; given by that definition is indeed a partial
order.

(ii) Show that if each X, is totally ordered, then so is their direct product
under that ordering. Show, in contrast, that the corresponding statement is not
in general true for the product ordering, described in Definition 4.1.4.

(iii) Show that if I is finite, and each of the partially ordered sets X; has
descending chain condition, then so does their product under lexicographic or-
dering.

(iv) Comparing lexicographic ordering with the product ordering, deduce that
given a finite family of partially ordered sets, each of which has descending chain
condition, their direct product, under the product ordering, also has descending
chain condition.

(v) Show that the product of a family of copies of the two-element totally or-
dered set {0,1}, indexed by the natural numbers, does not have descending
chain condition under the product ordering. Deduce that lexicographic ordering
on products of infinite families of partially ordered sets with descending chain
condition also fails, in general, to have descending chain condition.

(By duality, analogs of (iii)-(v) also hold for ascending chain condition.)

In the next exercise, a lexicographic ordering is used to give a concise proof of
a standard result on symmetric polynomials.

Exercise 4.3:5. Let R be a commutative ring, and R[z1, ..., x,] the polyno-

mial ring in n indeterminates over R. Given any nonzero polynomial f =
> i1, ..., in) xll(l) A (almost all ¢;1), .. i(n) zero), let us define the lead-
ing term of f to be the nonzero summand in this expression with the largest
exponent-string (i(1), ..., i(n)) under lexicographic ordering on the set of all
such strings. (Since the set of nonzero summands is finite, no chain condition is
needed to make this definition.)
(i) Let f and g be nonzero elements of R[x1, ..., x,], and suppose that the
coefficient occurring in the leading term of f is not a zero-divisor in R. (E.g.,
this is automatic if R is an integral domain.) Show that the leading term of fg
is the product of the leading terms of f and of g.



110 4. ORDERED SETS, INDUCTION, AND THE AXIOM OF CHOICE

An element of R[zy, ..., x,] is called symmetric if it is invariant under the
natural action of the group of all permutations of the index set {1, ..., n} on
the indeterminates 1, ..., ,. For 1 < d < n, the d-th elementary symmetric
function s, is defined to be the sum of all products of exactly d distinct members
of {z1, ..., xp}. Our goal will be to show that the ring of symmetric polynomials
in n indeterminates over R is generated over R by the elementary symmetric
polynomials.

(ii) For nonnegative integers j(1)...j(n), find the leading term of the product

s s,

(iii) Show that the following sets are the same:
(a) The set of all n-tuples (i(1), ..., i(n)) of nonnegative integers such that
i(1) = >i(n).
(b) The set of all exponent-strings (i(1), ..., i(n)) of leading terms

Ci(1), ..., i(n) a:i(l). .. x;(n) of symmetric polynomials.

(¢) The set of all exponent-strings of leading terms of products

SW ™ asin (ii) above

1 sn .

(iv) Deduce that any nonzero symmetric polynomial can be changed to a sym-
metric polynomial with lower exponent-string-of-the-leading-term, or to the zero
polynomial, by subtracting a scalar multiple of a product of elementary symmet-
ric polynomials. Conclude, by induction on this exponent-string, that the ring
of symmetric polynomials in n indeterminates over R is generated over R by
the elementary symmetric polynomials.

(For standard proofs of the above result, see [30, pp.252-255], or [32,
Theorem IV.6.1, p.191]. For some related results on noncommutative rings,

see [58].)

Exercise 4.3:6. For nonnegative integers ¢ and j, let n; ; be defined recursively
as the least nonnegative integer not equal to n; ;; for any j" < j, nor to n;
for any i’ < i. (What ordering of the set of pairs (i, j) of nonnegative integers
can one use to justify this recursion?)

Find and prove a concise description of n; ;. (Suggestion: Calculate some
values and note patterns. To find the “pattern in the patterns”, write numbers
to base 2.)

We end with two miscellaneous exercises.

Exercise 4.3:7. For X a topological space, show that the following conditions
are equivalent. (We do not understand “compact” to entail Hausdorff or
nonempty.)

(a) Every subset of X is compact in the induced topology.

(b) Every open subset of X is compact in the induced topology.

(¢) The partially ordered set of open subsets of X has ascending chain
condition.

Exercise 4.3:8. One may ask whether Exercise 4.3:1 has a converse: that if C' is
a commutative integral domain in which every nonzero noninvertible element can
be written as a product of irreducibles, then C' has ascending chain condition
on principal ideals. Show by example that this is not true.



4.4. THE AXIOMS OF SET THEORY 111

4.4. The axioms of set theory

We are soon going to look at some order-theoretic principles equivalent to the
powerful Axiom of Choice. Hence it is desirable to review the statement of that
axiom, and its status in relation to the other axioms of set theory. For completeness,
I will record in this section the whole set of axioms most commonly used by set
theorists.

Let us begin with some background discussion. In setting up a rigorous foun-
dation for mathematics, one might expect the theory to require several sorts of
entities: “primitive” elements such as numbers, additional sets formed out of these,
ordered pairs of elements, functions from one set to another, etc.. But as the theory
was developed, it turned out that one could get everything one wanted from a single
basic concept, that of set, and a single relation among sets, that of membership.
The result is a set theory in which the only members of sets are themselves sets.

As an important example of how other “primitives” are reduced to the set
concept, we recall the case of the natural numbers (nonnegative integers). The
first thing we learn in our childhood about these numbers is that they are used
to count things; to say how many objects there are in a collection. The early
set theorists observed that one can formalize the concept of two sets having the
“same number” of elements set-theoretically, as meaning that there exists a bijection
between them. This is clearly an equivalence relation on sets. Hence the natural
numbers ought be some entities which one could associate to finite sets, so that
two sets would get the same entity associated to them if and only if they were in
the same equivalence class. The original plan was to use, as those entities, the
equivalence classes themselves, i.e., to define the natural numbers 0, 1, 2, etc., to
be the corresponding equivalence classes. Thus, the statement that a finite set had
n elements would mean that it was a member of the number n. (Cardinalities of
infinite sets were to be treated similarly.) This is good in principle — don’t create
new entities to index the equivalence classes if the equivalence classes themselves
will do. But in this case, the equivalence classes turned out not to be a good
choice: they are too big to be sets. So the next idea was to choose one easily
described member from each such class, call these chosen elements the natural
numbers 0, 1, 2,..., and define a set to have n elements if it could be put in
bijective correspondence with the “sample” set n.

Where would one get these “sample” finite sets from, using pure set theory?
There is no problem getting a sample 0-element set — there is a unique set with 0
elements, the empty set (). Having taken this step, we have one set in hand: .
This means that we are in a position to create a sample one-element set, the set
with that element as its one member, i.e., {#}. Having found these two elements,
() and {0}, we can define a 2-element set {f), {#}} to use as our next sample — and
so on. After the first couple of steps, we are not so limited in our options. (For
example, one might, instead of following the pattern illustrated, take for 4 the set
of all subsets of 2.) However, the above approach, of always taking for the next
number the set of numbers found so far, due to John von Neumann, is an elegant
way of manufacturing one set of each natural-number cardinality, and it is taken
as the definition of these numbers by modern set theorists:
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0=0, 1=A0}, 2={0,{0}}, 3={0,{0}, {0, {0}}},

(4.4.1) o
i+1=4iu{il ={0,1,2, ..., 4},

Another basic concept which was reduced to the concepts of set and member-
ship is that of ordered pair. If X and Y are sets, then one can deduce from the
axioms (shortly to be listed) that X and Y can each be determined uniquely from
the set {{X}, {X, Y} }. Since all one needs about ordered pairs is that they are
objects which specify their first and second components unambiguously, one defines
the ordered pair (X, Y) to mean the set {{X}, {X, Y} }.

One then goes on to define the direct product of two sets in terms of ordered
pairs, binary relations in terms of direct products, functions in terms of binary
relations, etc.. From natural numbers, ordered pairs, and functions, one constructs
the integers, the rational numbers, the real numbers, the complex numbers, etc.,
by well-known techniques, which I won’t review here.

(One also wants to define ordered n-tuples. The trick by which ordered pairs
were defined turns out not to generalize in an easy fashion; the most convenient
approach is to define an ordered n-tuple to mean a function whose domain is the
set n. However, this conflicts with the definition of ordered pair! To handle this, a
careful development of set theory must use different symbols, say (X, Y) for the
concept of “ordered pair” first described, and (Xo, X1, ..., X,—1) for the ordered
n-tuples subsequently defined.)

The above examples should give some motivation for the “sort” of set theory
described by the axioms which we shall now list. Of course, a text on the founda-
tions of mathematics will first develop language allowing one to state these axioms
precisely, and, since a statement in such language is not always easy to understand,
it will precede or follow many of the precise statements by intuitive developments.
I have tried below to give formulations that make it as clear as possible what the
axioms assert, and have added some further remarks after the list. But for a thor-
ough presentation, and for more discussion of the axioms, the student should see
a text on the subject. Two recommended undergraduate texts are [13] and [22].
Written for a somewhat more advanced audience is [20].

Here, now, are the axioms of Zermelo-Fraenkel Set Theory with the Axiom of
Choice, commonly abbreviated ZFC.

Axiom of Extensionality. Sets are equal if and only if they have the same
members. That is, X =Y if and only if for every set A, Ac X < A€Y.
Axiom of Regularity (or Well-foundedness, or Foundation). For every
nonempty set X, there is a member of X which is disjoint from X.

Axiom of the Empty Set. There exists a set with no members. (Common
notation: §.)

Axiom of Separation. If X is a set and P is a condition on sets, there exists
a set Y whose members are precisely the members of X satisfying P. (Common
notation: Y ={A4 € X | P(A)}.)

Axiom of Doubletons (or Pairs). If X and Y are sets, there is a set Z whose
only members are X and Y. (Common notation: Z = {X, Y'}.)
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Axiom of Unions. If X is a set, there is a set Y whose members are precisely
all members of members of X. (Common notations: ¥ =|J X or U,uex A.)

Axiom of Replacement. If f is an operation on sets (formally characterized
by a set-theoretic proposition P(A, B) such that for every set A there is a unique
set f(A) such that P(A, f(A)) holds), and X is a set, then there erists a set
Y whose members are precisely the sets f(A) for A € X. (Common notation:
Y = {f(A) | A € X}. When there is no danger of confusion, this is sometimes
abbreviated to Y = f(X).)

Axiom of the Power Set. If X is a set, there exists a set Y whose members
are precisely all subsets of X. (Common notations: Y = P(X) or 2X.)

Axiom of Infinity. There exists a set having O as a member, closed under the
construction i — iU {i} (cf. (4.4.1)), and minimal for these properties. (Common
name: The set of natural numbers.)

Axiom of Choice. If X is a set, and f is a function associating to every x € X
a nonempty set f(x), then there exists a function g associating to every x € X
an element g(z) € f(z).

Explanations of some of the names: Fxtensionality means that a set is deter-
mined by its extent, not its intent. Separation says that one can form new sets by
using any well-defined criterion to “separate out” certain elements of an existing
set. The Axiom of Infinity is so called because if we did not assume it, the collection
of all sets which can be built up from the empty set in finitely many steps would
satisfy our axioms, giving an example of a set theory in which all sets are finite.
One can show that, given the preceding axioms, that axiom is equivalent to the
existence of an infinite set.

We described Regularity earlier as saying that there was no infinite regress
under “€”. That formulation requires one to have the set of natural numbers to
index such a regress, so we chose a formulation that can be expressed independently
of the Axiom of Infinity. In the presence of the other axioms one can prove the two
formulations equivalent. (Roughly, if one had an infinite chain --- € Sy € S1 € Sy,
then {S;} would be a counterexample to Regularity, while if a set X were a
counterexample to Regularity, one could select such a chain from its elements.)

Actually, the Axiom of Regularity makes little substantive difference for areas
of mathematics other than set theory itself (e.g., see [22, p. 92 et seq.]). Without it,
one can have sets with exotic properties such as being members of themselves, but
the properties of set-theoretic concepts used by most of mathematics — bijections,
direct products, cardinality arguments, etc. — are little affected. Its absence would
simply make it a bit trickier, say, to construct, given sets X and Y, a copy of
Y disjoint from X. The Regularity Axiom seems to have crept into the Zermelo-
Fraenkel axioms by the back door: It was not in the earlier formulations of those
axioms, and still does not appear in some listings, such as that in [13]. But it is
generally accepted, and we will count it among the axioms here, and rely on the
convenience it provides. It gives one a comforting assurance that sets are built up
from earlier sets with no “vicious circles” in the process; hence the name “Well-
Foundedness”. (By extension, many set-theorists call the condition of descending
chain condition on any partially ordered set “well-foundedness”.)

Observe that the Axioms of Extensionality and Regularity essentially clarify
what we intend to mean by a “set”. The next seven axioms each say that certain sets
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exist. In each case these are sets which are uniquely determined by the conditions
assumed. Those seven axioms can all be considered cases of a single axiom proposed
by Frege in 1893, the Aziom of Abstraction, saying that “Given any property, there
exists a set whose members are just those entities possessing that property”. That
axiom nicely embodies the idea of a set, but it turned out to be too strong to be
consistent: it allowed one to define things like “the set S of all sets which are
not members of themselves,” which led to contradictions. (Russell’s Paradox: “Is
that S a member of itself?” Either a positive or a negative answer implies its own
negation.) The difficulty was, somehow, that the Axiom of Abstraction assumed
“all sets” to be known. In particular, the set S we were constructing was already
“there”, to be chosen or rejected in choosing the members of that same set S5,
allowing one to create a self-contradictory criterion for that choice. Subsequent
experience suggested that such contradictions could be avoided by requiring every
set to be constructed from sets “constructed before it”; and the seven axioms in
question represent sub-cases of the rejected “Axiom of Abstraction” which meet
this condition.

The Axiom of Regularity was probably another reaction against those para-
doxes. Though adding an axiom can’t remove a contradiction, the encounter with
Russell’s Paradox very likely led mathematicians to feel that sets that could not be
“built up from scratch” were unhealthy, and should be excluded.

The last axiom of ZFC, that of Choice, is of a different sort from those that
precede it. It asserts the existence of something not uniquely defined by the given
data: a function that chooses, in an unspecified way, one element from each of a
family of sets. This was very controversial in the early decades of the twentieth
century, both because it led to consequences which seemed surprising then (such
as the existence of nonmeasurable sets of real numbers), and because of a feeling
by some that it represented an unjustifiable assumption that something one could
do in the finite case could be done in the infinite case as well. It is a standard
assumption in modern mathematics; such basic results as that every vector space
has a basis, that a direct product of compact topological spaces is compact, and
that a countable union of countable sets is countable, cannot be proved without it.
But there have been, and still are, mathematicians who reject it: the intuitionists
of the early 1900’s, and the constructivists today.

Even accepting the Axiom of Choice, as we shall, it is at times instructive to
note whether a result or an argument depends on it, or can be obtained from the
other axioms. (This is like the viewpoint that, even if one does not accept the
constructivists’ extreme claim that proofs of existence that do not give explicit
constructions are worthless, one may consider constructive proofs to be desirable
when they can be found.)

In the next two sections we shall develop several set-theoretic results whose
proofs require the Axiom of Choice, and we will show that each of these statements
is, in fact, equivalent to that axiom, in the presence of the other axioms. Hence, in
those sections, we shall not assume the Axiom of Choice except when we state this
assumption explicitly, and the arguments we give to show these equivalences will
all be justifiable in terms of the theory given by the other axioms, called “Zermelo-
Fraenkel Set Theory”, abbreviated ZF. (However, we shall not in general attempt to
show explicitly how the familiar mathematical techniques that we use are justified
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by those axioms — for that, again see a text in set theory.) In all later chapters, on
the other hand, we shall freely use the Axiom of Choice, i.e., we will assume ZFC.

In the handful of results proved so far in this chapter, we have implicitly used
the Axiom of Choice just once: in Lemma 4.3.1, in showing (ii”) = (i). Hence for
the remainder of this chapter, we shall forgo assuming that implication, and will
understand the descending chain condition to refer to condition (i) of that lemma
(which still implies (ii)-(ii")).

Let us note explicitly one detail of set-theoretic language we have already used:
Since all sets satisfying a given property may not together form a set, one needs a
word to refer to “collections” of sets that are not necessarily themselves sets. These
are called classes. An example is the class of all sets. One can think of classes
which are not sets, not as actually being mathematical objects, but as providing
a convenient language to use in making statements about all sets having one or
another property.

Since classes are more general than sets, one may refer to any set as a “class”,
and this is sometimes done for reasons not involving the logical distinction, but
just to vary the wording. E.g., rather than saying “the set of those subsets of X
such that ...”, one sometimes says “the class of those subsets of X such that ...”.
And, for some reason, one always says “equivalence class”, “conjugacy class”, etc.,
though they are sets.

Exercise 4.4:1. Show that for every set X there exists a set Y O X such that
a€beY = a€Y; in fact, that there exists a least such set. (Thus, Y is
the “closure” of X under passing to members of sets.)

4.5. Well-ordered sets and ordinals

Recall (Definition 4.3.2) that a partially ordered set (X, <) is called well-
ordered if it is totally ordered and has descending chain condition. In a totally
ordered set, a minimal element is the same as a least element, so the condition of
well-ordering says that every nonempty subset of X has a least member.

This condition goes a long way toward completely determining the structure
of X. Applied first to X as a subset of itself, it tells us that if X is nonempty,
it has a least element, zo. If X does not consist of xy alone, then X — {z¢}
is nonempty, hence this set has a least element, which we may call ;. We can
go on in this fashion, and unless X is finite, we will get a uniquely determined
sequence of elements zg < 71 < 9 < x3 < ... at the “bottom” of X. This list
may exhaust X, but if it does not, there will necessarily be a least element in the
complement of the subset so far described, which we may call x; o, and if this still
does not exhaust X, there will be a least element greater than it, x; i, etc.. We
can construct in this way successive hierarchies, and hierarchies of hierarchies — I
will not go into details — on the single refrain, “If this is not all, there is a least
element of the complement”.

A couple of concrete examples are noted in
Exercise 4.5:1. If f and g are real-valued functions on the real line R, let us in

this exercise write f < ¢ to mean that there exists some real number N such
that f(t) < g(¢t) for all ¢t > N.
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(i) Show that this relation < is a preordering, that its restriction to the set
of polynomial functions is a total ordering, and that on polynomials with non-
negative integer coefficients, it in fact gives a well-ordering. Determine, if they
exist, the elements xo, 1, ..., Tpn, ..., T1,0, T1,1 of this set, in the notation of
the preceding paragraphs.

(ii) Show that the set consisting of all polynomials with nonnegative integer
coefficients, and, in addition, the function e, is still well-ordered under the
above relation.

(iii) Find a subset of the rational numbers which is order-isomorphic (under the
standard ordering) to the set described in (ii).

To make precise the idea that the order structure of a well-ordered set is
“unique, as far as it goes”, let us define an “initial segment” of any totally or-
dered set X to mean a subset I C X such that x <y &€l = x € I. Then we
have

LEMMA 4.5.1. Let X and Y be well-ordered sets. Then exactly one of the
following conditions holds:

(a) X and Y are order-isomorphic.
(b) X s order-isomorphic to a proper initial segment of Y.
(¢) Y is order-isomorphic to a proper initial segment of X.

Further, in (b) and (c) the initial segments in question are unique, and in all
three cases the order-isomorphism is unique.

PROOF. We shall construct an order isomorphism of one of these three types
by a recursive construction on the well-ordered set X. Let me first describe the
idea intuitively: We start by pairing the least element of X with the least element
of Y; and we go on, at every stage pairing the least not-yet-paired-off element of
X with the least not-yet-paired-off element of Y, until we run out of elements of
either X or Y or both.

Now in our formulation of recursive constructions in Lemma 4.3.4, we said
nothing about “running out of elements”. But we can use a trick to reduce the
approach just sketched to a recursion of the sort characterized by that lemma.

Form a set consisting of the elements of Y and one additional element which
we shall denote DONE. Given any x € X, and any function f., : {2’ € X | 2’ <z}
— Y U {DONE}, we define r(z, f<,) € Y U{DONE} as follows:

If the image of f., is a proper initial segment of Y, let r(x, f<,)
be the least element of Y not in that segment. Otherwise, let
r(x, f<,) = DONE.

By Lemma 4.3.4, this determines a function f: X — YU{DONE}. It is straight-
forward to verify inductively that for those = such that f(x) # DONE, the restric-
tion f<, of f to {2/ € X | 2’ <z} will be the only order isomorphism between
that initial segment of X and any initial segment of Y. From this we easily deduce
that if the range of f does not contain the value DONE, exactly one of conclusions
(a) or (b) holds, but not (¢); while if the range of f contains DONE, (c) holds but
not (a) or (b). In each case, f determines the unique order isomorphism with the
indicated properties. (I

Exercise 4.5:2. Give the details of the last paragraph of the above proof.
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Since the well-ordered sets fall into such a neat array of isomorphism classes,
it is natural to look for a way of choosing one “standard member” for each of
these classes, just as the natural numbers are used as “standard members” for the
different sizes of finite sets. Recall that in the von Neumann construction of the
natural numbers, (4.4.1), each number arises as the set of all those that precede it,
so that we have ¢ < j if and only if ¢ € j, and ¢ < j if and only if ¢ C j. Clearly,
each natural number, being finite and totally ordered, is a well-ordered set under
this ordering. Let us take these von Neumann natural numbers as our standard
examples of finite well-ordered sets, and see whether we can extend this family in
a natural way to get models of infinite well-ordered sets.

Continuing to use the principle that each new object should be the set of all
that precede, we take the set of natural numbers as the standard example chosen
from among the well-ordered sets which when listed in the manner discussed at the
beginning of this section have the form X = {zg, x1, ...}, with subscripts running
over the natural numbers but nothing beyond those. Set theorists write this object

w={0,1,2,...,4 ...}

The obvious representative for those sets having an initial segment isomorphic to
w, and just one element beyond that segment, is written

w4+l = wU{w} = {0,1,2,...,4,...; w}

We likewise go on to get w + 2, w + 3 etc.. The element coming after all the
w+i’s (1 €w) is denoted w4 w or w2. (We will see later why it is not written
“more naturally” as 2w.) After the elements w2 +1i (i € w) comes w3; ...after
all the elements of the form wi (i € w) one has ww = w?. In fact, one can form
arbitrary “polynomials” in w with natural number coefficients, and the set of these
has just the order structure that was given to the polynomials with natural number
coefficients in Exercise 4.5:1 (though in our “polynomials” in w, the coefficients
are, as noted, written on the right). Then the set of all these polynomials in w is
taken as the next standard sample well-ordered set....

So far, we have been sketching an idea; let us make it precise. First, a small ter-
minological point: If X is any well-ordered set, and « the “standard” well-ordered
set (to be constructed below) that is order-isomorphic to it, then Lemma 4.5.1 shows
us how to index the elements of X by the members of a — i.e., by the “standard”
well-ordered sets smaller than a. Thus, the well-ordered sets less than « serve as
translations, and (starting with w) generalizations, of the sequence of words “first,
second, third, ...” which are used in ordinary language to index the elements of
finite totally ordered sets. Hence, the term ordinal, used by grammarians for those
words, is used by mathematicians for the “standard samples” of isomorphism types
of well-ordered sets. Let us now give the formal definition of these objects, and
investigate their properties.

DEFINITION 4.5.2. An ordinal (or von Neumann ordinal) is a set « such that
yeEBEa = v €, and such that if 8 € a and v € «, then either 8 =, or
pen, oryep.

PROPOSITION 4.5.3. (i) FEwvery member B of an ordinal « is an ordinal.

(ii) If « is an ordinal and S is a subset of «, then the following conditions are
equivalent:

(a) S is an ordinal.
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(b) Every member of a member of S is a member of S,

(c) Sea or S=a.
(iii) For any two ordinals o and B, either « is a subset of B, or [ is a subset
of a.

PRrROOF. In proving (i), the one nonobvious condition needed is that § € v €
B € a implies § € B. Now in that situation, the first part of the definition of
«a being an ordinal shows that both § and § are members of «, so by the last
part of that definition, either § € 8 or 8 = § or B € §. Either of the last two
alternatives, combined with the relations § € v € 8, would give a contradiction to
the Regularity Axiom. So ¢ € (3, as required.

In (ii), the implication (¢) = (a) follows from (i), while (a) = (b) follows
from the definition of ordinal. To get (b) = (c), assume (b), and let us again call
on the Axiom of Regularity, this time to give us an element o’ € o U {a} which
contains S as a subset, but no member of which does so. (Since S C «, the class
of members of aoU {a} which contain S as a subset is indeed nonempty.) Now if
o' # S, then there is some 8 € o/ —S. Since both 8 and all the elements of S are
elements of «, the last condition in the definition of « being an ordinal tells us
that each v € S is either equal to 3, or has 5 as a member, or is a member of .
If either of the first two possibilities occurred for some v € S, would have 8 € S,
contradicting our choice of 5. Hence every member of S must be a member of
B, i.e., S C B. But this contradicts our choice of o’ as having no member which
contained S as a subset. So in fact we must have S = o € a U {a}, proving (c).

Finally, let us get (iii) by showing that the set S = NS must equal either « or
B. Clearly, S is a subset of both o and f satisfying (b), hence since (b) = (c),
S either equals or is a member of each of o and (. If it were a member of both,
then we would have S € aN g = 5, again contradicting Regularity; so it must
equal one of them. O

We would like to summarize statement (iii) above as saying that the ordinals
form a totally ordered set under inclusion — and in fact, since by (ii), inclusion
among ordinals is equivalent to “€ or =7, and by Regularity, the latter relation
satisfies descending chain condition, we would like to say that the ordinals form a
well-ordered set. The only trouble is that they do not form a set!

Here are some things we can say:

PROPOSITION 4.5.4. (i) Every nonempty class of ordinals has a “C-least”
member. (In other words, the class of ordinals satisfies under C the analog of the
set-theoretic property of well-orderedness.) In particular, every ordinal, and more
generally, every set of ordinals, is well-ordered under C.

(ii) The union of any set of ordinals is an ordinal.
(iii) The class of all ordinals is not a set.
(iv) Every well-ordered set has a unique order isomorphism with an ordinal.

Proor. To get (i), let C be a nonempty class of ordinals, take any 5 € C,
and note that ¢/ = {a C C' | « C 8} is a nonempty set of ordinals. The axiom of
Regularity says that C’ has a member ~ which is disjoint from C’. One can see
that + will be a least member of C’ under C, and since members of C’ (which
are contained in 3) are less than other members of C (since these are not), =
must in fact be a least member of C. The final sentence of (i) clearly follows.
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With the help of part (iii) of the preceding proposition, it is easy to check that
the union of any set S of ordinals satisfies the definition of an ordinal, giving (ii).
Moreover, if we call this union «, then a will majorize all members of S, hence
its successor, awU{a}, cannot be a member of S. So for any set S of ordinals we
have an ordinal not in S, proving (iii).

To show (iv), let S be a well-ordered set. For convenience, let us form a new
ordered set T consisting of the elements of S, ordered as in S, and one additional
element 2z, greater than them all. It is immediate that T will again be well-
ordered. I claim that for every t € T, there is a unique order-isomorphism between
{s € T | s <t} and some (unique) ordinal. Indeed, if not, there would be a least
t for which this failed, so each s < t would be isomorphic to a unique ordinal
Bs, by a unique order-isomorphism. From this it is easy to deduce that the set
a = {fs | s <t} would be order-isomorphic to {s € T'| s < t}, that it would be
the unique ordinal with this property, and that the isomorphism would be unique,
contradicting our choice of ¢, and establishing our claim. So in particular, there
is a unique order-isomorphism between S = {s € T | s < z} and an ordinal, as
required. (I

The proofs of the above two propositions make strong use of the Axiom of
Regularity. How do set-theorists who do not assume that axiom define ordinals so
that the same results will hold? The easy way is to add to the definition of ordinal
the case of Regularity that we need; namely, that every nonempty € a U {a}
have a member which is disjoint from S. A different approach is taken in [22,
§7.2]. Rather than starting by defining “ordinal”, that developments starts with a
construction that, from any well-ordered set S, builds by recursion on the elements
of S a certain set «, order-isomorphic to S. It is the sets constructed in this way
are then named “ordinals”. Finally, a result is proved characterizing those sets as
the sets satisfying Definition 4.5.2, modified as just noted to compensate for the
lack of the Axiom of Regularity.

Exercise 4.5:3. Let a and  be ordinals. Show that there exists a one-to-one
isotone map f: a — B if and only if a < f.

Exercise 4.5:4. If P is a partially ordered set with DCC, let the height ht(p) of
an element p € P be defined, recursively, as the least ordinal greater than the
heights of all elements g < p. Define ht(P) to be the least ordinal greater than
the heights of all elements of P.

(i) Show that the height function on elements is the least strictly isotone
ordinal-valued function on P, and that it has range precisely ht(P).

(ii) Show that for every ordinal « there exists a partially ordered set containing
no infinite chains, and having height «.

(iii) Suppose we define the chain height of P, chht(P), to be the least ordinal
which cannot be embedded in P by an isotone map, and for p € P define
chht(p) = chht({g € P | ¢ < p}). What relationships can you establish between
the functions ht and chht?

Exercise 4.5:5. Show that the two conditions in Definition 4.5.2 (the definition of
an ordinal) are independent, by giving examples of sets satisfying each but not
the other.

For additional credit, you can show that each of your examples has smallest
cardinality among sets with the desired property.
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Since one considers ordinals to be ordered under the relation C, equivalently,
“e or =", one has the choice, in speaking about them, between writing < and
C, and likewise between < and € . Both the order-theoretic and the set-theoretic
notation are used, sometimes mixed together.

For every ordinal «, there is a least ordinal greater than «, namely o U {a}.
This is called the successor of o, and written o+ 1. “Most” ordinals are successor
ordinals. Those, such as 0, w, w2, etc., which are not, are called limit ordinals.
(Although, as I just stated, 0 is logically a limit ordinal, and I will consider it
such here, it is sometimes treated as a special case, neither a successor nor a limit
ordinal.)

Exercise 4.5:6. Show that an ordinal is a limit ordinal if and only if it is the least
upper bound of all strictly smaller ordinals; equivalently, if and only if, as a set,
it is the union of all its members.

Now that we understand why ordinals (and so in particular, natural numbers)
are defined so that each is equal to the set of those that precede it, let us rescind
the convention we set up in §1.3, where, for the sake of familiarity, I said that an
n-tuple of elements of a set S would mean a function {1, ..., n} — S:

DEFINITION 4.5.5. Throughout the remainder of these notes, n-tuples will be
defined in the same way as I-tuples for other sets I. That is, for n a natural num-
ber, an n-tuple of elements of a set S will mean a function n — S, i.e., a family
(S0, 81, -+ Sn—1) (8; €S). The set of all such functions will be denoted S™.

We have referred to ordinals denoted by symbols such as w2, w?+1, etc.. As
this suggests, there is an arithmetic of ordinals. If o and g are ordinals, « + (8
represents the ordinal which has an initial segment «, and the remaining elements
of which form a subset order-isomorphic to . This exists, since by putting an
order-isomorphic copy of 8 “above” the ordinal «, one gets a well-ordered set,
and we know that there is a unique ordinal order-isomorphic to it. Similarly, «af
represents an ordinal which is composed of a family of disjoint well-ordered sets,
each order-isomorphic to «, one above the other, with the order structure of the
set of copies being that of 8. These operations are (of course) formally defined by
recursion, as we will describe below.

Unfortunately, the formalization of recursion that we proved in Lemma 4.3.4
is not quite strong enough for the present purposes, because in constructing larger
ordinals from smaller ones, we will not easily be able to give in advance a codomain
set corresponding to the T of that lemma, and as a result, we will not be able to
precisely specify the function r required by that lemma either. However, there is
a version of recursion based on the Replacement Axiom (Fraenkel’s contribution to
Zermelo-Fraenkel set theory) which gets around this problem. Like that axiom, it
assumes we are given a construction which is not necessarily a function, because
its range and domain are not assumed to be sets, but which nonetheless uniquely
determines one element given another. I will not discuss this concept, but will
state the result below. The proof is exactly like that of Lemma 4.3.4, except that
the Axiom of Replacement is used to carry out the “piecing together” of partial
functions.

LEMMA 4.5.6 (Cf. [22, Theorem 7.1.5, p.74]). Let X be a partially ordered
set with descending chain condition, and T a construction associating to every pair
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(z, f<z), where x € X and f<, is a function with domain {y € X |y < z}, a
uniquely defined set r(x, f<.). Then there exists a unique function f with domain
X such that for all x € X, f(z)=r(z, f|{y|y<=z}). O

We can now define the operations of ordinal arithmetic. For completeness we
start with the (nonrecursive) definition of the successor operation. Note that in
each of the remaining (recursive) definitions, the ordinal « is held “constant”, and
the ordinal over which we are doing the recursion is written 8 or 8+ 1.

Definition of the successor of an ordinal:

(45.7) B+1 = BU{s}.
Definition of addition of ordinals:
at+0 = a, at+(B8+1) = (a+8) +1,

(4.5.8) a+pB = U'y<5 a+~ for § alimit ordinal > 0.

Definition of multiplication of ordinals:
a0 = 0, alf+1) = (af) +a,

(4.5.9) aff = U, 4y for B alimit ordinal > 0.

Definition of exponentiation of ordinals:

a® =1, aBt) = (af)a,

(4.5.10) T
o =, 5@ for B alimit ordinal > 0.

Exercise 4.5:7. Definitions (4.5.8) and (4.5.9) do not look like the descriptions of
ordinal addition and multiplication sketched in words above. Show that they do
in fact have the properties indicated there.

Although the operations defined above agree with the familiar ones on the finite
ordinals (natural numbers), they have unexpected properties on infinite ordinals.
Neither addition nor multiplication is commutative:

14w =w, but w+1 > w,

2w =w, but w2 > w.
Exponentiation is also different from exponentiation of cardinals (discussed later in
this section):
2% = w.
Students who have not seen ordinal arithmetic before might do:

Exercise 4.5:8. Prove the three equalities and two inequalities asserted in the
above paragraph.

You may assume familiar facts about arithmetic of natural numbers, and

that the ordinal operations agree with the familiar operations in these cases; but

assume nothing about how they behave on infinite ordinals, except the definitions.

Exercise 4.5:9. If an ordinal « is the disjoint union of a subset order-isomorphic
to the ordinal 5 and a subset order-isomorphic to the ordinal -y, must we have
a<fB+v? a<max(B+7,v7+8)?

The formulas (4.5.8)-(4.5.10) define pairwise arithmetic operations. We can
also define arithmetic operations on families of ordinals indexed by (what else?)
ordinals. Let us record the case of addition, since we will need this later. Given
such a family (o ),ecp, the idea is to define Z’YGB o, to be the ordinal which, as a
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well-ordered set, is the union of a chain of disjoint subsets of respective order types
a, (v € B), appearing in that order.
Definition of infinite ordinal addition:
Zweo ay =0, Zveﬁﬂ Qy = (Z’yeﬁ ay) + ag,
dovep @ = U, <5 Dose, as for B alimit ordinal > 0.

Taking the o, ’s all equal, we see that our recursive definition of 5 0y Teduces
to our definition of multiplication of ordinals; hence

(4.5.12) doep @ = ap.

(4.5.11)

Exercise 4.5:10. (i) Given an ordinal-indexed family of ordinals, (ay)~eg, let
o denote the ordinal (J, 5, (the supremum of the a,’s). Let P be the set
B x a, lexicographically ordered. Show that the ordinal >
as a well-ordered set to {(v,6) |y€ 8,6 €a,} CP.
(ii) Deduce from this a description of a well-ordered set isomorphic to the ordinal

product af of two arbitrary ordinals.
This description clearly extends inductively to finite products '|_|'A/ e Oy (B <

yep Oy 18 isomorphic

w), leading, incidentally, to an easy proof of associativity of multiplication of
ordinals. The extension of these ideas to infinite products will be developed in a
later exercise in this section.

We have seen that every well-ordered set is indexed in a canonical way by an
ordinal; but we do not yet know whether we can well-order every set. It turns
out that we can do so if we assume the Axiom of Choice. This is stated in the
second part of the next lemma; the first part gives a key argument (not requiring
the Axiom of Choice) used in the proof.

LEMMA 4.5.13. Let X be a set. Then

(i)  There exists an ordinal o which cannot be put in bijective correspondence with
any subset of X; equivalently, such that for any well-ordering “<” of any subset
of Y C X, (Y, <) is isomorphic to a proper initial segment of «.
(ii) Assuming the Aziom of Choice, X itself can be well-ordered.

PROOF. The class of well-orderings of subsets of X is easily shown to be a
set, hence by the Replacement Axiom, the unique ordinals isomorphic to these
various well-ordered sets form a set, hence the union of this set is an ordinal f.
Take a = g+ 1. By construction, any well-ordering of a subset ¥ C X induces a
bijection of Y with an initial segment of 3, which is a proper initial segment of
«, yielding the second formulation of (i). To get the first formulation, note that if
a could be put in bijective correspondence with a subset of X, then the ordering
of a would induce a well-ordering of that subset, such that a was the unique
ordinal isomorphic to that well-ordered set, giving a contradiction to our preceding
conclusion.

Assuming the Axiom of Choice, let us now take a function ¢ which associates to
every nonempty subset Y C X an element c(y) € Y. Let us recursively construct
a one-to-one map from some initial subset of the ordinal « of part (i) into X as
follows: Suppose we have gotten a function fg from an ordinal 8 < «, regarded
as a subset of «, into X. If its image is X, we are done. If not, we send the
element S, which is the first element of « on which our map is not yet defined, to
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c(X —image(f3)). It is easy to verify by induction that each map fg is one-to-one.
If this process went on to give a one-to-one map f, of a into X, that would
contradict (i). So instead, the construction must terminate at some step, which
means we must get a bijection between an initial segment of « and X, and hence
a well-ordering of X, proving (ii). (As in the proof of Lemma 4.5.1, our use of
a recursion that terminates before we get through all of « can be formalized by
adjoining to X an element DONE.) O

Exercise 4.5:11. Let P be a partially ordered set, and Ch(P) the set of chains
in P, partially ordered by writing A < B if A is an initial segment of B.
(i) Show that there can be no strict isotone map f: Ch(P) — P. (Suggestion:
If there were, show that one could recursively embed any ordinal « in P, by
sending each element of « to the image under f of the chain of images of all
preceding elements.)
(ii) Deduce from (i) the same statement with Ch(P) ordered by inclusion. Con-
clude that Ch(P), under either ordering, can never be order-isomorphic to P.
(iii) Can you strengthen the result of (i) by replacing Ch(P) by some natural
proper subset thereof?

Let us assume the Axiom of Choice for the rest of this section (though at the
beginning of the next section, we will again suspend this assumption).

Recall that two sets are said to have the same cardinality if they can be put
in bijective correspondence. Statement (ii) of the preceding lemma shows that
(assuming the Axiom of Choice), every set has the same cardinality as an ordinal.
This means we can use appropriately chosen ordinals as “standard examples” of all
cardinalities. In general, there are many ordinals of a given cardinality (e.g., w, w+
1, w2 and w? are all countable), so the ordinal to use is not uniquely determined.
The one easily specified choice is the least ordinal of the given cardinality; so one
makes

DEFINITION 4.5.14. A cardinal is an ordinal which cannot be put into bijective
correspondence with a proper initial segment of itself.

For any set X, the least ordinal with which X can be put in bijective correspon-
dence will be called the cardinality of X, denoted card(X). Thus, this is a cardinal,
and is the only cardinal with which X can be put in bijective correspondence.

There is an arithmetic of cardinals: If k and A are cardinals, k+ A is defined
as the cardinality of the union of any two disjoint sets one of which has cardinality
% and the other cardinality A, x )\ as the cardinality of the direct product of a set
of cardinality x and a set of cardinality X, and x* as the cardinality of the set of
all functions from a set of cardinality A to a set of cardinality k. Unfortunately,
if we consider the class of cardinals as a subset of the ordinals, these are different
operations from the ordinal arithmetic we have just defined! To compare these
arithmetics, let us temporarily use the notations « +o.q 8, @ orq 8 and a8 for
ordinal operations, and K +card A, K ‘cara A and k™A for cardinal operations. A
positive statement we can make is that for cardinals x and A, the computation
of their cardinal sum and product can be reduced to that of their ordinal sum and
product, by the formulas

(4.5.15) K +card A =card(k +orda A)  and K -card A = card(k org A).
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These are cases of a formula holding for any family of ordinals (ay)~ep :
(4.5.16) Z;agg card(ay) = card(zzredﬁ Q).

On the other hand, the cardinality of an infinite ordinal product of ordinals is
not in general equal to the cardinal product of the cardinalities of these ordinals;
in particular, cardinal exponentiation does not in any sense agree with ordinal
exponentiation: 9w gives the cardinality of the continuum, which is uncountable,
while 2" = w. There is no standard notation distinguishing ordinal and cardinal
arithmetic; authors either introduce ad hoc notations, or say in words whether
cardinal or ordinal arithmetic is meant, or rely on context to show this.

Exercise 4.5:12. In this exercise we shall extend the results of Exercise 4.5:10,
which characterized the order-types of general sums and finite products of ordi-
nals, to general products. (I have put this off until now so that we would have
notation distinguishing the ordinal product TT°*9a., from the set-theoretic prod-
uct.) We will also note a relation with cardinal arithmetic. We need to begin
with a generalization of lexicographic ordering.

Suppose (X;)ier is a family of partially ordered sets, indexed by a totally
ordered set I; and let each X; have a distinguished element, denoted 0;. Define
the supportof (x;) € T, X; as {i € I | x; # 0;}, and let TT;"**"PP X denote the
set of elements of TT, X; having well-ordered support. Similarly, let 'I_I'If'supp X;
denote the set of elements of finite support.

(i) Show that the definition of lexicographic order, which in Definition 4.3.7 was
given on TI,X; for I well-ordered, makes sense on T[;"**""? X; for arbitrary
totally ordered I, and that the resulting ordering is total if each X, is totally
ordered.

(ii) Show that if I is reverse-well-ordered (has ascending chain condition) then
-l—l-;v.o.supp Xz _ -l—l-If.supp Xz

(iii) Show that if I is reverse-well-ordered and if each X; has descending chain
condition, and has 0; as least element, then 'I_I'If'supp X; has descending chain
condition under lexicographic ordering.

(iv) Let us now be given an ordinal-indexed family of ordinals, (o) ecg. Write
down the definition of 'I_I'f;gia o, analogous to (4.5.11). Verify that if any «,
is 0, your definition gives the ordinal 0. In the contrary case, show that your
definition gives an ordinal order-isomorphic to 'I'I'igg%{: a.. (Here 3°P denotes
the set B, but with its ordering — used in defining lexicographic order on our
product — reversed. Note that “+v € 8°P” means the same as “y € 7. For the
elements 0, in the definition of TT"*"PP, we take the ordinal 0 € ., which is
why we need to assume all a, nonzero.)

(v) Deduce a description of the order-type of o8, and conclude that
card(aordﬁ) < acardﬂ.
You might also want to do

(vi) Show by examples that (iii) above fails if any of the three hypotheses is
deleted.

The set-theoretic concept of cardinality historically antedates the construction
of the ordinals, so there is a system of names for cardinals independent of their
names as ordinals. The finite cardinals are, of course, denoted by the traditional
symbols 0, 1, 2, .... The least infinite cardinal is denoted ¥, the next Wi, etc..
From our description of the cardinals as a subclass of the ordinals, we see that the
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class of cardinals is “well-ordered” (written in quotes, as we did for the class of
ordinals, because this class is not a set). Hence, now that one has the concept of
ordinal, one continues the above set of symbols using ordinal subscripts: The a-th
cardinal after Ny is written N,.

There is a further notation for cardinals “regarded as ordinals”. Each N,
regarded as an ordinal, is written w,. Thus one writes Ny = wy = w, N = wy,
etc..

In the next theorem we set down, without repeating the proofs, some well-
known properties of cardinal arithmetic, though we will use them only occasionally.

THEOREM 4.5.17. Letting k, A, etc., denote cardinals, and letting arithmetic
notation denote cardinal arithmetic, the following statements are true.

(i) Forall K, A, pu,

E+A = \+k, EX = K, (k+ Np = &+ A,
M = g gh, KM = (MM

(ii) For sets X; (1€ I), card(|J; Xi) < > card(Xj;).
(i) If kg < Ag for all B € o, then

Saks <o Ns, T ks < T Ag, and, if Ao > 0, kg <Ay

(iv) If Kk <X and X is infinite, then Kk + A=\ If 1 <k <X and X\ is infinite,
then kA = X. In particular, ww = w, hence by (ii) and (iii), a countable union of
countable sets is countable.

(v) 2% > k. Equivalently, the power set of any set X has strictly larger cardinality
than X.

PROOF. See [30, pp. 17-21], or [32, appendix 2, §1 and exercises at the end of
that appendix]. O

It is interesting that while the statement ww = w is easy to prove without the
Axiom of Choice (by describing an explicit bijection), its consequence, “a countable
union of countable sets is countable”, requires that axiom, to enable us to choose,
simultaneously, particular bijections between the set w and each of the infinitely
many given countable sets.

Incidentally, while the word “countable” is unambiguous when referring to a
set that we know is infinite, when that is not the case it may mean either “having
cardinality Ng” or “having cardinality < Ny”, depending on the author. To make
the former meaning unambiguous one can say “countably infinite”; some authors
use the word denumerable for this.

Turning from arithmetic back to order properties, let me define a concept of
interest in the general study of ordered sets, and note a specific application to
cardinals.

DEFINITION 4.5.18. If X is a partially ordered set, then the cofinality of X
means the least cardinality of a cofinal subset Y C X (Definition 4.1.6).

A cardinal k is called regular if, as an ordinal, it has cofinality . A cardinal
that is not regular is called singular.

Exercise 4.5:13. Show that if a partially ordered set X has cofinality k, then
every cofinal subset Y C X also has cofinality .
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Exercise 4.5:14. Prove:
(i) Every cardinal of the form R,11 (i.e., every cardinal indexed by a successor
ordinal) is regular.

(ii) The first infinite singular cardinal is R,,.

The next exercise examines the class of regular cardinals within the class of
ordinals.

Exercise 4.5:15. Let us call an ordinal « regular if there is no set map from an
ordinal < a onto a cofinal subset of a.
(i) Show that regular ordinals are “sparse”, by verifying that the only regular
ordinals are 0, 1, and the regular infinite cardinals.
(ii) On the other hand, part (i) of the preceding exercise shows that within the
set of infinite cardinals, the singular cardinals are sparse: They must be limit
cardinals, i.e., cardinals w, such that « is a limit ordinal. Prove this if you did
not do that exercise.
(iii) Show that among the limit cardinals, regular cardinals are again sparse, by
showing that if w, isregular and « is a limit ordinal, then « must be a cardinal;
in fact, 0 or a cardinal s satisfying

(4.5.19) K = Wg.

Show that the first cardinal x satisfying (4.5.19) is the supremum of the chain
k(i) (i € w) defined by x(0) =0, k(i+1) = wy(;), but that this cardinal is still
not regular.

(Regular limit cardinals will come up again in §6.4.)

Exercise 4.5:16. Since ordinals are totally ordered sets, they are in particular
partially ordered sets, and we can partially order the set-theoretic direct product
of two ordinals by componentwise comparison (Definition 4.1.4). Regarding the
product-sets wXw, wXwi, w)Xwi, WXw,, and wj Xw,+1 as partially ordered
in this manner, determine, as far as you can, whether each of these contains a
cofinal chain. (Partial credit will be given for partial results, and additional
credit for general results subsuming some of these particular cases.)

The properties of ordinals allow us to obtain a construction that we wondered
about when we considered Stone-Cech compactifications in §3.17:

Exercise 4.5:17. Let S be a totally ordered set, and for convenience, let —co and
400 be two elements outside S, the former regarded as less than all elements
of S and the latter as greater than all elements of S. Then we can define the
order topology on S to have as basis of open sets the intervals (r, t) = {s € S|
r<s<t}, where r,t € SU{—00,+00}. (We could do without —oo and o0
if we knew that S had no least or greatest element. But if it does, then unless
one introduces the above extra elements, one has to define several distinct sorts
of basic open sets, instead of just one.)

(i) Let an ordinal a be given the order topology. Which subsets of a are
closed? Which are compact?

(ii) Show that under the order topology the ordinal w; is not compact, but
satisfies condition (b) of Exercise 3.17:9. (Thus, it satisfies condition (a) of that
exercise, which was what we were interested in there.)

(iii) If you are familiar with the geometric construction of the long line, show that
this also satisfies condition (b) of Exercise 3.17:9, and examine its relationship
to the ordinal w;.
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4.6. Zorn’s Lemma

Ordinals, together with the Axiom of Choice, give a powerful tool for construct-
ing non-uniquely-determined objects in many areas of mathematics.

Let me begin by sketching an example: how those tools can be used to show
that every vector space V over a field k has a basis. One constructs recursively a
chain (Bgy)aeq of linearly independent subsets of B for some cardinal v, starting
with By = (. For each «, as long as B, does not span V, one can use the Axiom
of Choice to choose a v € |V| not in the span of B,, and let By+1 = By U {v},
while for 8 a limit ordinal, one can take Bg =J,cs Ba- One verifies that each of
these steps gives a new linearly independent subset. If we take our indexing ordinal
~ larger than the cardinality of V| this construction cannot continue adding new
elements at every non-limit ordinal; so for some «, the set B, must, in fact, span
V, and hence be a basis.

Abstracting the technique of this example, one should begin a general con-
struction of this nature by deciding what kind of objects one will consider “partial
constructions” (above: the linearly independent subsets of V'), and verifying that
these form a set. Hence there exists an ordinal v of greater cardinality than this
set. Setting up the recursion over « then involves three tasks:

(i) Find an “initializing” partial construction to which to map 0. (Above: the
set 0 C |V].)

(ii) If one has built up successive partial constructions through the one associated
to an ordinal «, and that construction is still not “finished”, one must show that
it can be extended further, to give an a+1-st stage. (Above: if B, does not span
V, then for any v outside the span of B,, the set B, U {v} is a larger linearly
independent set.) Once one has done so, the Axiom of Choice allows one to keep
picking such extensions as long as one has not achieved a “finished” construction.
(iii) Specify what to do at a nonzero limit ordinal «. At such a step, one has a
chain of preceding partial constructions, each extending the one before, and it is
often easy to verify that their “union”, defined in some way, is a partial construction
extending all of them. (In the vector space case, as in many others, we literally
take the union.)

Since the resulting recursion cannot give a one-to-one map from < into the
smaller-cardinality set of all partial constructions, it must, rather, give at some
step a “finished” construction, as desired.

The above general technique is a tool that is used repeatedly, so it is natural
to seek a lemma whose proof embodies once and for all the set-theoretic side of
the argument, and whose statement will show us what we must prove separately
for each case. In formulating the statement, one abstracts the set of all “partial
constructions” as a partially ordered set (X, <), where < is intended to be the
relation of one construction being a “part of” another. The condition saying that
we can initialize our recursion is that X be nonempty. To show that we can extend
a partial construction further if it is not yet “finished” is, put in the contrapositive,
to show that if X has any mazimal element, this is a “finished” object, i.e., one of
the sort we desire. Finally, the condition we need at steps indexed by limit ordinals,
namely that given a chain of partial constructions, we can find one which includes
them all, is made the content of a definition.
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DEFINITION 4.6.1. A partially ordered set X is called inductive if for every
nonempty chain Y C X, there is an element z € X majorizing Y (i.e., such that
z > every element of Y).

We can now state the desired result, Zorn’s Lemma (statement (ii) below), and
show that it, and a number of other statements, are each in fact equivalent to the
Axiom of Choice.

THEOREM 4.6.2. Assuming the axioms of Zermelo-Fraenkel set theory (but not
the Aziom of Choice), the following four statements are equivalent:

(i) The Axiom of Choice: If X is a set, and f is a function associating to
every © € X a nonempty set f(x), then there exists a function g associating to
every x € X an element g(x) € f(x). (Equivalently: the direct product of any
family of nonempty sets is nonempty.)

(i) Zorn’s Lemma: Fvery nonempty inductive partially ordered set (X, >) has
a mazimal element.

(iii) The Well-ordering Principle: Every set can be well-ordered. (Equivalently:
every set can be put in bijective correspondence with an ordinal.)

(iv) Comparability of Cardinalities: Given any two sets X and Y, one of
these sets can be put in bijective correspondence with a subset of the other. (Loosely:
the class of cardinalities is totally ordered.)

PRrOOF. The scheme of proof will be (iv) <= (iii) <= (i) <= (ii). That the
parenthetical restatement of (iii) is equivalent to the main statement follows from
Proposition 4.5.4(iv).

(iv) <= (iii): Assuming (iv), let X be any set and « an ordinal with the
property stated in Lemma 4.5.13(i). By (iv), there is either a bijection between X
and a subset of «, or between « and a subset of X. By choice of «, the latter case
cannot occur, so there is a bijection between X and a subset S C «. Since « is
well-ordered, so is every subset, and the well-ordering of S induces a well-ordering
of X, proving (iii). Assuming (iii), statement (iv) follows from the comparability
of ordinals, Proposition 4.5.3(iii), or more directly, from Lemma 4.5.1.

(iii) <= (i): We proved (i) = (iii) as Lemma 4.5.13(ii). Conversely, as-
sume (iii). Given X and f as in (i), statement (iii) tells us that we can find a
well-ordering < on the set |J,.y f(2). We can now define g to take each z to
the <-least element of f(z). (In terms of the axioms, we are using the Replacement
Axiom to construct g as {(z, y) | z € X and y is the least element of f(x)}.)

(i) = (ii): Let (X, <) be a nonempty inductive partially ordered set, and
let us choose as in Lemma 4.5.13(i) an ordinal « which cannot be put in bijective
correspondence with any subset of X. Note that the combination of conditions
“inductive” and “nonempty” is equivalent to saying that for every chain C C X,
including the empty chain, there is an element > all members of C.

By (i), we may choose a function g associating to every nonempty subset of X
a member of that subset. We will now recursively define an isotone map h: a — X.
Assuming that for some 8 € a we have defined an isotone map h.g: f — X,
observe that its image will be a chain Cs C X. If the set Y3 of elements of X
greater than all members of Cp is nonempty, we define h(8) = ¢(Y3). In the
contrary case, the hypothesis that X is inductive still tells us that there is an
element > all members of Cz. We conclude that such an element must be equal
to some member of Cg, which means that the chain has a largest element, c. In
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this case, we take h() = c¢. Note that in this case ¢ must be maximal in X, for
if not, any element of X greater than it would be greater than all elements of Cj,
contradicting our assumption that Yz was empty.

By choice of «, the map h we have constructed cannot be one-to-one, but by
the nature of our construction, the only situation in which one-one-ness can fail is
if at some point our h(5) is a maximal element of X. Thus X has a maximal
element, as claimed.

(i) = (i): This will be a typical application of Zorn’s Lemma. Let X and
f be given as in (i). Let P be the set of all maps defined on subsets ¥ C X and
carrying each x € Y to an element of f(z). Partially order P by setting g1 > go
if g1 is an extension of the map gg. P is nonempty because it contains the empty
mapping, and it is easy to see that given any chain C of elements of P under
the indicated partial ordering, the union of C will be an element of P that is
> all elements of C; hence P is inductive. Thus P has a maximal element g.
This element must be a function defined on all of X (otherwise we could extend it
further), completing the proof of (i). O

At the beginning of this section, when we sketched the situation that is ab-
stracted by Zorn’s Lemma, we noted that if one has a chain of partial constructions,
then their “union” is usually a partial construction extending them all. So in such
cases, in the set of all partial constructions, every chain has not merely an upper
bound, but a least upper bound. Thus, the weakened form of Zorn’s Lemma saying
that every partially ordered set with this property has at least one maximal element
is virtually all one ever uses. Is this equivalent to the full form of Zorn’s Lemma?
This is answered in

Exercise 4.6:1. Show, that the statement “If P is a nonempty partially ordered
set such that every nonempty chain in P has a least upper bound, then P has
a maximal element”, implies the full form of Zorn’s Lemma.
(This is not too hard to do by an adaptation of the proof of Theorem 4.6.2.
More challenging is the task of finding a proof which obtains the general version
of Zorn’s Lemma by a direct application of the weakened statement, rather than
via one of the other conditions of Theorem 4.6.2.)

Having proved Theorem 4.6.2, we now make

CONVENTION 4.6.3. Throughout the remainder of these notes, we shall assume
the Aziom of Choice along with the other azioms of ZFC, and thus may freely use
any of the equivalent statements of the preceding theorem.

Of these equivalent statements, Zorn’s Lemma is usually the most convenient.

Note that in the last paragraph of the proof of Theorem 4.6.2 above, our ver-
ification that P was nonempty was by the same method used to show that every
nonempty chain had an upper bound: To show the latter, we used the union of the
chain, while to get an element of P we took the empty function, which is the union
of the empty chain. It is my experience that in most proofs using Zorn’s Lemma,
the verification of nonemptiness may be achieved by the same construction that
shows every nonempty chain has an upper bound; i.e., the assumption “nonempty”
is rarely needed in the latter verification. Hence my personal preference would
be to use a definition of “inductive” that required every chain to have an upper
bound, and eliminate “X nonempty” as a separate hypothesis of Zorn’s Lemma.
(Of course, in some exceptional cases, the verification that all chains have upper
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bounds may have to treat empty and nonempty chains separately. But curiously,
even when the same verification works for both cases, many authors seem embar-
rassed to use a trivial example to show their X is nonempty, and unnecessarily
give a more complicated one instead.) For conformity with common usage, I have
stated Zorn’s Lemma in terms of the standard definition of “inductive”. But we
may, at times, skip a separate verification that our inductive set is nonempty, and
instead observe that some construction gives an upper bound for any chain, empty
or nonempty.

The reader who has not seen proofs by Zorn’s Lemma before, and does not see
how to begin the next few exercises, might look at a few such proofs in a standard
graduate algebra text such as [32], and/or ask his or her instructor for some ele-
mentary examples. The steps of identifying the sort of “partial constructions” one
wants to use, describing the appropriate partial ordering on that set, verifying that
the set is inductive, and verifying that a maximal element corresponds to an entity
of the sort one was seeking, take practice to master.

Exercise 4.6:2. In Exercise 3.14:2(ii) you were asked to prove that the free
Boolean ring on any set could be embedded in the Boolean ring of subsets of
some set. Prove now that every Boolean ring can be embedded in the Boolean
ring of subsets of some set.

Exercise 4.6:3. Show that in a commutative ring, every prime ideal contains a
minimal prime ideal. (Note: though the phrase “maximal ideal” by convention
means a maximal element of the set of proper ideals, “minimal prime ideal”
means minimal among all prime ideals, without restriction.)

Exercise 4.6:4. We saw in Exercise 4.1:10 that the maximal partial orderings on
a set X were the total orderings. Deduce now for arbitrary X (as we were able
to deduce there for finite X) that
(i) Every partial ordering on X can be extended to a total ordering.

(ii) Every partial ordering on X is an intersection of total orderings.

Exercise 4.6:5. (i) If X is a totally ordered set, show that X has a subset Y
well-ordered under the induced ordering, and cofinal in X (Definition 4.1.6).
(ii) Show that the Y of (i) can be taken order-isomorphic to a regular cardinal
(Exercise 4.5:14), and that this cardinal is unique. However show that the set Y
itself is not in general unique, and that if the condition of regularity is dropped,
uniqueness of the cardinal can also fail.

(iii) Suppose (X;);cs is a finite family of totally ordered sets, such that for all
i, j € I the set X; x X, under the product order, contains a cofinal subchain.
Show that the set T, X; under the product order likewise has a cofinal subchain.

The final part of this exercise does not depend on the preceding parts; rather,
it is a generalization of part (i).
(iv) Prove that every partially ordered set has a cofinal subset with descending
chain condition.

Exercise 4.6:6. For a partially ordered set X, show that the following conditions
are equivalent:

(i) X has no maximal element.
(i) X has two disjoint cofinal subsets.
(ii") X has an infinite family of disjoint cofinal subsets.
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Exercise 4.6:7. Suppose X is a partially ordered set which contains a cofinal
chain. Show that every cofinal subset of X also contains a cofinal chain. (I
find this harder to prove than I would expect. Perhaps there is some trick I am
missing.)

The next exercise is an example where the “obvious” Zorn’s Lemma proof does
not work. The simplest valid proof in this case is by the well-ordering principle,
which is not surprising since it is a result about well-orderability. However, this
can also be turned into a Zorn’s Lemma proof, if one is careful.

Exercise 4.6:8. Let X be a set, let P be the set of partial order relations on X,
partially ordered by inclusion as in Exercise 4.1:10, and let @ C P consist of
those partial orderings having descending chain condition.

(i) Show that the maximal elements of @ (under the partial ordering induced
from P) are the well-orderings of X.

(ii) Show that @ is not inductive.

(iii) Prove nonetheless that every element of @ is majorized by a maximal el-
ement, and deduce that every partial ordering with DCC on a set X is an
intersection of well-orderings. (Hint: Take an appropriate ordinal « and con-
struct an indexing of the elements of X by an initial segment of «, in a way
“consistent” with the given partial order.)

The next four exercises, though not closely related to Zorn’s Lemma, explore
further the relation between partially ordered sets and their well-ordered subsets.

Exercise 4.6:9. Let S be an infinite set, and P(S) the set of all subsets of S,
partially ordered by inclusion. Show by example that P(S) can contain chains
of cardinality > card(S), but prove that P(S) cannot contain a well-ordered
chain of cardinality > card(S).

Exercise 4.6:10. (i) Show that every infinite totally ordered set has either a
subset order-isomorphic to w or a subset order-isomorphic to w°P.
(ii) Show that every infinite partially ordered set P contains either a subset
order-isomorphic to w, a subset order-isomorphic to w°P, or a countably infinite
antichain (Definition 4.1.6). (Suggestion: If P has no infinite antichain, obtain
a finite antichain B C P maximal for the property that the set S of elements
incomparable with all elements of B is infinite; then study the properties this
S must have. Alternatively, do the same thing with the roles of comparable and
incomparable elements reversed.)

This family of three partially ordered sets is essentially unique for the above

property:
(iii) Show that a set F of infinite partially ordered sets has the property that
every infinite partially ordered set contains an isomorphic copy of a member of
F if and only if F contains a partially ordered set order-isomorphic to w, a
partially ordered set order-isomorphic to w°P, and a countable antichain.

An application of the preceding exercise is

Exercise 4.6:11. Let P be a partially ordered set.
(i) Show that the following conditions are equivalent:
(i.a) P contains no chains order-isomorphic to w°P.

(i.b) Every infinite subset of P contains either a subset order-isomorphic
to w, or an infinite antichain.

(i.c) P satisfies the descending chain condition.
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(ii) It is clear from (i) above that conditions (ii.a)-(ii.c) below are equivalent.
Show that they are also equivalent to (ii.d):
(ii.a) P contains no chains order-isomorphic to w°P, and no infinite an-
tichains.
(ii.b) Every infinite subset of P contains a subset order-isomorphic to w.
(ii.c) P has descending chain condition, and contains no infinite antichains.
(ii.d) Every total ordering extending the ordering of P is a well-ordering.

A partially ordered set P with the equivalent properties of (ii) is sometimes
called “partially well-ordered”.

The first part of the next exercise notes that for uncountable cardinalities,
things are more complicated.

Exercise 4.6:12. (i) Deduce from Exercise 4.6:9 that there exists a totally or-

dered set P of some cardinality x which contains no well-ordered or reverse-
well-ordered subset of cardinality «.
(ii) Suppose P is asin (i), and ¢ is a bijection between P and a well-ordered
set @ of cardinality . Consider {(p, ¢(p)) | p € P}, under the partial ordering
induced by the product ordering on P x (). Show that this has neither chains nor
antichains of cardinality s (in contrast to the result of Exercise 4.1:9 for finite
partially ordered sets).

But perhaps one can repair this deficiency. (I have not thought hard about
the question asked below.)

(iii) Exercise 4.1:9 was based on defining the “height” of a partially ordered set as
the supremum of the cardinalities of its chains; but a different concept of “height”
was introduced for partially ordered sets with descending chain condition in Ex-
ercise 4.5:4. Can this definition be extended in some way to general partially
ordered sets, or otherwise modified, so as to get an analog of Exercise 4.1:9 for
partially ordered sets of arbitrary cardinality? (Or can the definition of “width”
be so modified?)

Exercise 4.6:13. (i) Show that every countable totally ordered set can be em-
bedded in the totally ordered set (Q, <) of rational numbers.
(ii) Show that (Q, <) is not (up to order-isomorphism) the only countable
totally ordered set with the property of part (i); but show that (Q, <) has the
property slightly stronger than (i), that for every countable totally ordered set X
every embedding of a finite subset Xy 2O X in (Q, <) extends to an embedding
of X in (Q, <), and that up to order-isomorphism it is indeed the unique totally
ordered set with this property.

Exercise 4.6:14. A subset X of a partially ordered set P is called unbounded if
X is not majorized by any element of P.
Note that when we refer below to set-maps among partially ordered sets,
these are not assumed to be isotone.

(i) Let P be the partially ordered set w x wy, with the product ordering, and
let @@ be either w or w;. Show that there exist set-maps f: P — @ such that
the image under f of every cofinal subset of P is a cofinal subset of @, but no
set-maps ¢g: P — ) such that the image under g of every unbounded subset
of P is unbounded in @. On the other hand, show that there exist set-maps
h: @ — P such that the image under h of every unbounded subset of @ is an
unbounded subset of P, but no set-maps i: Q — P such that the image under
1 of every cofinal subset of @) is cofinal in P.

A partially ordered set P is called directed if any two elements of P have a
common upper bound.



4.7. THOUGHTS ON SET THEORY 133

(ii) Show that for any two directed partially ordered sets P and @, the follow-
ing conditions are equivalent:
(ii.a) There exists a set-map f: P — @ such that the image under f of
every cofinal subset of P is a cofinal subset of Q.
(ii.b) There exist a set-map h: @ — P such that the image under h of
every unbounded subset of @ is an unbounded subset of P.
(iii) The equivalent conditions of (ii) above are written @ <7 P. Show that <r
is a preordering on the class of directed partially ordered sets. When Q <r P,
one says @ is Tukey reducible to P. Translate the results of (i) into a statement
about Tukey reducibility.
(iv) Show that the following conditions on directed partially ordered sets P and
() are equivalent:
(iv.a) P<p @ and Q <r P.
(iv.b) There exist set-maps f: P — @ and g: Q — P such that for all
p€ P and ¢ € Q one has g f(p) >p and fg(q) >q.
(iv.c) P and @ can be embedded as partially ordered sets (hence, by isotone
maps!) in a common directed partially ordered set R so that each is cofinal
in R. This condition is called Tukey equivalence.
(v) Obtain from the method of proof of Exercise 4.6:7 a result on Tukey equiv-
alence.

For a curious application of the well-ordering principle to the study of abelian
groups, see the first section of [42].

4.7. Some thoughts on set theory

I have mentioned that when the Axiom of Choice and various equivalent prin-
ciples were first considered, they were the subject of a heated controversy.

The Axiom of Choice is now known to be independent of the other axioms of
set theory; i.e., it has been proved that, assuming the consistency of the Zermelo-
Fraenkel axioms without Choice, both the full set of axioms including Choice, and
the Zermelo-Fraenkel axioms plus the negation of the Axiom of Choice are consis-
tent. And there are further statements (for instance the Continuum Hypothesis,
saying that 2% = X;) which have been shown independent of Zermelo-Fraenkel set
theory with the Axiom of Choice, and which there do not seem to be any compelling
reasons either for accepting or rejecting. This creates the perplexing question of
what is the “true” set theory.

Alongside Zermelo-Fraenkel Set Theory with and without Choice, etc., there
are still other contenders for the “correct” foundations of mathematics. The In-
tuitionists objected not only to the Axiom of Choice, but to the “law of the ex-
cluded middle”, the logical principle that every meaningful statement is either true
or false. They claimed (if T understand correctly) that an assertion such as Fer-
mat’s Last Theorem (the statement that there are no nontrivial integer solutions to
™+ y" = 2", n > 2, which was unproven at the time) could be said to be false if
a counterexample were found, or true if an argument could be found (using forms
of reasoning acceptable to them) that proved it, but that it would be neither true
nor false if neither a counterexample nor a proof existed. They maintained that the
application of the law of the excluded middle to statements which involve infinitely
many cases, and which thus cannot be checked case by case, was a fallacious ex-
tension to infinite sets of a method correct only for finite sets; in their words, that
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one cannot reason in this way about an infinite set such as the set of all natural
numbers, because it cannot be regarded as a “completed totality”.

Although this viewpoint is not current, note that the distinction between sets
and proper classes, which got mathematics out of the paradoxes that came from
considering “the set of all sets”, leaves us wondering whether the class of all sets is
“a real thing”; and indeed one current textbook on set theory refers to this in terms
of the question of whether mathematicians can consider such classes as “completed
totalities”.

During a painfully protracted correspondence with someone who insisted he
could show that Zermelo-Fraenkel set theory was inconsistent, and that the fault
lay in accepting infinite sets, which he called “mere phantasms”, I was forced to
think out my own view of the matter, and the conclusion I came to is that all
sets, finite and infinite, are “phantasms”; that none of mathematics is “real”, so
that there is no true set theory; but that this does not invalidate the practice of
mathematics, or the usefulness of choosing a “good” set theory.

To briefly explain this line of thought, let us understand the physical world to be
“real”. (If your religious or philosophical beliefs say otherwise, you can nevertheless
follow the regression to come.)

Our way of perceiving the world and interacting with it leads us to partition it
into “objects”. This partitioning is useful, but is not a “real thing”.

To deal intelligently with objects, we think about families of objects, and, as
our thinking gets more sophisticated, families of such families. Though I do not
think the families, and families of families are “real things” either, they are useful
— as descriptions of the way we classify the world.

Consider in particular our system of numbers, which are themselves not “real
things”, but which give a model that allows us to use one coherent arithmetic
system to deal with the various things in the world that one can count. Note
that in spite of this motivation in terms of things one can count, in developing
the numbers we use a system that is not bounded by the limitations of how high
a person could count in a lifetime. A system with such a limitation arbitrarily
imposed would be more difficult to define, learn, and work with than our system, in
which the behavior of arithmetic is uniform for arbitrarily large values! Moreover,
our unbounded system turns out to have applications to situations that a system
bounded in that way would not be able to deal with: to demographic, geographical,
astronomical and other data, which we compute from observations and theoretical
models of our world, though no one human being could have counted the numbers
involved unit by unit.

Now in thinking about our system of numbers, we are dealing with the concept
of “all the numbers in the system” — even those who refuse to call that family a
“completed totality” do reason about it! — so, if possible, we want our set theory to
be able to handle such concepts. Just as we found it natural to extend the system
of numbers beyond the sizes of sets a real person could count, so we may extend
our system of “sets” beyond finite sets. This is not as simple as with the number
concept. Some plausible approaches turned out to lead to contradictions, e.g., those
that allowed one to speak of “the set of all sets”. Among the approaches that do
not seem to lead to contradictions, some are more convenient than others. I think
we are justified in choosing a more convenient system to work in — one in which the
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“unreal objects” that we are considering are easier to understand and generalize
about.

It may seem pointless to work in a set theory which is to some extent “arbi-
trary”, and to which we do not ascribe absolute “truth”. But observe that as long
as we use a system consistent with the laws of finite arithmetic, any statements we
can prove in our system about arithmetic models of aspects of the real world, and
which can in principle be confirmed or disproved in each case by a finite calculation,
will be correct; i.e., as applicable to the real world as those models are. This is what
I see as the “justification” for including the Axiom of Choice and other convenient
axioms in our set theory.

(For arguments in favor of adding another axiom, the Aziom of Projective
Determinacy, to the standard axioms of set theory, see [145].)

Fortunately, making a choice among set theories or systems of reasoning does
not consign all others to oblivion. Logicians do consider not only which statements
hold if the Axiom of Choice is assumed, but also which hold if its negation is
assumed. (E.g., [86] shows that in a model of ZF with the negation of Choice,
one will have commutative rings with properties contradicting several standard
theorems of ZFC ring theory.) Intuitionistic logic is likewise still studied — not,
nowadays, as a preferred mode of reasoning, but as a formal system, related to
objects called Brouwerian lattices (cf. [3]) in the same way standard logic is related
to Boolean algebras.



CHAPTER 5

Lattices, closure operators, and Galois connections

5.1. Semilattices and lattices

Many of the partially ordered sets P we have seen have a further valuable
property: that for any two elements of P, there is a least element > both of them,
and a greatest element < both of them, i.e., a least upper bound and a greatest
lower bound for the pair. In this section we shall study partially ordered sets with
this property. To get a better understanding of the subject, let us start by looking
separately at the properties of having least upper bounds and of having greatest
lower bounds.

Recall that an element x is said to be idempotent with respect to a binary
operation * if x*x = x. The binary operation * itself is often called idempotent
if *2 =a holds for all z.

LEMMA 5.1.1. Suppose X is a partially ordered set in which every two elements
x,y € X have a least upper bound; that is, such that there exists a least element
which majorizes both x and y. Then if we write this least upper bound as x Vv,
and regard V as a binary operation on X, this operation satisfies the identities

VereX) zVe=u=x (idempotence),
Ve, ye X) axVy=yVza (commutativity),
Vz,y,z€X) (zVy)Vz=2zV(yV2) (associativity).

Conversely, given a set X with a binary operation V satisfying the above three
identities, there is a unique partial order relation < on X for which V is the least
upper bound function. This relation < may be obtained from the operation V in
two ways: It can be constructed as

{(,2Vvy) |z ye X},
or characterized as the set of elements satisfying an equation:

{(@y) |z, yeX and y = xvy} O

Exercise 5.1:1. Prove the non-obvious part of the above lemma, namely that
every idempotent commutative associative binary operation on a set arises from
a partial ordering with least upper bounds. Why is this partial ordering unique?

Hence we make

DEFINITION 5.1.2. An upper semilattice means a pair S = (|S], V), where
|S| is a set, and V (pronounced “join”) is an idempotent commutative associative
binary operation on |S|. Informally, the term “upper semilattice” is also used for
the equivalent structure of a partially ordered set in which every pair of elements
has a least upper bound.

136
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Given an upper semilattice (|S|, V), we shall consider |S| as partially ordered
by the unique ordering which makes V the least upper bound operation (charac-
terized in two equivalent ways in the above lemma). The set |S| with this partial
ordering is sometimes called the “underlying partially ordered set” of the upper
semilattice S.

The join of a finite nonempty family of elements x; (i € I) in an upper
semilattice (which by the associativity and commutativity of the join operation V
makes sense without specification of an order or bracketing for the elements, and
which is easily seen to give the least upper bound of {x;} in the natural partial
ordering) is denoted \/,.; x;.

The danger of confusion inherent in the symmetry of the partial order concept
is now ready to rear its head! Observe that in a partially ordered set in which
every pair of elements z, y has a greatest lower bound x Ay, the operation A will
also be idempotent, commutative and associative (it is simply the operation V for
the opposite partially ordered set), though the partial ordering is recovered from
it in the opposite way, by defining = < y if and only if = can be written y A z,
equivalently, if and only if © = 2 A y. We have no choice but to make a formally
identical definition for the opposite concept (first half of the first sentence below):

DEFINITION 5.1.3. A lower semilattice means a pair S = (S|, A), where |S| is
a set and A (pronounced “meet”) is an idempotent commutative associative binary
operation on |S|; or informally, the equivalent structure of a partially ordered set
in which every pair of elements has a greatest lower bound. If (|S|, A) is such a
pair, regarded as a lower semilattice, then |S| will be considered partially ordered
in the unique way which makes A the greatest lower bound operation.

The notation for the meet of a finite nonempty family of elements is N\, ;.

A partially ordered set (X, <) in which every pair of elements = and y has
both a least upper bound x Vy and a greatest lower bound x Ay is clearly deter-
mined — indeed, redundantly determined — by the 3-tuple L = (X, V, A). We see
that a 3-tuple consisting of a set, an upper semilattice operation, and a lower semi-
lattice operation arises in this way if and only if these operations are compatible,
in the sense that the unique partial ordering for which V is the least-upper-bound
operation coincides with the unique partial ordering for which A is greatest-lower-
bound operation.

Is there a nice formulation for this compatibility condition? The statement
that for any two elements x and y, the element y can be written x V z for some
z if and only if the element x can be written y Aw for some w would do, but it is
awkward. If, instead of using as above the descriptions of how to construct all pairs
(z, y) with <y with the help of the operations V and A, we use the formulas
that characterize them as solution-sets of equations, we get the condition that for
all elements « and y, y =xVy <= x Ay = x. But the best expression for our
condition — one that does not use any “can be written”s or “ <= ”s — is obtained
by playing off one description of V against the other description of A. This is the
fourth pair of equations in
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DEFINITION 5.1.4. A lattice will mean a 3-tuple L = (|L|, V, A) satisfying the
following identities for all x,y, z € |L]| :

TV ==z TANT = (idempotence),
xVy =yVze TAYy = yAzx (commutativity),
(zVy)Vz=2aV(yVz) (zAy)Ahz=xzA(yAz) (associativity),
zA(zVy) =z zV(zAhy) ==z (compatibility);

in other words, such that (|L|, V) is an upper semilattice, (|L|, A) is a lower semi-
lattice, and the two semilattice structures correspond to the same partial ordering
on |L|. Informally, the term will also be used for the equivalent structure of a par-
tially ordered set in which every pair of elements has both a least upper bound and
a greatest lower bound.

Given a lattice (|L|, V, N), we shall consider |L| partially ordered by the unique
partial ordering (characterizable in four equivalent ways) which makes its join oper-
ation the least upper bound and its meet operation the greatest lower bound. The set
|L| with this partial ordering is sometimes called the “underlying partially ordered
set of L.”

Examples: If S is a set, then the power set P(S) (the set of all subsets
of 5), partially ordered by the relation of inclusion, has least upper bounds and
greatest lower bounds, given by operations of union and intersection of sets; hence
(P(S), U, N) is a lattice. Since the definition of Boolean algebra was modeled on
the structure of the power set of a set, every Boolean algebra (|B], U, N, ¢, 0, 1)
gives a lattice (|B|, U, N) on dropping the last three operations; and since we
know that Boolean rings are equivalent to Boolean algebras, every Boolean ring
(IB|,+, -,—, 0, 1) becomes a lattice under the operations zVy =z +y+zy and
TANYy=2xYy.

Every totally ordered set — for instance, the real numbers — is a lattice, since
the larger and the smaller of two elements will respectively be their least upper
bound and greatest lower bound. The set of real-valued functions on any set X
may be ordered by writing f < g if f(z) < g(z) for all z, and this set is a lattice
under pointwise maximum and minimum.

Under the partial ordering by divisibility, the set of positive integers has least
upper bounds and greatest lower bounds, called “least common multiples” and
“greatest common divisors”. Note that if we represent a positive integer by its
prime factorization, and consider such a factorization as a function associating
to each prime a nonnegative integer, then least common multiples and greatest
common divisors reduce to pointwise maxima and minima of these functions.

Given a group G, if we order the set of subgroups of G' by inclusion, then we see
that for any two subgroups H and K, there is a largest subgroup contained in both,
gotten by intersecting their underlying sets, and a smallest subgroup containing
both, the subgroup generated by the union of their underlying sets. So the set of
subgroups of G forms a lattice, called the subgroup lattice of G. This observation
goes over word-for-word with “group” replaced by “monoid”, “ring”, “vector space”,
etc..

Some writers use “ring-theoretic” notation for lattices, writing « +y for zVy,
and zy for z Ay. Note, however, that a nontrivial lattice is never a ring (since by
idempotence, its join operation cannot be a group structure). We will not use such
notation here.
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Although one can easily draw pictures of partially ordered sets and semilattices
which are not lattices, it takes a bit of thought to find naturally occurring examples.
The next exercise notes a couple of these.

Exercise 5.1:2. (i) If G is a group, show that within the lattice of subgroups of

G, the finitely generated subgroups form an upper semilattice under the induced
order, but not necessarily a lower semilattice, and the finite subgroups form a
lower semilattice but not necessarily an upper semilattice. (For partial credit
you can verify the positive assertions; for full credit you must find examples
establishing the negative assertions as well.)
(ii) Let us partially order the set of polynomial functions on the unit interval
[0, 1] by pointwise comparison (f < ¢ if and only if f(z) < g(z) for all =z €
[0, 1]). Show that this partially ordered set is neither an upper nor a lower
semilattice.

Exercise 5.1:3. Give an example of a 3-tuple (|L|, V, A) which satisfies all the
identities defining a lattice except for one of the two compatibility identities. If
possible, give a systematic way of constructing such examples. Can you determine
for which upper semilattices (|L|, V) there will exist operations A such that
(IL], V, A) satisfies all the lattice identities except the specified one? (The answer
will depend on which identity you leave out; you can try to solve the problem for
one or both cases.)

Exercise 5.1:4. Show that the two compatibility identities in Definition 5.1.4 to-
gether imply the two idempotence identities.

Exercise 5.1:5. Show that an element of a lattice is a mazimal element if and only
if it is a greatest element. Is this true in every upper semilattice? In every lower
semilattice?

A homomorphism of lattices, upper semilattices, or lower semilattices means a
map of their underlying sets which respects the lattice or semilattice operations.
If L1 and Lo are lattices, one can speak loosely of an “upper semilattice homo-
morphism L; — Lo,” meaning a map of underlying sets which respects joins but
not necessarily meets; this is really a homomorphism (L;1)y — (L2)v, where (L;)y
denotes the upper semilattice (|L;|, V) gotten by forgetting the operation A; one
may similarly speak of “lower semilattice homomorphisms” of lattices. Note that if
f:|L1] = |L2| is a lattice homomorphism, or an upper semilattice homomorphism,
or a lower semilattice homomorphism, it will be an isotone map with respect to the
natural order-relations on |L;| and |Ls|, but in general, an isotone map f need
not be a homomorphism of any of these sorts.

A sublattice of a lattice L is a lattice whose underlying set is a subset of
|L| and whose operations are the restrictions to this set of the operations of L. A
subsemilattice of an upper or lower semilattice is defined similarly, and one can speak
loosely of an upper or lower subsemilattice of a lattice L, meaning a subsemilattice
of Ly or L.

Exercise 5.1:6. (i) Give an example of a subset S of the underlying set of a
lattice L such that every pair of elements of S has a least upper bound and a
greatest lower bound in S under the induced ordering, but such that S is not
the underlying set of either an upper or a lower subsemilattice of L.

(ii) Give an example of an upper semilattice homomorphism between lattices
that is not a lattice homomorphism.
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(iii) Give an example of a bijective isotone map between lattices which is not an
upper or lower semilattice homomorphism.

(iv) Show that a bijection between lattices is a lattice isomorphism if either (a) it
is an upper (or lower) semilattice homomorphism, or (b) it and its inverse are
both isotone.

Exercise 5.1:7. Let k be a field. If V is a k-vector space, then the cosets of
subspaces of V, together with the empty set, are called the affine subspaces
of V.

(i) Show that the affine subspaces of a vector space (ordered by inclusion) form
a lattice.

(ii) Suppose we map the set of affine subspaces of the vector space k™ into the
set of vector subspaces of k™t! by sending each affine subspace A C k™ to the
vector subspace s(A) C k"t spanned by {(zo, ..., Tn_1, 1) | (0, ..., Tpn_1) €
A}. Show that this map s is one-to-one. One may ask whether s respects meets
and/or joins. Show that it respects one of these, and respects the other in “most
but not all” cases, in a sense you should make precise.

(The study of the affine subspaces of k™ is called n-dimensional affine geom-
etry. By the above observations, the geometry of the vector subspaces of k"t!
may be regarded as a slight extension of n-dimensional affine geometry; this is
called n-dimensional projective geometry. In view of the relation with affine geom-

etry, a 1-dimensional subspace of k™t! is called a “point” of projective n-space,
a 2-dimensional subspace, or more precisely, the set of “points” it contains, is
called a “line”, etc..)

The methods introduced in Chapters 2 and 3 can clearly be used to establish the
existence of free lattices and semilattices, and of lattices and semilattices presented
by generators and relations. As in the case of monoids, a “relation” means a
statement equating two terms formed from the given generators using the given
operations — in this case, the lattice or semilattice operations.

Exercise 5.1:8. (i) If P isa partially ordered set, show that there exist universal
examples of an upper semilattice, a lower semilattice, and a lattice, with isotone
maps of P into their underlying partially ordered sets, and that these may be
constructed as semilattices or lattices presented by appropriate generators and
relations.

(ii) Show likewise that given any upper or lower semilattice S, there is a uni-
versal example of a lattice L with an upper, respectively lower semilattice ho-
momorphism of S into it.

(iii) If the S of part (ii) above “is a lattice” (has both least upper bounds
and greatest lower bounds), will this universal semilattice homomorphism be an
isomorphism? If the P of part (i) “is a lattice” will the universal isotone maps
of that part be isomorphisms of partially ordered sets?

(iv) Show that the universal maps of (i) and (ii) are in general not surjective,
and investigate whether each of them is in general one-to-one.

Exercise 5.1:9. Determine a normal form or other description for the free upper
semilattice on a set X. Show that it will be finite if X is finite.

There exists something like a normal form theorem for free lattices [3, §VI.g],
but it is much less trivial than the result for semilattices referred to in the above
exercise, and we will not develop it here. However, the next exercise develops a
couple of facts about free lattices.
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Exercise 5.1:10. (i) Determine the structures of the free lattices on 0, 1, and
2 generators.
(ii) Show for some positive integer n that the free lattice on n generators is
infinite. (One approach: In the lattice of affine subsets of the plane R? (Ex-
ercise 5.1:7), consider the sublattice generated by the five lines x = 0, = = 1,
r=2, y=0, y=1.)

Exercise 5.1:11. (i) Recall (cf. discussion preceding Exercise 4.1:5) that a set
map X — Y induces maps P(X) — P(Y) and P(Y) — P(X). Show that one
of these is always, and the other is not always a lattice homomorphism.

(ii) If L is (a) a lattice, respectively (b) an upper semilattice, (c) a lower semi-
lattice or (d) a partially ordered set, show that there exists a universal example
of a set X together with, respectively,

(a) a lattice homomorphism L — (P(X), U, N),

(b) an upper semilattice homomorphism L — (P(X), U),

(c) alower semilattice homomorphism L — (P(X), N), respectively,

(d) an isotone map L — (P(X), C) (unless you did this case in Exer-

cise 4.1:5).

In each case, first formulate the relevant universal properties. These should
be based on the construction of part (i) that does give lattice homomorphisms.
In each case, describe the set X as explicitly as you can.

(iii) In the context of part (i), the map between P(X) and P(Y) that does
not generally give a lattice homomorphism will nevertheless preserve some of the
types of structure named in part (ii). If L is an arbitrary structure of one of those
sorts, see whether you can find an example of a set X and a map |L| — P(X)
respecting that structure, and universal with respect to induced maps in the
indicated direction.

(iv) For which of the constructions that you obtained in parts (ii) and/or (iii)
can you show the universal map |L| — P(X) one-to-one? In the case(s) where
you cannot, can you find an example in which it is not one-to-one?

In Exercise 4.6:6 we saw that any partially ordered set without maximal ele-
ments has two disjoint cofinal subsets. Let us examine what similar results hold for
lattices.

Exercise 5.1:12. Let L be a lattice without greatest element.

(i) If L is countable, show that it contains a cofinal chain, that this chain
will have two disjoint cofinal subchains, and that these will be disjoint cofinal
sublattices of L.

(ii) Show that in general, L need not have a cofinal chain.
(iii) Must L have two disjoint cofinal sublattices? (I don’t know the answer.)

(iv) Show that L will always contain two disjoint upper subsemilattices, each
cofinal in L.

Here is another open question, of a related sort.

Exercise 5.1:13. (i) (Open question, David Wasserman.) If L is a lattice with
more than one element, must L have two proper sublattices L; and Lo, whose
union generates L 7

Parts (ii) and (iv) below, which are fairly easy, give some perspective on this
question; parts (iii) and (v) are digressions suggested by (ii) and (iv).
(ii) Show that if A is a group, monoid, ring or lattice which is finitely generated
but cannot be generated by a single element, then A is generated by the union
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of two proper subgroups, subrings, etc.. (You can give one proof that covers all
these cases.)
(iii) Determine precisely which finitely generated groups are not generated by

the union of any two proper subgroups.

(iv) Let p be a prime and Z[p~!] the subring of Q generated by p~!, and

let Z[p~']aqq denote its underlying additive group. Show that the abelian group
Z[p~Yadd/Zaqa is non-finitely-generated, and cannot be generated by two proper
subgroups.

(v) Are the groups of parts (iii) and (iv) above the only ones that are not
generated by two proper subgroups?

I could not end an introduction to lattices without showing you the concepts
introduced in the next two exercises, though this brief mention, and the results
developed in the two subsequent exercises, will hardly do them justice. I will refer
in these exercises to the following two 5-element lattices:

N5Z M3:

(M3 is sometimes called Ms.)

Exercise 5.1:14. (i) Show that the following conditions on a lattice L are equiv-

alent:
(a) For all z,y, z € |L| with 2 <z, onehas zV (yAz)=(zVy)A-z
(b) L has no sublattice isomorphic to N5 (shown above).

(c¢) Forevery pair of elements x, y € |L|, the intervals [zAy, y] and [z, 2Vy]

are isomorphic, the map in one direction being given by z +— x V z, in the

other direction by z — z A y.
(ii) Show that condition (a) is equivalent to an identity, i.e., a statement that a
certain equation in n variables and the lattice-operations holds for all n-tuples
of elements of L. (Condition (a) as stated fails to be an identity, because it refers
only to 3-tuples satisfying z < z.)
(iii) Show that the lattice of subgroups of an abelian group satisfies the above
equivalent conditions. Deduce that the lattice of submodules of a module over a
ring will satisfy the same conditions.

For this reason, a lattice satisfying these conditions is called modular.
(iv) Determine, as far as you can, whether each of the following lattices is in
general modular: the lattice of all subsets of a set; the lattice of all subgroups
of a group; the lattice of all normal subgroups of a group; the lattice of all
ideals of a ring; the lattice of all subrings of a ring; the lattice of all subrings of
a Boolean ring; the lattice of elements of a Boolean ring under the operations
zVy=zxz+y+zy and z Ay = zy; the lattice of all sublattices of a lattice;
the lattice of all closed subsets of a topological space; the lattices associated
with n-dimensional affine geometry and with n-dimensional projective geometry
(Exercise 5.1:7 above).

Exercise 5.1:15. (i) Show that the following conditions on a lattice L are equiv-
alent:

(a) Forall z,y, z € |L|, one has zV (yAz)=(xVy)A(zV=z).



5.1. SEMILATTICES AND LATTICES 143

(a*) For all z, y, z € |L|, one has x A (yVz) = (x Ay)V (z A 2).

(b) L has no sublattice isomorphic either to M3 or to Nj.

Note that if one thinks of VvV as “addition” and A as “multiplication”,
then (a*) has the form of the distributive law of ring theory. (Condition (a) is
also a distributive law, though that identity does not hold in any nonzero ring.)
Hence lattices satisfying the above equivalent conditions are called distributive.
(ii) Show that the lattice of subsets of a set is distributive.

(iii) Determine, as far as you can, whether lattices of each of the remaining sorts
listed in parts (iii) and (iv) of the preceding exercise are always distributive.

(iv) Show that every finitely generated distributive lattice is finite.

Exercise 5.1:16. Let V be a vector space over a field k, let Sy, ..., S, be sub-
spaces of V, and within the lattice of all subspaces of V, let L denote the
sublattice generated by Si, ..., Sp.

(i) Show that if V' has a basis B such that each S; is spanned by a subset of
B, then L is distributive, as defined in the preceding exercise

Below we will prove the converse of (i); so for the remainder of this exer-
cise, we assume the lattice L generated by the vector subspaces Si, ..., Sy is
distributive.

To prove the existence of a basis as in the hypothesis of (i), it will suffice to
prove that V' contains a direct sum of subspaces, with the property that each
S; is the sum of some subfamily thereof; so this is what we will aim for. (You’'ll
give the details of why this yields the desired result in the last step.)

You may assume the last result of the preceding exercise, that every finitely
generated distributive lattice is finite.

(ii) Let T'=S;1+---+S,, the largest element of L. Assuming L has elements
other than T, let W be maximal among these. Show that there is a least element
U € L not contained in W.

(iii) Let E be a subspace of V such that U = (UNW) & E. (Why does one
exist?) Show that every member of L is either contained in W, or is the direct
sum of F with a member of L contained in W.

(iv) Writing L’ for the sublattice of L consisting of members of L contained
in W, show that the lattice of subspaces of V' generated by {Si, ..., Sp, E} is
isomorphic to L’ x {0, E}, and hence is again a finite distributive sublattice of
the lattice of subspaces of V.

(v) Conclude by induction (on what?) that there exists a family of subspaces
FEyq, ..., E. CV such that every member of L, and hence in particular, each of
S1, ..., Sp, is the direct sum of a subset of this family.

(vi) Deduce that V has a basis B such that each S; is spanned by a subset
of B.

Exercise 5.1:17. Let us show that the result of the preceding exercise fails for
infinite families (S;);c;. Our example will be a chain of subspaces, so
(i) Verify that every chain in a lattice is a distributive sublattice.

Now let k be a field, and V the k-vector-space of all k-valued functions
on the nonnegative integers. You may assume the standard result that V is
uncountable-dimensional. For each nonnegative integer n, let S, = {f € V|
f(@) =0 for i <n}.

(ii) Show that V' does not have a basis B such that each S; is spanned by a
subset of B. (One way to start: Verify that for each n, S,4+1 has codimension
1 in Sy, and that the intersection of these subspaces is {0}.)

The preceding exercise suggests
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Exercise 5.1:18. Can you find necessary and sufficient conditions on a lattice L
for it to be true that for every homomorphism f of L into the lattice of subspaces
of a vector space V, there exists a basis B of V' such that every subspace f(z)
(z € |L]) is spanned by a subset of B?

We remark that the analog of Exercise 2.3:2 with the finite lattice N5 in place
of the finite group S5 is worked out for n =3 in [140].

5.2. 0, 1, and completeness

We began this chapter with the observation that many natural examples of
partially ordered sets have the property that every pair of elements has a least
upper bound and a greatest lower bound. But most of these examples in fact have
the stronger property that such bounds exist for every set of elements. E.g., in the
lattice of subgroups of a group, one can take the intersection of, or the subgroup
generated by the union of, an arbitrary set of subgroups. The property that every
subset {z; | i € I} has a least upper bound (denoted \/; z;) and a greatest lower
bound (denoted A, z;) leads to the class of nonempty complete lattices, which we
shall consider in this section.

Note that in an ordinary lattice, because every pair of elements z, y has a
least upper bound zVy, it follows that for every positive integer n, every family of
n elements zo,...,x,—1 has a least upper bound, namely \/z; =2z V-V x,_1.
Hence, to get least upper bounds for all families, we need to bring in the additional
cases of infinite families, and the empty family.

Now every element of a lattice L is an upper bound of the empty family, so a
least upper bound for the empty family means a least element in the lattice. Such
an element is often written 0, or when there is a possibility of ambiguity, 0.
Likewise, a greatest lower bound for the empty family means a greatest element,
commonly written 1 or 1.

It is not hard to see that the two conditions that a partially ordered set have
pairwise least upper bounds and that it have a least element (a least upper bound
of the empty family) are independent: either, neither, or both may hold. On the
other hand, existence of pairwise joins and existence of infinite joins (joins indexed
by infinite families, with repetition allowed just as in the case of pairwise joins)
are not independent; the latter condition implies the former. However, we may ask
whether the property “existence of infinite joins” can somehow be decomposed into
the conjunction of existence of pairwise joins, and some natural condition which is
independent thereof. The next result shows that it can, and more generally, that
for any cardinal «, the condition “there exist joins of all families of cardinality
< a” can be so decomposed.

LEMMA 5.2.1. Let P be a partially ordered set, and « an infinite cardinal.
Then the following conditions are equivalent:

(i)  Ewvery nonempty subset of P with < a elements has a least upper bound in P.

(ii) Ewvery pair of elements of P has a least upper bound, and every nonempty
chain in P with < a elements has a least upper bound.

The dual statements concerning greatest lower bounds are likewise equivalent to
one another.

PROOF. (i) = (ii) is clear.
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Conversely, assuming (ii) let us take any nonempty set X of < « elements of
P, and index it by an ordinal § < «: X = {z. | ¢ < 8}. We shall prove inductively
that for 0 < v < B, there exists a least upper bound \/s<,y z.. Because we have
not assumed a least upper bound for the empty set, this need not be true for v = 0,
so we start the induction by observing that for v =1, the set {z. |e <1} = {zo}
has least upper bound xy. Now let 1 < v < 8 and assume our result is true for
all positive § < . If v is a successor ordinal, v = 6 + 1, then we apply the
existence of pairwise least upper bounds in P and see that (\/._s7:)V x5 will
give the desired least upper bound \/_ <~ Te- On the other hand, if + is a limit
ordinal, then the elements \/__; 2. where § ranges over all nonzero members of
will form a nonempty chain of < « elements in P, which by (ii) has a least upper

bound, and this is the desired element \/,__ z.. So by induction, \/,_gz. exists,
proving (i).
The final statement follows by duality. O

DEFINITION 5.2.2. Let a be a cardinal. Then a lattice or an upper semilattice
L in which every nonempty set of < « elements has a least upper bound will be
called <a-upper semicomplete. A lattice or a lower semilattice satisfying the dual
condition is said to be <a-lower semicomplete. A lattice satisfying both conditions
will be called <a-complete.

When these conditions hold for all cardinals «, one calls L upper semicom-
plete, respectively lower semicomplete, respectively complete.

(We may at times want to refer to the least upper bound or greatest lower bound
in a partially ordered set P of a set X = {x; | i € I} indexed by some set other
than an ordinal; in such cases we will, of course, write \/;,c;x; or N;,c;xi. If
no indexing is given, we can write these as \/ cxx or N\, cx x; which we may
abbreviate to \/ X or A\ X.)

One can similarly speak of a lattice or semilattice as being upper or lower
<a-semicomplete if all nonempty subsets of cardinality < « have least upper
bounds, respectively greatest lower bounds. Note, however, that upper or lower
<a-semicompleteness is equivalent to upper or lower <aT-semicompleteness re-
spectively, where o is the successor of the cardinal «. Since not every cardinal is
a successor, the class of conditions named by the “ <” properties properly contains
the class of conditions named by the “ <” properties.

Consequently, in the interest of brevity, many authors write “a-semicomplete”
and “a-complete” for what we are calling “<a-semicomplete” and “<a-complete”.
I prefer to use a more transparent terminology, however.

We have observed, in effect, that every lattice is <Ng-complete; so the first case
of interest among the above completeness conditions is that of <Np-completeness,
equivalently, <®;-completeness. This property is commonly called countable com-
pleteness, even by authors who in their systematic notation would write it as
N;-completeness. Countable upper and lower semicompleteness are defined sim-
ilarly. We will not, however, use these terms in these notes, since the cases of
greatest interest to us in this section, and the only cases we will be concerned with
after this section, are the full completeness conditions.

Note that in a partially ordered set (e.g., a lattice) with ascending chain condi-
tion, all nonempty chains have least upper bounds — since they in fact have greatest
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elements. Likewise in a partially ordered set with descending chain condition, all
chains have greatest lower bounds.

Exercise 5.2:1. Suppose § and < are infinite cardinals, and X a set having
cardinality > max(5, 7). Let L ={S C X | card(S) < 8 or card(X — S) < ~v}.
Verify that L is a lattice, and investigate for what cardinals « this lattice is
upper, respectively lower <a-semicomplete.

The upper and lower semicompleteness conditions, when not restricted by a
cardinal «, have an unexpectedly close relation.

PROPOSITION 5.2.3. Let L be a partially ordered set. Then the following con-
ditions are equivalent:

(i)  Every subset of L has a least upper bound; i.e., L is the underlying partially
ordered set of an upper semicomplete upper semilattice with least element.

(i*) FEwvery subset of L has a greatest lower bound; i.e., L is the underlying par-
tially ordered set of a lower semicomplete lower semilattice with greatest element.

(ii) L is the underlying partially ordered set of a nonempty complete lattice.

PROOF. To see the equivalence of the two formulations of (i), recall that a least
upper bound for the empty set is a least element, while the existence of least upper
bounds for all other subsets is what it means to be an upper semicomplete upper
semilattice.

To show (i) = (ii), observe that the existence of a least element shows that
L is nonempty, and the upper complete upper semilattice condition gives half the
condition to be a complete lattice. It remains to show that any nonempty subset
X of L has a greatest lower bound u. In fact, the least upper bound of the set of
all lower bounds for X will be the desired u; the reader should verify that it has
the required property.

Conversely, assuming (ii), we have by definition least upper bounds for all
nonempty subsets of L. A least upper bound for the empty set is easily seen to be
given by the greatest lower bound of all of L. (How is the nonemptiness condition
of (ii) used?)

Since (ii) is self-dual and equivalent to (i), it is also equivalent to (i*). O

Exercise 5.2:2. If T is a topological space, show that the open sets in T, partially
ordered by inclusion, form a complete lattice. Describe the meet and join opera-
tions (finite and arbitrary) of this lattice. Translate these results into statements
about the set of closed subsets of T.

(General topology buffs may find it interesting to show that, on the other
hand, the partially ordered set {open sets} U {closed sets} is not in general a
lattice, nor is the partially ordered set of locally closed sets.)

Exercise 5.2:3. Which ordinals, when considered as ordered sets, form complete
lattices?

Exercise 5.2:4. (i) Show that every isotone map from a nonempty complete
lattice into itself has a fixed point.

(ii) Can you prove the same result for a larger class of partially ordered sets?

Exercise 5.2:5. Let L be a complete lattice.
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(i) Show that the following conditions are equivalent: (a) L has no chain order-
isomorphic to an uncountable cardinal. (b) For every subset X C |L| there exists
a countable subset Y C X such that VY =\/ X.

(ii) Let a be any element of L. Are the following conditions equivalent? (a)
L has no chain which is order-isomorphic to an uncountable cardinal and has
join a. (b) Every subset X C L with join a contains a countable subset Y also
having join a.

Although we write the least upper bound and greatest lower bound of a set
X in a complete lattice as \/ X or \/ .y 2 and AX or A .y, and call these
the meet and join of X, these “meet” and “join” are not operations in quite the
sense we have been considering so far. An operation is supposed to be a map
S™ — § for some n. One may allow n to be an infinite cardinal (or other set),
but when we consider complete lattices, there is no fixed cardinality to use. This
suggests that we should consider each of the symbols \/ and A to stand for a
system of operations, of varying finite and infinite arities. But how large is this
system? In a given complete lattice L, all meets and joins reduce (by dropping
repeated arguments) to meets and joins of families of cardinalities < card(|L|). But
if we want to develop a general theory of complete lattices, then meets and joins
of families of arbitrary cardinalities will occur, so this “system of operations” will
not be a set of operations. We shall eventually see that as a consequence of this,
though complete lattices are in many ways like algebras, not all of the results that
we prove about algebras will be true for them (Exercise 7.10:6(iii)).

Another sort of complication in the study of complete lattices comes from the
equivalence of the various conditions in Proposition 5.2.3: Since these lattices can
be characterized in terms of different systems of operations, there are many natural
kinds of “maps” among them: maps which respect arbitrary meets, maps which
respect arbitrary joins, maps which respect both, maps which respect meets of all
nonempty sets and joins of all pairs, etc.. The term “homomorphism of complete
lattices” will mean a map respecting meets and joins of all nonempty sets, but the
other kinds of maps are also of interest. These distinctions are brought out in:

Exercise 5.2:6. (i) Show that every nonempty complete lattice can be embed-

ded, by a map which respects arbitrary joins (including the join of the empty
set), in a power set P(S), for some set S, and likewise may be embedded in a
power set by a map which respects arbitrary meets.
(ii) On the other hand, show, either using Exercise 5.1:15(ii) or by a direct argu-
ment, that the finite lattices M3 and N5 considered there cannot be embedded
by any lattice homomorphism, i.e., any map respecting both finite meets and
finite joins, in a power set P(S).

The next few pages contain a large number of exercises which, though I find
them of interest, digress from the main point of this section. The reader who so
wishes may skim past them and jump to the discussion immediately preceding
Definition 5.2.4.

Our proof in Lemma 5.2.1 that the existence of least upper bounds of chains
made a lattice upper semicomplete really only used well-ordered chains, i.e., chains
order-isomorphic to ordinals. In fact, one can do still better:

Exercise 5.2:7. Recall from Exercise 4.6:5 that every totally ordered set has a
cofinal subset order-isomorphic to a regular cardinal.
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(i) Deduce that for P a partially ordered set and « an infinite cardinal, the
following two conditions are equivalent:

(a) Every chain in P of cardinality < « has a least upper bound.
(b) Every chain in P which is order-isomorphic to a regular cardinal § < «
has a least upper bound.

(ii) With the help of the above result, extend Lemma 5.2.1, adding a third
equivalent condition.

There are still more ways than those we have seen to decompose the condition
of being a complete lattice, as shown in part (ii) of

Exercise 5.2:8. (i) Show that following conditions on a partially ordered set L
are equivalent:
(a) Every nonempty subset of L having an upper bound has a least upper
bound.
(b) Every nonempty subset of L having a lower bound has a greatest lower
bound.
(¢) L satisfies the complete interpolation property: Given two nonempty
subsets X, Y of L, such that every element of X is < every element of
Y, there exists an element z € L which is > every element of X and <
every element of Y.
(ii) Show that L is a nonempty complete lattice if and only if it has a greatest
and a least element, and satisfies the above equivalent conditions.
(iii) Give an example of a partially ordered set which satisfies (a)-(c) above, but
is not a lattice.
(iv) Give an example of a partially ordered set with greatest and least elements,
which has the finite interpolation property, i.e., satisfies (c) above for all finite
nonempty families X and Y, but which is not a lattice.

This condition-splitting game is carried further in

Exercise 5.2:9. If 0 and 7 are conditions on sets of elements of partially ordered
sets, let us say that a partially ordered set L has the (o, 7)-interpolation property
if for any two subsets X and Y of L such that X satisfies o, Y satisfies 7,
and all elements of X are < all elements of Y, there exists an element z € L
which is > every element of X and < every element of Y. Now consider the
nine conditions on L gotten by taking for ¢ and 7 all combinations of the three
properties “is empty”, “is a pair” and “is a chain”.

(i) Find simple descriptions for as many of these nine conditions as you can; in
particular, note cases that are equivalent to conditions we have already named.
(ii) Show that L is a nonempty complete lattice if and only if it satisfies all
nine of these conditions.

(iii) How close to independent are these nine conditions? To answer this, deter-
mine as well as you can which of the 2° = 512 functions from the set of these
conditions to the set {true, false} can be realized by appropriate choices of L.
(Remark: A large number of these combinations can be realized, so to show this,
you will have to produce a large number of examples. I therefore suggest that
you consider ways that examples with certain combinations of properties can be
obtained from examples of the separate properties.)

Exercise 5.2:10. (i) We saw in Exercise 5.1:2(ii) that the set of real polynomial
functions on the unit interval [0, 1], partially ordered by the relation (Vx €
[0,1]) f(z) < g(z), does not form a lattice. Show, however, that it has the
finite interpolation property. (This gives a solution to Exercise 5.2:8(iii), but far
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from the easiest solution. The difficulty in proving this result arises from the
possibility that some members of X may be tangent to some members of Y.)

(if) Can you obtain similar results for the partially ordered set of real polynomial
functions on a general compact set K C R™ 7

An interesting pair of invariants related to Exercise 5.2:6(i) is examined in

Exercise 5.2:11. (i) For L anonempty complete lattice and « a cardinal, show
that the following conditions are equivalent: (a) L can be embedded, by a map
respecting arbitrary meets, in the power set P(S) of a set of cardinality «,
(b) There exists a subset T' C |L| of cardinality < « such that every element
of L is the join of a (possibly infinite) subset of T, (c) L can be written as the
image, under a map respecting arbitrary joins, of the power set P(U) of a set of
cardinality «a.

From condition (b) above we see that for every L there will exist « such that
these equivalent conditions hold. Let us call the least cardinal with this property
the upward generating number of L, because of formulation (b). Dually, we have
the concept of downward generating number.

(ii) Find a finite lattice L for which these two generating numbers are not equal.

The above exercise concerned complete lattices. On the other hand, if L is a
lattice or semilattice with no greatest element, we can’t map any power set P(X)
onto it by a homomorphism of semilattices, since a partially ordered set with great-
est element can never be taken by an isotone map onto one without greatest element.
As a next best possibility, one might ask whether one can map onto any such L
some lower complete lower semilattice of the form wX, since (unlike P(X) = 2%)
this does not in general have a greatest element, but is nonetheless a full direct
product. A nice test case for this idea would be to take for L the lattice of all
finite subsets of a set S. The first part of the next exercise shows that for this case,
the answer to the above question is yes.

Exercise 5.2:12. (i) Let S be any set, and Pg,(S) the lower complete lower
semilattice of finite subsets of S. Let w® denote the lower complete lower semi-
lattice of natural-number-valued functions on S (under pointwise inequality),
and |w”| the underlying set of this lattice, so that wl®l is the lower com-
plete lower semilattice of natural-number-valued functions on that set. Show
that there exists a surjective homomorphism of lower semicomplete semilattices

Wl = P ().

Suggestion: For each s € § let s* € |w|“’s|\ denote the function sending
each element of w® to its value at s. Now map each f € |w‘°’s|| to the set of
those s € S such that f > s*. Show that this set is finite, and this map has the
desired properties.

(ii) If L is an arbitrary nonempty lower semicomplete lower semilattice, must

there exist a surjective homomorphism wX — L of such semilattices for some
set X 7 If not, can you find necessary and sufficient conditions on L for such a
homomorphism to exist?

We noted earlier that the concept of a complete lattice involves meets and
joins of arbitrary cardinalities, which form a proper class of operations, and that
as a result, it will not quite fit into the concept of an algebra we will develop in
Chapter 8 (though for any particular cardinal «, the concepts of (< a-)complete
lattice and semilattice will fall under that concept). The next exercise takes a
different approach, and regards possibly infinite meet and join as operators defined
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on subsets of |L|, rather than on tuples of elements. This puts the concept still
farther from that of Chapter 8, but the “identities” these operations satisfy have
an elegant formulation.

Exercise 5.2:13. Let |L| be a set, and suppose that \/ and /\ are operators
associating to each nonempty subset X C |L| an element of |L| which will be
denoted V/(X), respectively A(X). Show that these operators are the greatest
lower bound and least upper bound operators arising from a complete lattice
structure on |L| if and only if the following three conditions hold.

(a) For every zg € |L|, V{zo}) =z0 = A{z0})-
(b) For every nonempty set Y of nonempty subsets of |L|,

VAVX) [ X €Y}) = V(Uxey (X)) and

AAX) [ X € Y}) = AUx ey (X))-

(¢) The pairwise operations defined by a Vb =\/({a, b}) and a Ab= A({a, b})
satisfy the two “compatibility” identities of Definition 5.1.4.

To motivate the next definition, consider the following situation. Let L be
the complete lattice of all subgroups of a group G, and let K € L be a finitely
generated subgroup of G, say generated by g¢i,..., g,. Suppose this subgroup K
is majorized in L by the join of a family of subgroups H; (i € I), i.e., is contained
in the subgroup generated by the H;. Then each of ¢y, ..., g, can be expressed
by a group-theoretic term in elements of J|H;|. But any group-theoretic term
involves only finitely many elements; hence K will actually be contained in the
subgroup generated by finitely many of the H;. The converse also holds, since if K
is a non-finitely generated subgroup of G, then K equals (and hence is contained
in) the join of all the cyclic subgroups it contains, but is not contained in the join
of any finite subfamily thereof.

The property we have just shown to characterize the finitely generated sub-
groups in the lattice of all subgroups of G has an obvious similarity to the prop-
erty defining compact subsets in a topological space, namely that if such a subset is
covered by a family of open subsets, it is covered by some finite subfamily. Hence
one makes the definition

DEFINITION 5.2.4. An element k of a complete lattice (or more generally, of a
complete upper semilattice) L is called compact if every set of elements of L with
join >k has a finite subset with join > k.

By the preceding observations, the compact elements of the subgroup lattice
of a group are precisely the finitely generated subgroups. (We will generalize this
observation when we have a general theory of algebraic objects.)

We noted in Exercise 5.1:2(i) that the finitely generated subgroups of a group
form an upper subsemilattice of the lattice of all subgroups. This suggests

Exercise 5.2:14. Do the compact elements of a complete lattice L always form
an upper subsemilattice?

Exercise 5.2:15. Show that a complete lattice L has ascending chain condition
if and only if all elements of L are compact.

There seems to be no standard name for an element of a complete lattice having
the dual property to compactness; sometimes such elements are called co-compact.
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We end this section with some further exercises that, though interesting, are
not closely related to material we will use in future sections.

We examined in Exercise 5.2:6 the embedding of lattices in power sets P(S5)
(and found that though there were embeddings that respected meets, and embed-
dings that respected joins, there were not in general embeddings that respected
both). Let us look briefly at another fundamental sort of complete lattice, and the
problem of embedding arbitrary lattices therein.

If X is a set, and ~y and ~; are two equivalence relations on X, let us
say ~ extends =2 if it contains it, as a subset of X x X, and write ~y <= in
this situation. Let E(X) denote the set of equivalence relations on X, partially
ordered by this relation <. (One could use the reverse of this order, saying that =z
is a refinement of ~; when the latter extends the former, and justify considering
the refinement to be “bigger” by the fact that it gives “more” equivalence classes.
So our choice of the sense to give to our ordering is somewhat arbitrary; but let us
stick with the ordering based on inclusions of binary relations.)

Exercise 5.2:16. (i) Verify that the partially ordered set E(X) defined above

forms a complete lattice. Identify the elements Og(x) and lg(x).
(i) Let L be any nonempty complete lattice, and f: L — E(X) a map re-
specting arbitrary meets (a complete lower semilattice homomorphism respecting
greatest elements). Show that for any z, y € X, there is a least d € L such that
(z, y) € f(d). Calling this element d(z, y), verify that the map d: X x X — L
satisfies the following conditions for all z, y, z € X :

(a0) d(z, z) = O,

(b) d(z,y) = d(y, x),

(c) d(z, z) < d(=z,y)Vd(y, 2).
(iii) Prove the converse, i.e., that given a nonempty complete lattice L and a
set X, any function d: X x X — L satisfying (ag)-(c) above arises as in (ii) from
a unique complete lower semilattice-homomorphism f: L — E(X) respecting
greatest elements.

In the remaining parts, we assume that f: L - E(X) and d: X x X — L
are maps related as in (ii) and (iii).

(iv) Show that the map f respects least elements, i.e., that f(0r) = Og(x), if
and only if d satisfies

(a) d(z,y) =0 < z =1y (astrengthening of (ag) above).
(v) Show that f respects joins of finite nonempty families if and only if d
satisfies

(d) forall z,y € X, p, q € |L| such that d(x, y) < pV ¢, there exists a
finite sequence = = 2g, 21, ..., 2z, = y (think “a path from z to y in X”) such
that for each i < n, either d(z;, z;41) <p or d(z;, zi+1) < gq.

A function d which satisfies (a)-(c) above might be called an “L-valued
metric on X,” and (d) might be called “path sufficiency” of the L-valued metric
space X. Two other properties of importance are noted in
(vi) Assuming that f respects finite nonempty joins, i.e., satisfies (d) above,
show that it respects arbitrary nonempty joins if and only if

(e) forall z,ye X, d(z, y) is a compact element of L.
(vii) Show that f is one-to-one if and only if

(f) L is generated under (not necessarily finite) joins by the elements
d(z, y) (,y € X).
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Thus, to get various sorts of embeddings of complete lattices L in complete
lattices of the form E(X), it suffices to construct sets X with appropriate sorts of
L-valued metrics.

How can one do this? Note that if we take a tree (in the graph-theoretic sense)
with edges labeled in any way by elements of L, and define the distance between
two vertices to be the join of the labels on the sequence of edges connecting those
vertices, then we get an L-valued metric, such that the values assumed by this
metric generate the same upper semilattice as do the set of labels. This can be
used to get a system (X, d) satisfying (a)-(c) and (f). We also want condition (d).
This can be achieved by adjoining additional vertices:

Exercise 5.2:17. Let L be a nonempty complete lattice.

(i) Suppose (X, d) is an L-valued metric space (i.e., satisfies conditions (a)-(c)
of the preceding exercise), x and y are two points of X, and p and ¢ are
elements of L such that d(z, y) < pV ¢q. Show that we can adjoin new points
z1, 22, 23 to X and extend the metric in a consistent way so that the steps
of the path =, z1, 22, z3, y have lengths p, ¢, p, ¢ respectively. (The least
obvious part is how to define the distance from z5 to a point w € X. To do this,
verify that d(w, ) VpV ¢ =d(w, y) VpVq, and use the common value.)

(ii) Show that every L-valued metric space can be embedded in a path-sufficient
one. (This will involve a countable sequence of steps X = Xo C X; C ... such
that each X; “cures” all failures of path-sufficiency found in X;_;, using the
idea of part (i). The desired space is then |JX;.)

Now if the given complete lattice L is generated as a complete upper semilattice
by the upper subsemilattice K of its compact elements, then one can carry out
the above constructions as to get condition (e) above, and hence an embedding of
L in E(X) that respects arbitrary meets and joins. Conversely, one sees that this
assumption on K is necessary for such an embedding to exist.

If we don’t make this assumption on K, we can still use the above construction
to embed L in a lattice E(X) by a map respecting arbitrary meets and finite joins.

We shall see in the next section that any lattice can be embedded by a lattice
homomorphism in a complete lattice, so the above technique shows that any lattice
can be embedded by a lattice homomorphism in a lattice of equivalence relations.

If L is finite, the construction of Exercise 5.2:17 gives, in general, a countable,
but not a finite L-valued metric space X. It was for a long time an open question
whether every finite lattice could be embedded in the lattice of equivalence relations
of a finite set. This was finally proved in 1980 by P.Pudldk and J. Tuma [123].
However, good estimates for the size of an X such that even a quite small lattice L
(e.g., the 15-element lattice E(4)°P) can be embedded in E(X) remain to be found.
The least m such that E(n)°P embeds in E(m) has been shown by Pudldk to grow

at least exponentially in n; the earliest upper bound obtained for m was 22 with
n? exponents! For subsequent better results see [103] and [90, in particular p. 16,

top].
5.3. Closure operators

We introduced this chapter by noting certain properties common to the par-
tially ordered sets of all subsets of a set, of all subgroups of a group, and similar
examples. But so far, we seem to have made a virtue of abstractness, defining
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semilattice, lattice, etc., without reference to systems of subsets of sets. Neither
abstractness nor concreteness is everywhere a virtue; each makes its contribution,
and it is time to turn to an important class of concrete lattices.

LEMMA 5.3.1. Let S be a set. Then the following data are equivalent:
(i) A lower semicomplete lower subsemilattice of P(S) which contains 1psy = S,
in other words, a set C' of subsets of S closed under taking arbitrary intersections,
including the empty intersection, S itself.
(ii) A function cl: P(S) — P(S) with the properties:

VX CS) (X)) DX (cl is increasing),
VX, YCS) X CY = cl(X) C cl(Y) (cl is isotone),
(VX CS) clcd(X)) = cl(X) (cl is idempotent).

Namely, given C as in (i), one defines cl as the operator taking each X C S
to the intersection of all members of C containing X, while given cl as in (ii),
one defines C as the set of X C S satisfying cl(X) = X, equivalently, as the set
of subsets of S of the form cl(Y) (Y CS5). O

Exercise 5.3:1. Verify the above lemma. That is, show that the procedures de-
scribed do carry families C' with the properties of point (i) to operators cl with
the properties of point (i) and vice versa, and are inverse to one another, and
also verify the assertion of equivalence in the final clause.

DEFINITION 5.3.2. An operator cl on the class of subsets of a set S with the
properties described in point (ii) of the above lemma is called a closure operator
on S. If cl is a closure operator on S, the subsets X C S satisfying cl(X) = X,
equivalently, the subsets of the form cl(Y) (Y C S), are called the closed subsets
of S under cl.

We see that virtually every mathematical construction commonly referred to
as “the ... generated by” (fill in the blank with subgroup, normal subgroup, sub-
monoid, subring, sublattice, ideal, congruence, etc.) is an example of a closure
operator on a set. The operation of topological closure on subsets of any topolog-
ical space is another example. Some cases are called by other names: the convex
hull of a set of points in Euclidean n-space, the span of a subset of a vector space
(i.e., the vector subspace it generates), the set of derived operations of a set of oper-
ations on a set (§1.6). Incidentally, the constructions of the subgroup and subring
generated by a subset of a group or ring illustrate the fact that the closure of the
empty set need not be empty.

A very common way of obtaining a closure operator on a set S, which includes
most of the above examples, can be abstracted as follows: One specifies a certain
subset

(5.3.3) G C P(S) % S,

and then calls a subset X C S closed if for all (4, z) e G, ACX = z € X.
It is straightforward to verify that the class of closed sets under this definition
is closed under arbitrary intersections, and so by Lemma 5.3.1, corresponds to a
closure operator cl on S.
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For example, if K is a group, the operator “subgroup generated by” on subsets
of |K| is of this form. One takes for (5.3.3) the set of all pairs of the forms

(5.3.4) ({z, v} zy), (o}, 271, (0, ¢),

where = and y range over |K|. To get the operator “normal subgroup generated
by -7, we use the above pairs, supplemented by the further pairs ({z}, yzy~!)
(z, y € |[K|). Clearly, the other “... generated by” constructions mentioned above
can be characterized similarly. For a non-algebraic example, the operator giving
the topological closure of a subset of the real line R can be obtained by taking
G to consist of all pairs (A4, x) such that A is the set of points of a convergent
sequence, and x is the limit of that sequence.

Exercise 5.3:2. Show that for any closure operator cl on a set .S, there exists a
subset G C P(S) x S which determines cl in the sense we have been discussing.

Exercise 5.3:3. If T is a set, display a subset G C P(T xT) x (T x T) such that
the equivalence relations on T are precisely the subsets of T' x T closed under
the operator cl corresponding to G. (The previous exercise gives us a way of
doing this “blindly”. But what I want here is an explicit set, which one might
show to someone who didn’t know what “equivalence relation” meant, to provide
a characterization of the concept.)

In Chapter 2 we contrasted the approaches of obtaining sets one is interested
in “from above” as intersections of systems of larger sets, and of building them up
“from below”. We have constructed the closure operator associated with a family
(5.3.3) by noting that the class of subsets of S we wish to call closed is closed
under arbitrary intersections; so we have implicitly obtained these closures “from
above”. The next exercise constructs them “from below”.

Exercise 5.3:4. Let S be a set and G a subset of P(S) x S. For X a subset of
S and « any ordinal, let us define cl(c?)(X ) recursively by:

a9 (x) = X,
dST(X) = dP(X) U {a | BAC A (X)) (4, 2) € G}
AW (X) = Ugea @ (X) if a is a limit ordinal.

(i) Show (for S, G as above) that there exists an ordinal « such that for all
B >a and all X C S, cl(g) (X) = cl(g)(X), and that when this is so, cl(g‘)(X)
is cl(X) in the sense of the preceding discussion. (Cf. the construction in §2.2

of the equivalence relation R on group-theoretic terms as the union of a chain
of relations R;.)

(ii) If for all (A, z) € G, A is finite, show that the « of part (i) can be taken
to be w.

(iii) For each ordinal «, can you find an example of a set .S and a G C P(S) xS
such that « is the least ordinal having the property of part (i)?

We have seen that there are restrictions on the sorts of lattices that can be
embedded by lattice homomorphisms into lattices (P(S), U, N) (Exercise 5.1:15),
or into lattices of submodules of modules (Exercise 5.1:14). In contrast, note state-
ments (ii) and (iii) of
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LEMMA 5.3.5. (i) If cl is a closure operator on a set X, then the set of
cl-closed subsets of X, partially ordered by inclusion, forms a complete lattice, with
the meet of an arbitrary family given by its set-theoretic intersection, and the join
of such a family given by the closure of its union. Conversely,

(ii) FEwvery nonempty complete lattice L is isomorphic to the lattice of closed sets
of a closure operator cl on some set S; and

(iii) FEwvery lattice L is isomorphic to a sublattice of the lattice of closed sets of a
closure operator cl on some set S.

SKETCH OF PROOF. (i): It is straightforward to verify that the indicated oper-
ations give a greatest lower bound and a least upper bound to any family of closed
subsets.

(ii): Take S = [L|, and for each X C S, define cl(X) = {y |y < V, cx 2}
Then L is isomorphic to the lattice of closed subsets of S, by the map y — {z |
r <y}

(iii): Again take S = |L|, but since joins of arbitrary families may not be
defined in L, define cl(X) to be the set of all elements majorized by joins of finite
subsets of X. Embed L in the lattice of cl-closed subsets of S by the same map
as before. (Il

Exercise 5.3:5. Verify that the constructions of (ii) and (iii) above give closure
operators on |L|, and that the induced maps are respectively an isomorphism of
complete lattices and a lattice embedding.

The second of the two closure operators used in the above proof can be thought
of as closing a set X in |L| under pairwise joins, and under meets with arbitrary
elements of L. In the notation that denotes join by + and writes meet as mul-
tiplication, this has the same form as the definition of an ideal of a ring. So
lattice-theorists often call sets of elements in a lattice closed under these operations
“ideals”. In particular, {y | y < x} is called the principal ideal generated by x.

Exercise 5.3:6. (i) Show that assertion (iii) of the preceding lemma can also be
proved by taking the same S and the same map, but taking cl(X) C S to be
the intersection of all principal ideals of L containing X.

(ii) Will the complete lattices generated by the images of L under these two
constructions in general be isomorphic?

Exercise 5.3:7. Can the representation of a (complete) lattice L by closed sets of
a closure operator given in Lemma 5.3.5(iii) and/or that given in Exercise 5.3:6
be characterized by any universal properties?

Exercise 5.3:8. Show that a lattice L is complete and nonempty if and only if
every intersection of principal ideals of L (including the intersection of the empty
family) is a principal ideal.

The concept of a set with a closure operator is not only general enough to allow
representations of all lattices, it is a convenient tool for constructing examples. For
example, recall that Exercise 5.1:10(ii), if solved by the hint given, shows that a
lattice generated by 5 elements can be infinite. With more work, that method can
be made to give an infinite lattice with 4 generators, but one can show that any
3-generator sublattice of the lattice of affine subspaces of a vector space is finite.
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However, we shall now give an ad hoc construction of a closure operator whose
lattice of closed sets has an infinite 3-generator sublattice.

Exercise 5.3:9. Let S = wU {x, y}, where w is regarded as the set of nonnegative
integers, and x, y are two elements not in w. Let G C P(S) x S consist of all
pairs of the form

(o, 2m}, 2m+1), (g, 2m+ 1}, 2m +2),

where m ranges over w in each case. Let L denote the lattice of closed subsets
of S under the induced closure operator, and consider the sublattice generated
by {z}, {y, 0}, and w. Show by induction that for every n > 0, this sublattice
of L contains the set {0, ..., n}. Thus, this 3-generator lattice is infinite.

(Exercise 7.10:6, which you can do at this point, will show that the same
technique, applied to complete lattices, gives 3-generator complete lattices of
arbitrarily large cardinalities.)

Exercise 5.3:10. The lattice of the above exercise contains an infinite chain. Does
there exist a 3-generator lattice which is infinite but does not contain an infinite
chain?

Exercise 5.3:11. If A is an abelian group, can a finitely generated sublattice of
the lattice of all subgroups of A contain an infinite chain?

We now turn to a property which distinguishes the sort of closure operators
commonly occurring in algebra from those arising in topology and analysis.

LEMMA 5.3.6. Let cl be a closure operator on a set S. Then the following
conditions are equivalent:

(1) For all X - 57 CI(X) = Uﬁnitc subsets XoCX CI(XO)

(ii) The union of every chain of closed subsets of S is closed.

(iii) The closure of each singleton {s} C S is compact in the lattice of closed
subsets.

(iv) cl s the closure operator determined by a set G C P(S) x S having the
property that the first component of each of its members is finite. O

Exercise 5.3:12. Prove Lemma 5.3.6.

DEFINITION 5.3.7. A closure operator satisfying the equivalent conditions of
the above lemma will be called finitary.

This is because the lattice of subalgebras of an algebra A satisfies condition (iv)
of that lemma if the operations of A are all finitary, i.e., have finite arity (§1.4).
(Many authors call such closure operators “algebraic” instead of “finitary”, because,
as noted, the property is typical of closure operators that come up in algebra.)

Exercise 5.3:13. Let cl be a finitary closure operator on a set S.
(i) Show that if « isan infinite cardinal, and X a cl-closed subset of S which is
the closure of some subset of cardinality < «, thenevery ¥ C X with cl(Y) =X
has a subset Y’ with card(Y’) < a such that cl(Y') = X.
(ii) Show by example that the corresponding statement is not true for finite .
(ili) Show by example that the result of (i) does not characterize the finitary
closure operators; i.e., that not every closure operator satisfying (i) is finitary.
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Exercise 5.3:14. (i) Show that a nonempty complete lattice L is isomorphic to
the lattice of all closed sets under a finitary closure operator if and only if every
element of L is a (possibly infinite) join of compact elements.

(ii) For what complete lattices is it true that every closure operator cl, on any
set, whose lattice of closed sets is isomorphic to L, is finitary?

Exercise 5.3:15. Show that a closure operator cl is finitary if and only if the
compact elements in the lattice of its closed subsets are precisely the closures of
finite sets.

For a not necessarily finitary closure operator, prove an inclusion between
these two classes of closed subsets, but show that the other inclusion need not
hold.

Exercise 5.3:16. Consider the following three conditions on a closure operator cl
on a set S. (a) cl is finitary. (b) The union of any two cl-closed subsets of S is
cl-closed. (c) Every singleton subset of S is cl-closed.

For each subset of this set of three properties, find an example of a closure
operator that has the properties in that subset, but not any of the others. (Thus,
8 examples are asked for.) Where possible, use familiar or important examples.

Exercise 5.3:17. (i) Show that a closure operator cl on aset S is the operation
of topological closure with respect to some topology on S if and only if it satisfies
condition (b) of the preceding exercise, and: (cp) 0 is cl-closed in S.

(ii) Assuming S has more than one element, show that cl is closure with respect
to a T; topology if and only if it satisfies conditions (b) and (c) of the preceding
exercise.

Since the operation of topological closure determines the topology, this shows
that topologies on a space are equivalent to closure operators satisfying the in-
dicated conditions.

Exercise 5.3:18. It is well known that if a group K is generated by < 7 elements
(v a cardinal), then card(|K|) <+ Rq.
(i) Deduce this fact from simple properties of the set G C P(|K|) x |K| defined
in (5.3.4).
(ii) Try to generalize (i) to a result on the way the cardinalities of sets increase
under application of a closure operator cl obtained from a set G as above, in
terms of the properties of G. Can you show by example that your results are
best possible?

When we described how to construct a closure operator cl from a subset G C
P(S) x S, it would have been tempting to call cl “the closure operator generated
by G.” This would not quite have made sense, because a closure operator is not
itself a subset of P(S) x S. However, we can show what this is “trying to say” by
setting up a correspondence between closure operators on S and certain subsets of
P(S)x S:

Exercise 5.3:19. Let S be a set.

If cl is a closure operator on S, let us write o(cl) = {(4,z) | AC S,z €
cl(A)} and let us call a subset H C P(S) xS a closure systemon S if H = o(cl)
for some closure operator cl on S.

(i) Show that closure systems on S are precisely the subsets of P(S)x S closed
under a certain closure operator, clgys (which you should describe).

(ii) Show that for any subset G C P(S) x S, if we write clg for the closure
operator determined by G in the sense discussed earlier, then o(clg) = clsys(G).
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So though we cannot call clg the closure operator generated by G, it is the
operator corresponding to the closure system generated by G.

Of course, I cannot resist adding
(iii) Describe clsys as the closure operator on P(S) x S determined (“gener-
ated”) by an appropriate set Ggys (of elements of what set?)

We now have three ways of looking at closure data on a set S : as a family of
subsets of S, as an operator on subsets of S, and as a certain kind of subset of
P(S) x S. We take a global look at this data in:

Exercise 5.3:20. Let S be a set. Call the set of all families of subsets of S
that are closed under arbitrary intersections Clofam(S), and order this set by
inclusion. Call the set of all closure operators on S Clop(S), and order it by
putting cl; < cly if for all X, cly(X) < cly(X). Call the set of closure systems
on S in the sense of the preceding exercise Closys(S), and order it by inclusion.

Verify that Clofam(S), Clop(S) and Closys(S) are all complete lattices. Do
the natural correspondences between the three types of data constitute lattice
isomorphisms? If not, state precisely the relationships involved. Describe the
meet and join operations of Clop(S) explicitly.

Exercise 5.3:21. Investigate the subset of finitary closure operators within the set
Clop(S) defined in the preceding exercise. Will it be closed under meets (finite?
arbitrary?) — joins (ditto)? Given any cl € Clop(.S), will there be a least finitary
closure operator containing cl? A greatest finitary closure operator contained
in cl?

Descending from the abstruse to the elementary, here is a problem on closure
operators that could be explained to a bright High School student, but which has
so far defied solution:

Exercise 5.3:22. (Péter Frankl’s question) Let S be a finite set, and cl a closure
operator on S such that cl()) # S. Must there exist an element s € S which
belongs to not more than half of the sets closed under cl?

(I generally state this conjecture to people not in this course in terms of
“a system C of subsets of S which is closed under pairwise intersections, and
contains at least one proper subset of S.” There are still other formulations; for
instance, as asking whether every nontrivial finite lattice has an element which
is join-irreducible (not a join of two smaller elements) and which is majorized by
no more than half the elements of the lattice.)

One occasionally encounters the dual of the type of data defining a closure op-
erator — a system U of subsets of a set S closed under forming arbitrary unions;
equivalently, an operator f on subsets of S which is decreasing, idempotent, and
isotone. In this situation, the complementsin S of the sets in U will be the closed
sets of a closure operator, namely X +— ¢(f(°X)) (where ¢ denotes complemen-
tation). When such an operator f is discovered, it is often convenient to change
viewpoints and work with the dual operator f€, to which one can apply the theory
of closure operators. However, U and f may be more natural in some situations
than the dual family and map. In such cases one may refer to f as an interior
operator (though the term is not widely used), since in a topological space, the com-
plement of the closure of the complement of X is called the interior of X. Clearly,
every result about closure operators gives a dual result on interior operators.

(Péter Frankl’s question, described in the last exercise, is most often stated
in dual form, asking whether, given a finite set C of sets which is closed under
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pairwise unions and contains at least one nonempty set, there must exist an element
belonging to at least half the members of C. As such, it is called the “union-closed
set” question, and papers on the topic can be found by searching for the phrase
“union closed”.)

5.4. Digression: a pattern of threes

It is curious that many basic mathematical definitions involve similar systems
of three parts.

A group structure on a set is given by (1) a neutral element, (2) an inverse-
operation and (3) a multiplication; this family of operations must satisfy (1) the
neutral-element laws, (2) the inverse laws and (3) the associative law.

A partial ordering on a set is a binary relation that is (1) reflexive, (2) antisym-
metric and (3) transitive, while an equivalence relationis (1) reflexive, (2) symmetric
and (3) transitive.

The operation of a semilattice is (1) idempotent, (2) commutative and (3) as-
sociative.

A closure operator is (1) increasing, (2) isotone and (3) idempotent.

In a metric space, the metric satisfies (1) a condition on when distances are 0,
(2) symmetry and (3) the triangle inequality.

This parallelism is not just numerical. The general pattern seems to be that the
simplest conditions or operations, marked (1) above, have to do with the relation
of an element to itself; the intermediate ones, marked (2), tell us, if we know how
two elements relate in one order, how they relate in the reverse order; while the
strongest, those marked (3), tell us how to use the relation of one element to a
second and this second to a third to get a relation between the first and the third.

Let us see this in the examples listed above. We must distinguish in some cases
between abstract structures and the “concrete” situations that motivated them.

The concrete situation motivating the concept of a group is that of a group
of permutations of a set. For a set of permutations to form a group, (1) it should
contain the permutation e that takes every element of the set to itself, (2) if
it contains a permutation z, it should also contain the permutation z~' which
carries ¢ to p whenever z carries p to ¢, and (3) along with any permutations
x and g, it should contain the permutation xy which carries p to r whenever y
carries p to ¢ and x carries g to r. So this fits the pattern described.

When we look at the definition of an abstract group G, the above closure
conditions are replaced by operations of neutral element, inverse, and composition.
The conditions on these operations needed to mimic the properties of permutation
groups as sets with operations say that when G acts on itself by left or right
multiplication, the three operations of G actually behave like the constructions
they are modeled on: left or right multiplication by the neutral element leaves all
elements of |G| fixed, left or right multiplication by z is “reversed” by the action
of 7', and left or right multiplication by z followed by multiplication on the
same side by y is equivalent to multiplication by yx, respectively xy. These are
the neutral-element, inverse and associative laws (slightly reformulated). Finally,
when we return from this abstract concept to its concrete origins via the concept of
a G-set X, we again have three conditions, saying that the actions of the neutral
element, of inverses of elements, and of composites of elements of G behave on
X in the proper manner. (However, the condition for inverses is a consequence of
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the other two plus the group identities of G, and so is usually omitted from the
definition of a G-set.)

In the definitions of partial ordering, of equivalence relation, and of metric, we
do not have an abstraction of a structure on a set, but such a structure itself. The
reader can easily verify that these 3-part definitions each have the form we have
described.

In the cases of semilattices and closure operators, one can say roughly that
closure operators are the concrete origins and semilattices the abstraction. My
general characterization of the three components of these definitions does not, as
we shall see, give quite as good a fit in this case. The condition that a closure
operator be idempotent, cl(cl(X)) = cl(X), may be considered a “transitivity”
type condition, since it says that if you can get some elements from elements of X,
and some further elements from these, then you get those further elements from
X. The “reflexivity” type condition is the one saying cl(X) D X, since it means
that what one gets from X includes all of X itself. But I cannot see any way of
interpreting the remaining condition, X CY = cl(X) C cl(Y), as describing
the relation between elements considered in two different orders.

In the abstracted concept, that of a semilattice, the three conditions of idem-
potence, commutativity, and associativity of the operation V do fit the pattern
described, but they do not seem to come in a systematic way from the correspond-
ing properties of closure operators.

When one looks at important weakenings of the concepts of group, etc., the
middle operation or condition seems to be the one most naturally removed: Monoids
are a useful generalization of groups, and preorders are a useful generalization both
of partial orders and of equivalence relations.

The folklorist Alan Dundes argued that the number “three” holds a funda-
mental place in the culture of Western civilization, in ways ranging from tradi-
tional stories (three brothers go out to seek their fortune; Goldilocks and the three
bears), superstitions (“third time’s a charm”) and verbal formulas (“Tom, Dick and
Harry”) to our 3-word personal names. (See essay in [73].) He raised the challenge
of how many of the “threes” occurring in science (archaeologists’ division of each
epoch into an “early”, a “middle” and a “late” period; the three-stage polio vacci-
nation; the three dimensions of physics, etc.) represent circumstances given to us
by nature, and how many we have imposed on nature through cultural prejudice!

In the situation we have been discussing, I would argue that the similarity be-
tween the various sets of definitions represents a genuine pattern in “mathematical
nature”; that the way the pattern appears, in terms of systems of three conditions,
in contemporary developments of these topics, is not the only natural way these
topics could be developed; but that the fact that they are developed in this way is
not a consequence of a prejudice toward the number three, but of chance. As a sim-
ple example of how these topics might be differently developed, if basic textbooks
regularly first defined “monoid”, and then defined a group as a monoid with an
inverse operation, and similarly first defined “preorder”, then defined partial orders
and equivalence relations as preorders satisfying the symmetry or antisymmetry
condition, and so on, then, though we would still have a recurring pattern, it would
not be a pattern of “threes”. More radically, we might define composition in a
group or monoid as an operation taking each ordered n-tuple of elements (n > 0)
to its product, and formulate the associative law accordingly, letting the neutral
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element simply be the empty product, and the neutral-element law a special case
of the associative law; and again, no “threes” would be apparent. As to the reason
we develop the topics as we do, rather than in one of the above ways, I think this
comes out of certain choices regarding pedagogy and notation that have evolved in
Western mathematics, for better or worse, without anyone’s looking ahead at the
number of components this would yield in such definitions. (On the other hand, I
freely admit that my choice in §2.1 to motivate the idea of a free group with the
3-generator case was culturally influenced.)

Let me close this discussion by noting that many of the more complicated
objects of mathematical study arise by combining one structure that fits, or partially
fits, the pattern we have noted, with another. Thus, a lattice is a set with two
semilattice structures that satisfy compatibility identities; a ring is given by an
abelian group, together with a bilinear binary operation on this group under which
it is a monoid.

The reader familiar with the definition of a Lie algebra over a commutative
ring R (§8.7 below) will note similarly that it is an R-module (a concept which
fits into the above pattern in the same way as that of G-set), with an R-bilinear
operation, the Lie bracket, which satisfies the alternating identity (which tells both
the result of bracketing an element with itself, and the relation between bracketings
in opposite orders), and the Jacobi identity (which describes how the bracket of an
element with the bracket of two others can be described in terms of the operations
of bracketing with those elements successively).

Returning to the description of a ring as an abelian group given with a bilinear
operation under which it is a monoid, it is interesting to note that various refine-
ments of the concept of ring involve adding one (or more!) conditions that can
be thought of as filling in the missing “middle slot” in the monoid structure, con-
cerning how elements relate in opposite orders: A multiplicative inverse operation
(on nonzero elements) gives a division ring structure; commutativity of multiplica-
tion determines the favorite class of rings of contemporary algebra; both together
give the class of fields. Another important ring-theoretic concept which can be
thought of in this way is that of an involution on a (not necessarily commutative)
ring, that is, an abelian group automorphism *: |R| — |R| satisfying z** = x
and (zy)* = y*z*. The complex numbers have all three structures: multiplicative
inverses, commutativity, and the involution of complex conjugation.

The concept of a closure operator has an important special case gotten by im-
posing an additional condition specifying “how elements relate in opposite orders”;
the exchange axiom:

(54.1) yéc(X), yecd(XU{z}) = zecd(XU{y}) (XCS, y,z€09).

This is the condition which, in the theory of vector spaces, allows one to prove that
bases have unique cardinalities, and in the theory of transcendental field extensions
yields the corresponding result for transcendence bases. (To be precise, in both of
these cases (5.4.1) leads to a proof of the uniqueness of the cardinality when the
given “bases” are finite. When at least one is infinite, the same result follows from
Exercise 5.3:13(i).) Closure operators satisfying (5.4.1) are called (among other
names) matroids. Cf. [141], and for a ring-theoretic application, [48].
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I do not attach great importance to the observations of the above section. But
I have noticed them for years, and thought this would be a good place to mention
them.

5.5. Galois connections

Let me introduce this very general concept using the case from which it gets
its name:

Galois theory deals with the situation where one is given a field F' and a finite
group G of automorphisms of F. Given any subset A of F, let A* denote the
set of elements of the group G fixing all elements of A (where “g fixes a” means
g(a) = a), and given any subset B of G, likewise let B* be the set of elements of
the field F' fixed by all members of B. It is not hard to see that in these situations,
A* is always a subgroup of GG, and B* a subfield of F. The Fundamental Theorem
of Galois Theory says that the groups A* give all the subgroups of G, and similarly
that the sets B* are all the fields between the fixed field of G in F and the
whole field F, and gives further information on the relation between corresponding
subgroups and subfields.

Some parts of the proof of this theorem use arguments specific to fields and
their automorphism groups; but certain other parts can be carried out without even
knowing what the words mean. For instance, the result, “If A is a set of elements
of the field F, and A** is the set of elements of F' fixed by all automorphisms in
G that fix all elements of A, then A** O A” is clearly true independent of what
is meant by a “field”, an “automorphism”, or “to fix”!

This suggests that one should look for a general context to which the latter sort
of arguments apply. Replacing the set of elements of our field F' by an arbitrary set
S, the set of elements of the group G by any set T, and the condition of elements
of F' being fixed by elements of G by any relation R C S x T, we can make the
following observations:

LEMMA 5.5.1. Let S, T be sets, and R C S x T a relation. For A C S,
B CT, let us write

A* ={teT|(Va€ A)aRt} C T,
B* ={seS|(Vbe B)sRb} C S,

(5.5.2)

thus defining two operations written *, one from P(S) to P(T) and the other
from P(T) to P(S). Then for A, A’ C S, B, B'CT, we have

(i) ACA = A*DA* BCB = B*D2B"™ (* reverses inclusions).
(ii) A DA B*D>B (** is increasing).

(iv) **:P(S) = P(S) and **: P(T) — P(T) are closure operators on S and T
respectively.

(v) The sets A* (A C S) are precisely the closed subsets of T, and the sets
B* (B C T) are precisely the closed subsets of S, with respect to these closure

operators **.

(vi) The maps *, restricted to closed sets, give an antiisomorphism (an order-

reversing, equivalently, V-and-A-interchanging, bijection) between the complete lat-
tices of **-closed subsets of S and of T.
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PROOF. (i) and (ii) are immediate. We shall prove the remaining assertions
from those two, without calling again on the definition, (5.5.2).

If we apply * to both sides of (ii), so that the inclusions are reversed by (i),
we get A** C A* B** C B*; but if we put B* for A and A* for B in (ii)
we get B*** D B*, A™* D A*. Together these inclusions give (iii). To get (iv),
note that by (i) applied twice, the operators ** are inclusion-preserving, by (ii)
they are increasing, and by applying * to both sides of (iii) we find that they are
idempotent. To get (v) note that by (iii) every set B* respectively A* is closed,
and of course every closed set X has the form Y* for Y = X*. (vi) now follows
from (v), (iii) and (i). O

If for each ¢t € T we consider the relation —Rt as a condition satisfied by
some elements s € S, then for A C S we can interpret A** as “the set of elements
of S which satisfy all conditions (of this sort) that are satisfied by the elements of
A”. From this interpretation, the fact that ** is a closure operator is intuitively
understandable.

DEFINITION 5.5.3. If S and T are sets, then a pair of maps * : P(S) — P(T)
and * : P(T) — P(S) satisfying conditions (i) and (ii) of Lemma 5.5.1 (and hence
the consequences (iii)-(vi)) is called a Galois connection between the sets S and T.

Exercise 5.5:1. Show that every Galois connection between sets S and T arises
from a relation R as in Lemma 5.5.1, and that this relation R is in fact unique.

Thus, a Galois connection on a pair of sets S, T can be characterized either
abstractly, by Definition 5.5.3, or as a structure arising from some relation R C
S x T. In all naturally occurring cases that I know of, the relation R is what we
start with, and the Galois connection is obtained from it. On the other hand, the
characterization as in Definition 5.5.3 has the advantage that it can be generalized
by replacing P(S) and P(T) by other partially ordered sets, though we shall not
look at this generalization here, except in the second part of the next exercise.

Here is another order-theoretic characterization of Galois connections:

Exercise 5.5:2. If S and T are sets, show that a pair of maps *: P(S) — P(T),
“: P(T) — P(S) is a Galois connection if and only if for X C S, Y C T, one
has

XCY" << Y CX~
More generally, you can show that given two partially ordered sets (|P|, <)
and (|Q], <), and a pair of maps *: |P| = |Q], *:|Q| — |P|, these maps will
satisfy conditions (i)-(ii) of Lemma 5.5.1 if and only if they satisfy the above
condition (with “<” in place of “C” throughout).

Exercise 5.5:3. Show that for every closure operator cl on a set S, there exists a
set T and a relation R C S x T such that the closure operator ** on S induced
by R is cl.

Can one in fact take for T' any set given with any closure operator whose
lattice of closed subsets is antiisomorphic to the lattice of cl-closed subsets of S 7

A Galois connection between two sets S and T' becomes particularly valuable
when the **-closed subsets have characterizations of independent interest. Let us
give a number of examples, beginning with the one that motivated our definition.
(The reader should not worry if he or she is not familiar with all the concepts
and results mentioned in these examples.) In describing these examples, T will
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sometimes, for brevity, ignore the distinction between algebraic objects and their
underlying sets.

ExXAMPLE 5.5.4. Take for S the underlying set of a field F, and for T the
underlying set of a finite group G of automorphisms of F. For a € S and g € T
let a Rg mean that ¢ fixes a, that is, g(a) = a. If we write K C F for the
subfield G*, then, as noted earlier, the Fundamental Theorem of Galois Theory
tells us that the closed subsets of F' are precisely the subfields of F' containing K,
while the closed subsets of G are all its subgroups. One finds that properties of the
field extension F'/K are closely related to properties of the group G, and can be
studied with the help of group theory ([30, Chapter V], [32, Chapter VI]). These
further relations between group structure and field structure are not, of course, part
of the general theory of Galois connections. That theory gives the underpinnings,
over which these further results are built.

EXAMPLE 5.5.5. Let us take for S a vector space over a field K, for T the
dual space Homg (S, K), and let us take z Rf to mean f(z) = 0. In this case,
one finds that the closed subsets of S are all its vector subspaces, while those
of T are the vector subspaces that are closed in a certain topology. In the finite-
dimensional case, this topology is discrete, and so the closed subsets of T' are all its
subspaces. The resulting correspondence between subspaces of a finite-dimensional
vector space and of its dual space is a basic tool which is taught (or should bel!)
in undergraduate linear algebra. Some details of the infinite-dimensional case are
developed in an exercise below.

EXAMPLE 5.5.6. A superficially similar example: Let S = C" (complex
n-space) and T = Q|xog, ..., Tp—_1], the polynomial ring in n indeterminates over
the rationals, and let (ag, ..., an—1)Rf mean f(ag, ..., an—1) = 0. This case is
the starting-point for classical algebraic geometry, and still the underlying inspira-
tion for much of the modern theory. The closed subsets of C™ are the solution-sets
of systems of polynomial equations, while the Nullstellensatz says that the closed
subsets of T = Q[zo, ..., n_1] are the “radical ideals”.

ExXAMPLE 5.5.7. Let S be a finite-dimensional Euclidean space R"™, with inner
product {z,y), let T =S xR, and for = € S, (y, a) € T, define z R(y, a) to
mean {z,y)y < a. Then the closed subsets of S turn out to be the closed convex
sets.

A variant: let us restrict a above to the value 1. Then dropping this con-
stant “1” from our notation, 7" becomes S, and x Ry becomes the condition
{(z,yy < 1. We thus have a Galois connection between S and itself, under which
the closed subsets on each side turn out to be the closed convex subsets containing
0. For instance, in S = R3, we find that the dual of a cube centered at the ori-
gin is a regular octahedron centered at the origin. The regular dodecahedron and
icosahedron are similarly dual to one another.

ExaMPLE 5.5.8. Let S =T be a group, semigroup, or ring, and for elements
s and t of that object, let s Rt denote the commutativity relation st =ts. Then
for every subset X of S, the set X* will be a subring, subgroup, or subsemi-
group, called the “centralizer” or the “commutant” of X, and X** is called the
bicommutant of X.

In particular, if S = T = the ring of endomorphisms of an abelian group M
(or more generally, the k-algebra of endomorphisms of a k-module M, for some
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commutative ring k), and if, for X a subring of S, we regard M as an X-module,
then X* is the ring (respectively, k-algebra) of X -module endomorphisms of M.

ExXAMPLE 5.5.9. Let S be a set of mathematical objects, T' a set of propo-
sitions about an object of this sort, and s Rt the relation “the object s satisfies
the proposition ¢”; in logician’s notation, s = t. Then the closed subsets of S are
those sets of objects definable by sets of propositions from 7', what model theorists
call axiomatic classes, while the closed subsets of T are what they call theories.
The theory B** generated by a set B of propositions consists of those members
of T that are consequences of the propositions in B, in the sense that they hold
in all members of S satisfying the latter.

(Actually, in the naturally occurring cases of this example, S is often a proper
class rather than a set of mathematical objects; e.g., the class of all groups. We
will see how to deal comfortably with such situations in the next chapter.)

There are cases where it is preferable to use symbols other than “*” for the
operators of a Galois connection. In Example 5.5.5, it is usual to write the set
obtained from a set A as Ann(A) or A° or At (the annihilator or null space of
A) because “*” is commonly used for the dual space. More seriously, whenever
S =T but R is not a symmetric relation on S, the two constructions {s’ | (Vs €
A) s’ Rs} and {s'| (Vs € A) sRs'} will be distinct, so one must denote them by
different symbols, such as A, and A*. An example of such a case is

Exercise 5.5:4. (i) If S =T = Q, the set of rational numbers, and R is the
relation <, characterize the two systems of closed subsets of Q. Describe in as
simple a way as possible the structure of the lattices of closed sets.

(ii) Same question with “<” in place of “<”.

Exercise 5.5:5. (i) Let X be aset, S =T = P(X), the set of all subsets of
X, and let R be the relation of having nonempty intersection. Since this is a
symmetric relation, the two closure operators it induces are the same. Show that
this operator ** takes A C P(X) to the set of those subsets of X that contain
a member of A.

Deduce that under this Galois connection, the closed sets which are com-

pletely join-irreducible (cannot be written as a finite or infinite join of strictly
smaller closed sets) are in natural one-to-one correspondence with the elements
of P(X), and that the general closed sets are precisely the unions of such closed
sets.
(ii) Suppose X is a topological space, S = T = {open subsets of X}, and again
let R be the relation of having nonempty intersection. Can you characterize the
resulting closure operator in this case? Can you get analogs of the remaining
statements of part (i)?

The next exercise gives, as promised, some details on the infinite-dimensional
case of Example 5.5.5. The one following it is related to Example 5.5.8.

Exercise 5.5:6. Let K be a field, S a K-vector-space, and T its dual space.
(i) Show that the subsets of S closed under the Galois connection of Exam-
ple 5.5.5 are indeed all the vector subspaces of S.

To characterize the subsets of T closed under this connection, let us, for
each s € S and c € K, define Us . = {t € T | t(s) = ¢}, and topologize T by
making the U, . a subbasis of open sets.
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(ii) Show that the resulting topology is the weakest such that for each s € S, the
evaluation map ¢ — ¢(s) is a continuous map from 7' to the discrete topological
space K.

(iii) Show that the subsets of T closed under the Galois connection described
above are the vector subspaces of T closed in the above topology.

(There is an elegant characterization of the class of topological vector spaces
that arise in this way. They are called linearly compact vector spaces. See [104,
Chapter II, 27.6 and 32.1], or for a summary, [2, first half of §24].)

Exercise 5.5:7. Let M be the underlying abelian group of the polynomial ring
Q[t] in one indeterminate t, let x: M — M be the abelian group endomorphism
given by multiplication by t, and d: M — M the endomorphism given by
differentiation with respect to ¢. Find the commutant and bicommutant (as
defined in Example 5.5.8) of each of the following subrings of End(M) :

(i) Zla].

(i) Z[z? 23]

(iii) Z[d].

(iv) Z<{x,d) (thering generated by x and d. Angle brackets are used to indicate
generators of not necessarily commutative rings.)

Exercise 5.5:8. If G is a group and X a subset of G, then
{9eG|(VaeX)ga=ag}
is called the centralizer of X in G, often denoted C¢(X). This is easily seen to
be a subgroup of G.
(i) Show that if H is a subgroup of a group G then the following conditions
are equivalent: (a) H is commutative, and is the centralizer of its centralizer.

(b) H is the intersection of some nonempty family of maximal commutative
subgroups of G.

(ii) Give a result about Galois connections of which the above is a particular
case.

(You may either state and prove in detail the result of (i), and then for (ii)
formulate a general result which can clearly be proved the same way, in which
case you need not repeat the argument; or do (ii) in detail, then note briefly how
to apply your result to get (i).)

We recall that for a general closure operator on a set S, the union of two closed
subsets of S is not in general closed; their join in the lattice of closed sets is the
closure of this union. However, if we consider the Galois connection between a set
of objects and a set of propositions, and if these propositions are the sentences in
a language that contains the operator V (“or”), then the set of objects satisfying
the proposition sV ¢ will be precisely the union of the set of objects satisfying s
and the set satisfying t :

{sVi}* = {s}*U{t}*

Likewise, if the language contains the operator A (“and”), then

{snt}* = {s}*n{t}*.
In fact, the choice of the symbols V and A (modifications of U and N) by logicians
to represent these operators was probably suggested by these properties of the sets
of objects satisfying such relations. (At least, so I thought when I wrote this. But a
student told me he had heard a different explanation: that V is an abbreviation of
Latin vel “or”, and A was formed by inverting it. If so, U and N may have been
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created as modifications of V and A, and the fact that U looks like an abbreviation
of “union” may be a coincidence.)

If we look at closed sets of propositions rather than closed sets of objects, these
are, of course, ordered in the reverse fashion: The set of propositions implied by a
proposition sVt is the intersection of those implied by s and those implied by ¢,
while the set implied by s At is the closure of the union of the sets implied by s
and by t. Thus the use of the words “and” (which implies something “bigger”) and
“or” (which suggests a weakening) is based on the proposition-oriented viewpoint,
while the choice of symbols A and V corresponds to the object viewpoint.

The conflict between these two viewpoints explains the problem students in
precalculus courses have when they are asked, say, to describe by inequalities the
set of real numbers x satisfying 2 > 1. We want the answer “z < —1 or = > 17,
meaning {z |z < —1 or « > 1}. But they often put “z < —1 and = > 1”7. What
they have in mind could be translated as “{z | * < —1} and {z |z > 1}”. We
can hardly tell them that their difficulty arises from the order-reversing nature of
the Galois connection between propositions and objects! But the more thoughtful
students might be helped if, without going into the formalism, we pointed out that
there is a kind of “reverse relation” between statements and the things they refer
to: the larger a set of statements, the smaller the set of things satisfying it; the
larger a set of things, the smaller the set of statements they all satisfy; so that
“and’ for sets of real numbers translates to “or” among formulas defining them.

I point out this “reverse relation” in a handout on set theory and mathematical
notation that I give out in my upper division courses [52, in particular, §2]. Whether
it helps, I don’t know.

Logicians often write the propositions (Vo € X) P(z) and (Jz € X) Q(z) as
Nsex P(x) and \/ . Q(x). Here the universal and existential quantifications are
being represented as (generally infinite) conjunctions and disjunctions, correspond-
ing to intersections and unions respectively of the classes of models defined by the
given families of conditions P(z) and Q(x), as x ranges over X.

We have noted that for many naturally arising types of closure operators cl,
the closure of a set X can be constructed both “from above” and “from below” —
either by taking the intersection of all closed sets containing X, or by “building”
elements of cl(X) from elements of X by iterating some procedure in terms of
which cl was defined. Closure operators determined by Galois connections are
born with a construction “from above”: for X C S, X** is the intersection of
those sets {t}* (¢t € T) which contain X. The definition of a Galois connection
does not provide any way of constructing this set “from below”; rather, this is a
recurring type of mathematical problem for the particular Galois connections of
mathematical interest! Typically, given such a Galois connection, one looks for
operations that all the sets {¢t}* (¢t € Y) are closed under, and when one suspects
one has found enough of these, one seeks to prove that for every X, the set X**
is the closure of X under these operations. For instance, the fixed set of an
automorphism of a field extension F/K is easily seen to contain all elements of
K and to be closed under the field operations of F'; the Fundamental Theorem
of Galois Theory says that under appropriate hypotheses, the closed subsets of
F are precisely the subsets closed under these operations. For the case of the
Galois connection between mathematical objects and propositions, the problem of
finding a way to “build up” the closure of a set of propositions is that of finding an
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adequate set of rules of inference for the type of proposition under consideration,
while to construct the closure operator on objects is to characterize intrinsically
the axiomatic model classes.

We remark that for a relation R on a pair of sets X and Y, there is in
general no close connection between the Galois connections determined by R and
by its negation —R (set-theoretically, the complement of R in X xY’). Typically,
when one of the two relations is given by equalities (e.g., the relation g(a) = a
on Galois connections representing automorphisms and elements of a field), that
relation tends to yield a Galois connection of more mathematical interest than the
connection determined by its complement (in the above case, the relation g(a) # a).

The definition of Galois connection is, unfortunately, seldom presented in
courses, and many mathematicians who discover examples of it have not heard
of the general concept. Of course, Lemma 5.5.1 is a set of easy observations which
can be verified in any particular case without referring to a general result. But it is
useful to have the general concept as a guide; and once one has proved Lemma 5.5.1,
one can skip those trivial verifications from then on.



CHAPTER 6

Categories and functors

6.1. What is a category?

Let us lead up to the concept of category by first recalling the motivations for
some more familiar mathematical concepts:

(a) Groups. The definition of a group is motivated by considering the structure on
the set Aut(X) of all automorphisms of a mathematical object X. Given a, b €
Aut(X), the composite map ab lies in Aut(X); for every a € Aut(X), its inverse
a~! is a member of Aut(X), and, of course, the identity map idy always belongs
to Aut(X). Thus, Aut(X) is a set with a binary operation of composition, a unary
operation “~!” and a zeroary operation idy. When one examines the conditions
these operations satisfy, one discovers the associative law, the inverse laws, and the
neutral-element laws.

These laws and their consequences turn out to be fundamental to consider-
ations involving automorphisms, so one makes a general definition: A 4-tuple
G = (|G|, -, 71, 1), where |G| is a set and -, ~!, 1 are operations on |G|
satisfying the above laws, is called a group.

Let me point out something which is obvious today, but took getting used to
for the first generation to see the above definition: The definition does not say
that G actually consists of automorphisms of an object X — only that it has
certain properties we have abstracted from that context. In fact, systems with
these properties are also found to arise in other ways:

The additive structures of the sets of integers, rational numbers, and real num-
bers form groups.

If (X, zp) is a topological space with basepoint, the set of homotopy classes of
closed curves beginning and ending at xy forms a group, m (X, xo).

And there are groups that are familiar, not because of a particular way they
occur, but because of their importance as basic components in the study of other
groups. The finite cyclic groups Z, are the simplest examples.

Despite our abstract definition, and the existence of groups arising in these
different ways, the original motivation of the group concept should not be forgotten.
A natural question is: Which abstract groups can be represented concretely, that
is, are isomorphic to a family of permutations of a set X under the operations of
composition, inverse map, and identity permutation? As we learn in undergraduate
algebra, the answer is that every group has this property (Cayley’s Theorem). Let
us rederive the well-known proof.

The idea is to use the simplest nontrivial construction of a G-set X : Introduce
a single generating element = € X, and let all the elements gz (¢ € |G|) be
distinct. Formally we may define X to be the set of symbols “gx”, where x is a

169
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fixed symbol and ¢ ranges over |G|. We let G act on X in the appropriate way
to make this a G-action, namely by the law

h(gz) = (hg)x (g, h€|G]).

The permutations of the set X given by the elements of G are seen to form a
“concrete” group isomorphic to G. One then observes that the symbol “x” is
irrelevant to the proof. Stripping it away, we get the textbook proof: “Let G act
on |G| by left multiplication ...” ([24, p.62], [27, p.121], [28, p.9], [30, p.90],
[33, p.52]).

(b) Monoids. Suppose we consider not just the automorphisms of a mathematical
object X but all its endomorphisms, that is, homomorphisms into itself. The set
End(X) is closed under composition and contains the identity map, but there is
no inverse operation. The operations of composition and identity still satisfy as-
sociative and neutral-element laws, and one calls any set with a binary operation
and a distinguished element 1 satisfying these laws a monoid. Like the defini-
tion of a group, this definition does not require that a monoid actually consist of
endomorphisms of an object X.

And indeed, there are again examples which arise in other ways than the one
which motivated the definition. The nonnegative integers form a monoid under
multiplication (with 1 as neutral element), and also under the operation max
(with 0 as neutral element). Isomorphism classes of (say) finitely generated abelian
groups form a monoid under the operation induced by “@® 7, or alternatively under
the operation induced by “®”. (One may remove some set-theoretic difficulties
from this example by restricting oneself to a set of finitely generated abelian groups
with exactly one member from each isomorphism class.)

One has the precise analog of Cayley’s Theorem: Every monoid S is isomorphic
to a monoid of maps of a set into itself, and this is proved the same way, by letting
S act on |S| by left multiplication.

(¢) Partially ordered sets. Again let X be any mathematical object, and now let
us consider the set Sub(X) of all subobjects of X.

In general, we do not have a way of defining interesting operations on this set.
(There are often operations of “least upper bound” and “greatest lower bound”,
but not always.) However, Sub(X) is not structureless; one subobject of X may
be contained in another, and this inclusion relation is seen to satisfy the conditions
of reflexivity, antisymmetry and transitivity.

Again we abstract the situation, calling an arbitrary pair P = (|P], <), where
|P| is a set, and < is a binary relation on |P| satisfying the above three laws, a
partially ordered set.

Examples of partial orderings arising in other ways than the above “prototyp-
ical” one are the relation “<” on the integers or the real numbers, and the logical
relation “=" on a family of inequivalent propositions. Partially ordered sets are
also natural models of various hierarchical and genealogical structures in nature,
language, and human society.

Given an arbitrary partially ordered set P, will P be isomorphic to a “con-
crete” partially ordered set — a family of subsets of a set X, ordered by inclusion?
Again, let us try to build such an X in as simple-minded a way as possible. We
want to associate to every p € |P| a subset P of a set X, so as to duplicate the
order relation among elements of P. To make sure all these sets are distinct, let us
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introduce for each p € |P| an element x, € X belonging to P, and hence neces-
sarily to every g with ¢ > p, but not to any of the other sets § (¢ 2 p). It turns
out that this works — if we define X to be the set of symbols {z, | p € |P|}, and
if for p € |P| weset p={x,|¢<p}C X, we find that {p| p € |P|}, under the
relation “C”, forms a partially ordered set isomorphic to P. Again, the symbol
“x7 is really irrelevant, so we can get a simplified construction by taking X = |P)|
and p = {q | ¢ < p} (p € |P|). Thus we have “Cayley’s Theorem for partially
ordered sets”.

(d) “Bimonoids.” Let us go back to the idea that led to the definition of a monoid,
but make a small change. Suppose that X and Y are two mathematical ob-
jects of the same sort (two sets, two rings, etc.), and we consider the family of all
homomorphisms among them. What structure does this system have?

First, it is a system of four sets:

Hom(X, X), Hom(X, Y), Hom(Y, X), Hom(Y, Y).
Elements of certain of these sets can be composed with elements of others, giving
us etght composition maps:

uxxx: Hom(X, X) x Hom(X, X) — Hom(X, X),
pxxy : Hom(X,Y) x Hom(X, X) — Hom(X, Y),

pyyy : Hom(Y, V) x Hom(Y, V) — Hom(Y, Y).
(There is no composition on the remaining eight pairs, e.g., Hom(X, Y) x
Hom(X, Y).)

These composition operations are associative — we have sixteen associative
laws; namely, for every 4-tuple (Zy, Z1, Za, Z3) of objects from {X,Y} (e.g.,
Y, Y, X,Y)) we get the law
(6.1.1) (ab)c = a(be)
for maps:

Zo <S5 70 s 7z, 9 7,
(We could write (6.1.1) more precisely by specifying the four p’s involved.) We also
have two neutral elements, idx € Hom(X, X) and idy € Hom(Y, Y), satisfying
eight neutral element laws, which you can write down.

Cumbersome though this description is, it is clear that we have here a fairly

natural mathematical structure, and we might abstract these conditions by defining
a bimonoid to be any system of sets and operations

S = ((‘S|ij)i,je{0,l}7 (:u“ijk)i.j,kE{O,l}’ (li)ie(o,l})
such that the \S|Z—j are sets, the p;;; are maps
tiji: |[Slie x [Slij — [S]ik,

satisfying associative laws (ab)c = a(bc) on 3-tuples (a, b, ¢) € |S|jk X |S]ij % |S|ni
for all h, i, j, k € {0,1}, and such that the 1; are elements of |S|;; (i € {0,1})
satisfying

lja=a=al; (a€|S).
Again, these objects can arise in ways other than the one just indicated:
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We can get an analog of the “m; 7 construction for groups: If X is a topological
space and g, 1 are two points of X, then the set of homotopy classes of paths
in X whose initial and final points both lie in {zg, x1} is easily seen to form a
“bimonoid” which we might call 71 (X; xg, 21).

Readers familiar with the ring-theoretic concept of a Morita context
(R, S; rPs, sQgr; 7, 7') will see that it also has this form: The underlying sets
of the rings R and S play the roles of |S|oo and [S|11, the underlying sets of
the bimodules P and @ give |S|o1 and |S|109, and the required eight multiplica-
tion maps are given by the internal multiplication maps of R and S, the bimodule
structures of P and @, and the bilinear maps 7: Px@Q — R, and 7": Qx P — S.

Finally, if K is a field and for any two integers ¢ and j we write M;;(K) for
the set of ¢ x 7 matrices over K, then for any m and n, the four systems of ma-
trices My (K), Mpm(K), My (K), My, (K), form a “bimonoid” under matrix
multiplication. (The astute reader will notice that this is really a disguised case
of “two mathematical objects and maps among them”, since matrix multiplication
is designed precisely to encode composition of linear maps between vector spaces
K™ and K"™. And the ring-theorist will note that this matrix example is a Morita
context.)

Is there a “Cayley’s Theorem for bimonoids”, saying that any bimonoid S is
isomorphic to a subbimonoid of the bimonoid of all maps between two sets X
and Y 7?7 Following the models of the preceding cases, our approach should be to
introduce a small number of elements in X and/or Y, and use them to “generate”
the rest of X and Y under the action of elements of S. Will it suffice to introduce
a single generator x € X, and let X and Y consist of elements obtained from =z
by application of the elements of the |S|o; 7 In particular, this would mean taking
for Y theset {tx |t € |S|o1}. For some bimonoids S this will work; but in general
it will not. For example, one can define a bimonoid S by taking any two monoids
for |S|oo and |S|11, and using the empty set for both |S|o; and |S|19. For such an
S, the above construction gives empty Y, though if the monoid |S|11 is nontrivial
it cannot be represented faithfully by an action on the empty set. Likewise, it will
not suffice to take only a generator in Y.

Let us, therefore, introduce as generators one element x € X and one element
y €Y, and let X be the set of all symbols of either of the forms sz or ty with
s € |Sloo, t € |S|10, and Y the set of symbols uz or vy with u € |S|o1, v € |S|11.
If we let S “act on” this pair of sets by defining

a(bz) = (ab)z,

whenever z € {z,y}, and a and b are members of sets |S|;; such that these
symbolic combinations should be meaningful, then we find that this yields an em-
bedding of S in the bimonoid of all maps between X and Y, as desired. The
interested reader can work out the details.

(e) Categories. We could go on in the same vein, looking at maps among three,
four, etc., mathematical objects, and define “trimonoids”, “quadrimonoids” etc.,
with larger and larger collections of operations and identities.

But clearly it makes more sense to treat these as cases of one general concept!
Let us now, therefore, try to abstract the algebraic structure we find when we look
at an arbitrary family X of mathematical objects and the homomorphisms among
them.
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In the above development of “bimonoids”, the index set {0,1} that ran through
our considerations was the same for all bimonoids. But in the general situation,
the corresponding index set must be specified as part of the object. This is the first
component of the 4-tuple described in the next definition.

DEFINITION 6.1.2 (provisional). A category will mean a 4-tuple
C = (Ob(C), Ar(C), u(C), id(C)),

where Ob(C) is any collection of elements, Ar(C) is a family of sets C(X,Y)
indezed by the pairs of elements of Ob(C) :

Ar(C) = (C(X, Y))x, veon(o):
w(C) is a family of operations
w(C) = (,LLXYZ)X,Y, Z€0b(C)
uxyz: C,Z)xC(X,Y)— C(X, Z),
and id(C) is a family of elements
id(C) = (idx)xeon(c)

idx € C(X, X),
such that, using multiplicative notation for the maps uxvyz, the associative identity

a(be) = (ab)c
is satisfied for all elements

a€eC(Y,Z), beCX,Y), ceCW X) (W, X,Y, ZeOb(C)),

and the identity laws
aidy = a = idy a
are satisfied for all a € C(X,Y) (X, Y € Ob(C)).

The above definition is labeled “provisional” because it avoids the question of
what we mean by a “collection of elements Ob(C)”. If we hope to be able to deal
with categories within set theory, we should require Ob(C) to be a set. Yet we will
find that the most useful applications of category theory are to cases where Ob(C)
consists of all algebraic objects of a certain type (e.g., all groups), which calls for
larger “collections”. We will deal with this dilemma in §6.4. In the next section,
where we will give examples of categories, we will interpret “collection” broadly or
narrowly as the example requires.

I mentioned that the concept of an “abstract group” — a group given as a set
of elements with certain operations on them, rather than as a concrete family of
permutations of a set — was confusing to people when it was first introduced. The
“abstract” concept of a category still causes many people problems — there is a
great temptation for beginning students to imagine that the members of C(X,Y)
must be actual maps between sets X and Y.

One reason for this confusion is that the terminology of category theory is set up
to closely mimic the situation which motivated the concept. The word “category”
is suggestive to begin with; “Ob(C)” stands for “objects of C”, and this is what
elements of Ob(C) are called; elements f € C(X,Y) are called “morphisms” from
X to Y, the objects X and Y are called the “domain” and “codomain” of f,

these morphisms are often denoted diagrammatically by arrows, X i) Y, and
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objects and morphisms are shown together in the sort of diagrams that are used to
represent objects and maps in other areas of mathematics. In place of C(X,Y),
the notation Hom(X, Y) is very common. And pxyz(f, g) is generally written
fgor f-gor fog, and so looks just like a composite of functions.

So I urge you to note carefully the distinction between the situation that moti-
vated our definition, and the definition itself. Within that definition, the collection
Ob(C) is simply an “index set” for the families of elements on which the composi-
tion operation is defined. Hence in discussing an abstract category C, one cannot
give arguments based on considering “an element of the object X7, “the image of
the morphism a”, etc.; any more than in considering a member g of an abstract
group G one can refer to such concepts as “the set of points left fixed by ¢”. (How-
ever, the latter concept is meaningful for concrete groups of permutations, and the
former concepts are likewise meaningful for “concrete categories”, a concept we will
define in §6.5.)

Of course, the motivating situation should not be forgotten, and a natural
question is: Is every category isomorphic to a system of maps among some sets?
We can give a qualified affirmative answer. The complete answer depends on the
set-theoretic matters that we have postponed to §6.4, but if Ob(C) is actually a
set, then we can indeed construct sets (X) Xxeob(c), and set maps among these,
including the identity map of each of these sets, which form, under composition of
maps, a category isomorphic to C. The proof is the analog of the one we sketched
for “bimonoids”.

Exercise 6.1:1. Write out the argument indicated above — “Cayley’s Theorem”
for a category with only a set of objects.

Incidentally, we will now discard the term “bimonoid”, since the structure it
described was, up to notational adjustment, simply a category having for object-set
the two-element set {0, 1}.

6.2. Examples of categories

To describe a category, one should, strictly, specify the class of objects, the
morphism-set associated with any pair of objects, the composition operation on
morphisms, and the identity morphism of each object. In practice, some of this
structure is usually clear from context. When one is dealing with the prototype
situation — a family of mathematical objects and all homomorphisms among them
— the whole structure is usually clear once the class of objects is named. In other
cases the morphism-sets must be specified as well; once this is done the intended
composition operation is usually (though not always) obvious. As to the identity
elements, these are uniquely determined by the remaining structure (just as in
groups or monoids), so the only task is to verify that they exist, which is usually
easy.

Categories consisting of families of mathematical objects and the homomor-
phisms among them are generally denoted by boldface or script names for the type
of object (often abbreviated. The particular abbreviations may vary from author
to author.) Some important examples are:

Set, the category of all sets and set maps among them. (Another symbol
commonly used for this category is Ens, from the French ensemble.)
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Summary of §6.1

(Read across rows,

referring to headings at top, then compare downwards)

Abstracted Other Can be repre-
Consider: Structure: Properties: concept: examples sented by:
All auto- Set with (ab)c=ual(bc), group (Z, +, —, 0), permutations
morphisms of a composition, a~la=id=aa~!, (same properties, T (X, zo), of a set
mathematical inverse aid = a =ida. but not assumed z (Cayley’s
-
object X . operation, and to arise as at left) Theorem).
identity element.
All endo- Set with (ab)c=a(be), monoid (N, -, 1), maps
morphisms of a composition aid = a =ida. (same properties, (N, max, 0), of a set
mathematical and identity but not assumed ({f. g. ab.gps.}, into
object X. element. to arise as at left) itself.
®, Z).
All sub- Set transitive, partially (z, <), subsets
objects of a with antisymmetric, ordered set -, of a set,
mathematical relation reflexive. (same properties, genealogies. under
object X . C but not assumed C.
to arise as at left)
All homo- Four sets, (ab)c=ual(be) “bimonoid”  “7y(X;xp,x1)”, maps
morphisms [Sloo 1S]o1, 1S]10, |S]11 s (when (same properties, Morita between
between two with composition defined); but not assumed contexts, two
mathematical — maps |S|i; = [S|ik aid;=a=idja  to arise as at left) . sets.
matrices.
objects and identity (a €1S]i5)-
X and Y. elements
ido, idl‘
All homo- Family of sets (ab)c = a(be) for category coming family
morphisms Hom(X,Y) (X,YEX) Xo > XAXZ % X3; (same properties, up, of sets
among a with composition maps aidx=a=idya  but not assumed in and maps
family X of  Hom(X;,Xy) x Hom(Xp,X1) for X 5 Y. to arise as at left) §6.2 among
mathematical — Hom(Xy, X2) and them
objects. identity elements (if Ob(C)
idx € Hom(X, X).

is a set).
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Group, the category whose objects are all groups, and whose morphisms are
the group homomorphisms; and similarly Ab, the category of abelian groups.

Monoid, Semigroup, AbMonoid and AbSemigroup, the categories of
monoids, semigroups, abelian monoids, and abelian semigroups.

Ring', and CommRing', the categories of associative, respectively associa-
tive commutative, rings with unity. (One can denote by the same symbols without
a superscript “!” the corresponding categories of nonunital rings — i.e., 5-tuples
R=(|R|,+, -,—, 0), where |R| need not contain an element 1 satisfying the neu-
tral law for multiplication, and where, even if rings happen to possess such elements,
morphisms are not required to respect them. But in these notes we will not refer
to nonunital rings often enough to need to fix names for these categories.)

If R is an associative unital ring, we will write the category of left R-modules
R-Mod and the category of right R-modules Mod-R. (Other common notations
are pRMod and Modg.) Similarly, for G a group, the category of (left) G-sets
will be written G-Set; here the morphisms are the set maps respecting the actions
of all elements of G.

Top denotes the category of all topological spaces and continuous maps among
them. Topologists often find it useful to work with topological spaces with base-
point, (X, ), so we also define the category Top®® of pointed topological spaces,
the objects of which are such pairs (X, z¢), and the morphisms of which are the
continuous maps that send basepoint to basepoint. Much of topology is done under
the assumption that the space is Hausdorff; thus one considers the subcategory
HausTop of Top whose objects are the Hausdorff spaces.

We shall write POSet for the category of partially ordered sets, with isotone
maps for morphisms. If we want to allow only strict isotone maps, i.e., maps
preserving the relation “<”, we can call the resulting category POSet..

We have mentioned that our concept of “bimonoid” is a special case of the
concept of category. Let us formalize this idea. The definition of a category requires
specification of the object-set, whereas for bimonoids the implicit object-set was
always {0,1}. So given a bimonoid S = ((|S|i;), (tijx), (1;)), to translate it to a
category C, we throw in a formal first component Ob(C) = {0,1}. We can then
define C(i, j) = |S|;j, getting the category ({0,1}, (|S]i;), (1ijx), (1:)), which we
may denote Scat-

This works because the situation from which we abstracted the concept of a
bimonoid was a special case of the situation from which we abstracted the concept
of a category. Now in fact, the situations from which we abstracted the concepts
of group, monoid, and partially ordered set were also special cases of that situation!
Can objects of these types similarly be identified with certain kinds of categories?

The objects most similar to bimonoids are the monoids. Since they are modeled
after the algebraic structure on the set of endomorphisms of a single algebraic
object, let us associate to an arbitrary monoid S a one-object category Scat, with
object-set {0}. The only morphism-set to define is Scat(0,0); we take this to
be |S|. For the composition map on pairs of elements of Scat(0,0), we use the
composition operation of S, and for the identity morphism, the neutral element
of S.

Conversely, if C is any category with only one object, X, then the unique
morphism set C(X,X), with its identity element, will form a monoid S under
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the composition operation of C, such that the category Scat formed as above is
isomorphic to our original category C, the only difference being the name of the
one object (originally X, now 0). Thus, a category with exactly one object is
“essentially” a monoid.

If we start with a group G, we can similarly form a category Geat with just
one object, 0, whose morphisms are the elements of G and whose composition
operation is the composition of G. We cannot incorporate the inverse operation
of G as an operation of the category; in fact, what we are doing is essentially
forgetting the inverse operation, i.e., forming from G the monoid G4, and then
applying the previous construction; thus Geat = (Gmd)cat- We see that via this
construction, a group is equivalent to a category which has exactly one object, and
in which every morphism is invertible.

Note that for G a group, the one member of Ob(Geat) should not be thought
of as the group G; intuitively it is a fictitious mathematical object on which G acts.
Thus, morphisms in this category from that one object to itself do not correspond
to endomorphisms of G, as students sometimes think, but to elements of G. (One
can also define a category with one object whose morphisms comprise the monoid
of the endomorphisms of G; that is the category End(G)cat; but Geat is a more
elementary construction.)

The case of partially ordered sets is a little different. In the motivating situa-
tion, though we started with a single object X, we considered a family of objects
obtained from it, namely all its subobjects. Although there might exist many maps
among these objects, the structure of partially ordered set only reveals a certain
subfamily of these: the inclusion maps. (In fact, since a “homomorphism” means a
map which respects the kind of structure being considered, and we are considering
these objects as subobjects of X, one could say that a homomorphism as subobjects
should mean a set map which respects the way the objects are embedded in X,
i.e., an inclusion map; so from this point of view, these really are the only relevant
maps.) A composite of inclusion maps is an inclusion map, and identity maps are
(trivial) inclusions, so the subobjects of X with the inclusion maps among them
form a category. In this category there is a morphism from A to B if and only if
A C B, and the morphism is then unique, so the partial ordering of the subobjects
determines the structure of the category.

If we start with an abstract partially ordered set P = (|P|, <), we can con-
struct from it an abstract category P.at in the way suggested by this concrete
prototype: Take Ob(Peat) = |P|, and for all A, B € |P|, define there to be one
morphism from A to B if A < B in P, none otherwise. What should we take
this one morphism to be? This is like asking in our construction of G¢ay what to
call the one object. The choice doesn’t really matter. Since we want to associate
to each ordered pair (A, B) with A < B in P some element, the easiest choice is
to take for that element the pair (A, B) itself. Thus, we can define Peat to have
object-set |P|, and for A, B € |P|, take Peat(A, B) to be the singleton {(4, B)}
if A < B, the empty set otherwise. The reader can easily describe the composition
operation and identity elements of Pgag.

Incidentally, we see that this construction works equally well if < is a pre-
ordering rather than a partial ordering.

Exercise 6.2:1. Let C be a category.
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(i) Show that C is isomorphic to Pgat for some partially ordered set P if and
only if “there is at most one morphism between any unordered pair of objects”;
in the sense that each hom-set C(X,Y) has cardinality at most 1, and the
hom-sets C(X,Y) and C(Y, X) do not both have cardinality 1 unless X =Y.
(ii) State a similar condition necessary and sufficient for C to be isomorphic to
P.at for P a preorder. (No proof required.)

We mentioned that some groups, such as the cyclic groups Z,,, are of interest
as “pieces” in terms of which we look at general groups. Thus, to give an element of
order n in a group G is equivalent to displaying an isomorphic copy of Z,, in G,
and to give an element satisfying =™ = e is equivalent to displaying a homomorphic
image of Z,, in G. Various simple categories are of interest for essentially the same

o« —> o

reason. For instance a commutative square | | of objects and morphisms in

a category C corresponds to an image in C of a certain category having four
objects, which we can name 0, 1, 2 and 3, and, aside from their four identity
morphisms, five arrows, as shown below:

0——1

I\

2—3

Here the diagonal arrow is both the composite of the morphisms from 0 to 1 to 3,
and the composite of the morphisms from 0 to 2 to 3. This “diagram category”

might be conveniently named “ | | 7.

A simpler example is the diagram category * = * with two objects and only
two nonidentity morphisms, which go in the same direction. Copies of this in a
category C correspond to the type of data one starts with in the definitions of
equalizers and coequalizers. Still simpler is - —> -, which is often called “27;
an image of this in a category corresponds to a choice of two objects and one
morphism between them. (So the category 2 takes its place in our vocabulary
beside the ordinal 2, the Boolean ring 2, the lattice 2, and the partially ordered
set 2!) A larger diagram category is

images of which in C correspond to right-infinite chains of morphisms. The mor-
phisms of this diagram category are the identity morphisms, the arrows shown in
the picture, and all composites of these arrows, of which there is exactly one from

every object to every object to the right of it. Finally, one might denote by

a category having one object 0, and, aside from the identity morphism of 0, one
other morphism x, and all its powers, 22, z*, etc.. An image of this in a category
C will correspond to a choice of an object and a morphism from this object to
itself.

(In the above discussion I have been vague about what I meant by an “image”
of one category in another. In §6.5 we shall introduce the category-theoretic concept

analogous to that of homomorphism, in terms of which this can be made precise.
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At this point, for the sake of giving you some broad classes of examples to think
about, I have spoken without having the formal definition at hand.)

The various types of examples we have discussed are by no means disjoint.
Three of the above “diagram categories” can be recognized as having the form Peay,
where P is respectively, a 4-element partially ordered set, the partially ordered set
2, and the partially ordered set of nonnegative integers, while the last example is
Scat, for S the free monoid on one generator .

Many of the other “nonprototypical” ways in which we saw that groups, etc.,
arise also have generalizations to categories:

If R is any ring, we see that multiplication of rectangular matrices over R
satisfies precisely the laws for composition of morphisms in a category. Thus, we
get a category Matpg by defining the objects to be the nonnegative integers, the
morphism-set Matg(m, n) to be the set of all n x m matrices over R, the com-
position g to be matrix multiplication, and the morphisms id,, to be the identity
matrices I,,. This is not very novel, since as we observed before, matrix multipli-
cation is defined to encode composition of linear maps among free R-modules. But
it is interesting to note that the abstract system of matrices over R is not limited
to serving that function; if M is any left R-module, one can use n X m matrices
over R to represent operations which carry m-tuples of elements of M to n-tuples
formed from these elements using linear expressions with coefficients in R.

This line of thought suggests similar constructions for other sorts of algebraic
objects. For instance, we can define a category C whose objects are again the
nonnegative integers, and such that C(m, n) represents all ways of getting an
n-tuple of elements of an arbitrary group from an m-tuple using group operations.
Precisely, we can define C(m, n) to be the set of all n-tuples of derived group-
theoretic operations in m variables. The composition maps

(6.2.1) C(n, p) x C(m,n) — C(m, p)

can be described in terms of substitution of derived operations into one another.

Generalizing the construction of the fundamental group of a topological space
with basepoint (X, p), one can associate to any topological space X a category
7t1(X) whose objects are all points of X, and where a morphism from zg to x;
means a homotopy class of paths from one point to the other.

We can also define categories which have familiar mathematical entities for
their objects, but put unexpected twists into the definitions of the morphism-sets.
Recall that in the category Set, the morphisms from the set X to the set Y are
all functions from X to Y. Now formally, a function is a relation f C X x Y
such that for every z € X there exists a unique y € Y such that (z,y) € f.
Suppose we drop this restriction, and consider arbitrary relations R C X x Y. One
can compose these using the same formula by which one composes functions: If
RC X xY and SCY x Z, one defines

SR ={(z,2)eXxZ|3yeY) (z,y) ER, (y, z) € S}

This operation of composing relations is associative, and the identity relations sat-
isfy the identity laws; hence one can define a category RelSet, whose objects are
ordinary sets, but such that RelSet(X, Y) is the set of all relations in X x Y.
Algebraic topologists work with topological spaces, but instead of individual
maps among them, they are concerned with homotopy classes of maps. Thus,
they use the category HtpTop whose objects are topological spaces, and whose
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morphisms are such homotopy classes. Composition of continuous maps respects
homotopy, allowing one to define the composition operation of this category.

In complex variable theory, one often fixes a point z of the complex plane and
considers all analytic functions defined in a neighborhood of z. Different functions
in this set are defined on different neighborhoods of z, so these functions do not all
have any domain of definition in common. Further, functions which are the same
in a neighborhood of z may not agree on the full intersection of their domains, if
this intersection is not connected. E.g., the natural logarithm function In(z) with
value zero at z = 1 extends to some connected regions of the plane so as to assume
the value 7 at the point —1, and to other such regions so as to assume the value
—mi at that point. To eliminate distinctions which are not relevant to the behavior
of functions in the vicinity of the specified point z, one introduces the concept
of a germ of a function at z. This is an equivalence class of functions defined on
neighborhoods of z, under the relation making two functions equivalent if they
agree on some common neighborhood of z.

An apparent inconvenience of this concept is that for germs of functions at
z, one does not have a well-defined operation of composition. For instance, if f
and g are germs of analytic functions at z = 0, one cannot generally attach a
meaning to ¢ f unless f(0) = 0, because g does not have a well-defined “value”
at f(0). (This is the analog of the algebraic problem that given formal power series
f(z)=ap+a1z+... and g(z) =bg+b1z+..., one cannot in general “substitute
f into g” to get another formal power series in z, unless ag = 0.) But this ceases
to be a problem if we define a category GermAnal, whose objects are the points
of the complex plane, and where a morphism from z to w means a germ of an
analytic function at z whose value at z is w. Then for any three points zy, 21,
z2, one sees that one does indeed have a well-defined composition operation

GermAnal(z;, z2) x GermAnal(zy, z1) — GermAnal(zg, 22).

ILe., the partial operation of composition of germs of analytic functions is defined
in exactly those cases needed to make these germs the morphisms of a category.

These examples allow endless modification as needed. A topologist may impose
the restriction that the topological spaces considered in a given context be Haus-
dorff, be locally compact, be given with basepoint, etc., and modify the category
he or she uses accordingly. The definition of a germ of a function is not limited to
complex variable theory, so analogs of GermAmnal can be set up wherever needed.
Here is an interesting case:

Exercise 6.2:2. If G and H are groups, let us define an almost-homomorphism
from G to H to mean a homomorphism f: Gy — H, whose domain G is
a subgroup of finite index in G. Given two almost-homomorphisms f and g
from G to H, with domains Gy and Gy, let us write f ~ g if the subgroup
{z € |G| N|Gy| | f(x) = g(z)} also has finite index in G.

(i) Show that ~ is an equivalence relation on the set of almost-homomorphisms
from G to H.

(ii) Show how one may define a category C whose objects are all groups,
and whose morphisms are the equivalence classes of almost-homomorphisms, un-
der ~.

(iii) Describe the endomorphism-monoid C(Z, Z), where C is the category de-
scribed above, and Z is the additive group of integers.
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We noted earlier that isomorphism classes of abelian groups formed a monoid
under ®. The reader familiar with bimodules and the tensor operation on these

might like the following generalization of this monoid to a category.

Exercise 6.2:3. Show that one can define a category C such that Ob(C)

is

the class of all rings, for each R, S € Ob(C), C(R,S) is the family of all
isomorphism-classes [P] of (S, R)-bimodules P, and for each [P] € C(S, T),
[Q] € C(R, S), the composite [P][Q] is the isomorphism class of the tensor
product, [P ®g Q]. (Either ignore the problem that the classes involved in this
definition are not sets, or modify the statement in some reasonable way to avoid
this problem.)

(If you are familiar with Morita equivalence, you will find that two objects
are isomorphic in this category if and only if they are Morita equivalent as rings.)

The following example shows that not every plausible definition works:

Exercise 6.2:4. Suppose one attempts to define a category C by taking all sets

for the objects, and letting C(X,Y) consist of all equivalence classes of set
maps X — Y, under the relation that makes f g if {x € X | f(z) # g(x)} is
finite.
(i) Show that this does not work, i.e., that composition of set maps does not
induce a composition operation on equivalence classes of set maps.

On the other hand

(ii) Find the least equivalence relation ~ on set maps which contains the above
equivalence relation =, and has the property that composition of set maps does
induce a composition operation on equivalence classes of set maps under ~ .

(Precisely, ~ will be a family of equivalence relations: a relation ~x y on
C(X,Y) for each pair of sets X and Y. So what you should show is that among
such families of equivalence relations, there is a least ~ such that composition
of set maps induces composition operations on the factor sets C(X, Y)/~x v,
and such that f~g = f ~ g for all f and g; and describe these relations
~X,Y +)

Here is an interesting variant of the construction Scat, for S a monoid. (For
an application, see [47].)

Exercise 6.2:5. Let S be a monoid, and X an S-set. One can define a category

whose objects are the elements of X, and such that a morphism ¢ —y (z,y €
|X]) is an element s € |S| such that sz = y. However, to help remind us of
the intended domain and codomain of each morphism, let us, rather, take the
morphisms z — y to be all 3-tuples (y, s, ) such that s € |S| and sz =y. We
define composition by (z, ¢, y)(y, s, x) = (2, t s, x); the definition of the identity
morphisms should be clear.
(i) Show that the construction Scat is a special case of this construction.
(ii) In general, can one reconstruct the monoid S and the S-set X from the
structure of the category Xcat ?

I don’t know the answer to the first part of
(iii) Given a category C, is there a nice necessary and sufficient condition for
there to exist a monoid S and an S-set X such that C = X, ? For there to
exist a group G and a G-set X such that this isomorphism holds?

6.3. Other notations and viewpoints

The language and notation of category theory are still far from uniform. Let

me note some of the commonest variations on the conventions I have presented.
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I have mentioned that what we are writing C(X,Y) is often written
Hom(X, Y); this may be made more explicit as Homc (X, Y); there is also the
shorter notation (X, Y). Even though we shall not use the notation Hom(X, Y),
we shall often call these sets “hom sets”.

More problematically, some authors reverse the order in which the objects
are written; i.e., they write the set of morphisms from X to Y as C(Y, X),
Hom(Y, X), etc.. There are advantages to each choice: The order we are us-
ing matches the order of words when we speak of going “from X to Y7, and
the use of arrows drawn from left to right, X — Y, but has the disadvan-
tage that composition of morphisms X — Y — Z must be described as a map
C(Y, Z) x C(X,Y) — C(X, Z), while under the reversed notation, it goes more
nicely, C(Z,Y) x C(Y, X) — C(Z, X). A different cure for the same problem is
to continue to think of elements of C(X,Y) as morphisms from X to Y (as we

are doing), but reverse the way composition is written, letting the composite of

x4y g Y be denoted ab € C(X, Z), rather than ba. However if one does

this, then when writing functions on sets, one is more or less forced to abandon
the conventional notation f(z), which leads to the usual order of composition, and
write x f instead.

Note that the above difficulties in category-theoretic notation simply mirror
conflicts of notation already existing within mathematics! (Cf. [53].)

The elements of C(X, Y'), which we call “morphisms”, are called “arrows” by
some. Our notation Ar(C) for the family of morphism-sets is based on that word,
some authors write F1(C), based on the French fléche (arrow). Colloquially they
are also called “maps” from X to Y, and I may allow myself to fall into this easy
usage at times, hoping that you understand by now that they are not maps in the
literal sense, i.e., functions.

The identity element in C(X, X) which we are writing idx is also written
Ix (like an identity matrix) or 1x (just as the identity element of a group is often
written 1).

The student has probably noticed at some point in his or her study of mathe-
matics the petty but vexing question: If X is a subset of Y, is the inclusion map
of X into Y the “same” as the identity map of X 7 If we follow the convenient
formalization of a function as a set of ordered pairs (z, f(z)), then they are indeed
the same. But this means that a question like “Is f surjective?” is meaningless;
one can only ask whether f is surjective as a map from X to Y, as a map from
X to X, etc.. A formalization more in accord with the way we think about these
things might be to define a function f: X — Y as a 3-tuple (X, Y, |f|), where
|f| is the set of ordered pairs used in the usual definition. Then f is surjective
if and only if the set of second components of members of |f| equals the whole
set Y. (Since X is determined by |f|, our making X a component of the 3-tuple
is, strictly, unnecessary; but it seems worth doing for symmetry. Note that if one
wants to use a similar notation for general relations |R| C X x Y, then neither X
nor Y will be determined by |R|, so one needs both of these in the tuple describ-
ing the relation. Having both in the tuple describing a function then allows one to
continue to regard the functions from X to Y as a subset of the relations between
these sets.)

The same problem arises when we abstract our functions in the definition of a
category: Can an element be a member of two different morphism-sets, C(X, Y)
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and C(X',Y"), with (X,Y) # (X', Y’)? Under our definitions, yes. However,
some authors add to the definition of a category the condition that the sets of
morphisms between distinct pairs of objects be disjoint.

Let us note what such a condition would entail. In the category Group, as an
example, a group homomorphism f: G — H would have to determine not merely
its set-theoretic domain and codomain |G| and |H|, but the full group structures
G = (|G|, pa, ta, eq) and H = (|H|, pm, tm, ex). When one thinks about it,
this makes good sense, not only from the point of view of category theory but from
that of group theory; for without knowing the group structures on |G| and |H|,
one cannot say whether a map f: |G| — |H| is a homomorphism, let alone answer
such group-theoretic questions as, say, whether its kernel contains all elements of
order 2.

In set theory, when one defines a function as a set of ordered pairs, though
its codomain is not uniquely determined, most other things one would want to
know about it are; for example, the composite fg of two composable functions
can be constructed from those functions. But there is nothing in the definition we
have given of a category that says that if g lies in both C(X,Y) and C(X', Y’),
while f liesin both C(Y, Z) and C(Y’, Z’), then the composites uxyz(f, g) and
wx: vy z(f, g) must be the same; so even the symbol “ f g” is formally ambiguous.

On the whole, I think it desirable to include in the definition of a category the
condition that morphism-sets be disjoint. However, we shall not do so in these notes,
largely because it would increase the gap between our category theory and ordinary
mathematical usage. So the difficulties mentioned above mean that we have to be
careful, understanding for instance that in a given context, we are using fg¢g as a
shorthand for puxyz(f, g), which is the only really unambiguous expression. Note
that given any structure which is a category C under our definition, we can form
a new category C48 with disjoint morphism-sets, by using the same objects, and
letting C9(X, Y) consist of all 3-tuples f = (X, Y, |f]) with |f] € C(X,Y),
and composition operations obtained in the obvious way from those of C.

Authors who require morphism-sets to be disjoint can play some interesting
variations on the definition of category. Instead of defining Ar(C) to be a family
of sets, Ar(C) = (C(X, Y))x,veob(c), they can take it to be a single set (or class),
the union of all the C(X, Y)’s. To recover domains and codomains of morphisms,
they then add to the definition of a category two operations, dom, cod: Ar(C) —
Ob(C). They can then make composition of morphisms a single map

p:{(f, 9) € Ax(C)? | cod(g) = dom(f)} — Ar(C).

One can be even more radical and eliminate all reference to objects, as sketched
in the next exercise.

Exercise 6.3:1. (i) Let C be a category such that distinct ordered pairs of ob-
jects (X, Y) have disjoint morphism-sets. Let A =]y y C(X,Y), and let u
denote the composition operation in A, considered now as a partial map from
A x A to A, ie., a function from a subset of A x A to A. Show that the pair
(A, p) determines C up to isomorphism.

(ii) Find conditions on a pair (A, u), where A is a set and p a partial binary
operation on A, which are necessary and sufficient for it to arise, as above, from
a category C with disjoint morphism sets. (Try to formulate these conditions
so that they give a nice self-contained characterization of the sort of structure in
question.)
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One gets a still nicer structure by combining the above approach with the
idea of giving functions specifying the domain and codomain of each morphism.
Namely, given a category C with disjoint morphism-sets, let A be defined as
in (i), let dom: A — A be the map associating to each morphism f the iden-
tity morphism of its domain, and similarly let cod: A — A associate to each
morphism the identity morphism of its codomain. Since the pair (A, u) deter-
mines C up to isomorphism, the same will be true, a fortiori, of the 4-tuple
(A, p, dom, cod).

(iii) Find simple necessary and sufficient conditions on a 4-tuple (A, p, dom,
cod) for it to arise as above from a category C with disjoint morphism-sets.

So one could redefine a category as an ordered pair (A, p) or 4-tuple (A, p,
dom, cod) satisfying appropriate conditions.

These differences in definition do not make a great difference in how one actually
works with categories. If, for instance, one defines a category as a 5-tuple C =
(Ob(C), Ar(C), domg, codg, idc), one then immediately makes the definition

C(X,Y) = {f € Ar(C) [ (dom(f) = X) A (cod(f) = Y)},

and works with these morphism sets as other category-theorists do. (But I will
mention one notational consequence of the morphisms-only approach that can be
confusing to the uninitiated: the use, by some categorists, of the name of an object
as the name for its identity morphism as well.)

Changing the topic from technical details to attitudes, category theory has been
seen by some as the new approach that would revolutionize, unify, and absorb all
of mathematics; by others as a pointless abstraction whose content is trivial where
it is not incomprehensible.

Neither of these characterizations is justified, but each has a grain of truth.
The subject matter of essentially every branch of mathematics can be viewed as
forming a category (or a family of categories); but this does not say how much value
the category-theoretic viewpoint will have for workers in a given area. The actual
role of category theory in mathematics is like that of group theory: Groups come
up in all fields of mathematics because for every sort of mathematical object, we
can look at its symmetries, and generally make use of them. In some situations the
contribution of group theory is limited to a few trivial observations, and to providing
a language consistent with that used for similar considerations in other fields. In
others, deep group-theoretic results are applicable. Finally, group theory is a branch
of algebra in its own right, with its own intrinsically interesting questions. All the
corresponding observations are true of category theory.

As with the concept of “abstract group” for an earlier generation, many people
are troubled by that of an “abstract category”, whose “objects” are structureless
primitives, not mathematical objects with “underlying sets”, so that in particular,
one cannot reason by “chasing elements” around diagrams. I think the difficulty is
pedagogic. The problem comes from expecting to be able to “chase elements”. As
one learns category theory (or a given branch thereof), one learns the techniques
one can use, which is, after all, what one needs to do before one can feel at home
in any area of mathematics. These include some reasonable approximations of
element-chasing when one needs them.

And there is no objection to sometimes using a mental image in which objects
are sets and morphisms are certain maps among them, since this is an important
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class of cases. One must merely bear in mind that, like all the mental images we
use to understand mathematics, it is imperfect.

(Of course, strictly speaking, the objects of a category are sets, since in ZFC
there are no “primitive objects”. But the morphisms of a category are not in general
maps between these sets, and the set-theoretic structure of these objects is of no
more relevance to the concept of category than the set-theoretic structure of “1/2”
is to the functional analyst.)

When one thinks of categories as algebraic entities themselves, one should note
that the item in the definition of a category analogous to the element in the defini-
tion of a group, monoid etc., is the morphism. It is on these that the composition
operation, corresponding to the multiplication in a group or monoid, is defined.
The object-set of C, which has no analog in groups or monoids, is essentially an
index set, used to classify these elements.

While on the subject of terminology, I will mention one distinction among words
(relevant to, but not limited to category theory) which many mathematicians are
sloppy about, but which I try to maintain: the distinction between composite and
composition. If f and g are maps of sets, or morphisms in a category, such that
g f makes sense, it is their composite. The operation carrying the pair (f, g) to
this element ¢ f is composition. This is analogous to the distinction between the
sum of two integers, a + b, and the operation of addition.

6.4. Universes

Let us now confront the problem we postponed, of how we can both encompass
category theory within set theory, and have category theory include structures like
“the category of sets”.

One approach is the following. One formulates the general definition of a cat-
egory C so that Ob(C), and even the families C(X,Y), are classes. One does
as much as one can in that context — the resulting animals are called large cat-
egories. Omne then goes on to consider those categories in which, at least, every
morphism-class C(X, Y) is a set, and proves better results about these — they are
called legitimate categories; note that most of the examples of §6.2 were of this sort.
Finally, one considers categories such that both the class Ob(C) and the classes
C(X,Y) are sets. One calls these small categories, and in studying them one can
use the full power of set theory.

Unfortunately, in conventional set theory one has one’s hands tied behind one’s
back when trying to work with large, or even legitimate categories, for there is no
concept of a collection of classes. To get around this, one might try extending set
theory. One could remove the assumption that every member of a class must be a
set, so as to allow certain classes of proper classes, and extend the axioms to apply
to such classes as well as sets — and one would find essentially no difficulty — except
that what one had been calling “classes” are looking more and more like sets!

So suppose we changed their names, and called our old sets small sets, and
introduce the term large set to describe the things we have been calling classes (our
original sets and classes, collections of those, etc.. The word “class” itself we would
then restore to the function of referring to arbitrary collections of the sets, large
and small, in our new set theory. This includes the class of all sets, which again
would not itself be a member of that theory.) We would assume the axioms of ZFC



186 6. CATEGORIES AND FUNCTORS

for arbitrary sets, large or small. Thus, no distinction between large and small sets
would appear in our axioms.

Note, however, that not only would those axioms be satisfied by the collection
of all sets; they would also be satisfied by the subcollection consisting of the small
sets. It is not hard to see that this is equivalent to saying that the set U of all
small sets would have the properties listed in the following definition.

DEFINITION 6.4.1. A universe is a set U satisfying
i) XeYelU = Xel.
(i) X,2YeU = {X,Y}el.
(iiiy XelU = P(X)el.
(iv) XelU = (Usex4) el
(v) wel.
(vi) If X €U and f: X - U is a function, then {f(z) |z € X} € U.

The axioms of ZFC introduced in §4.4 do not guarantee the existence of a set
with the above properties. However, if a universe U is assumed given, the above
discussion suggests that we give members of U the name “small sets”, call arbitrary
sets “large sets”, and, in terms of these kinds of sets, define “small category”,
“legitimate category” and “large category” as above. We would define “group”,
“ring”, “lattice”, “topological space”, etc., as we always did; we would further define
one of these objects to be “small” if it is a member of U. Although all groups would
still not form a set, all small groups would (though not a small set!) We would
then define Set, Group, etc., to mean the categories of all small sets, all small
groups, etc., make the tacit assumption that small objects are all that “ordinary
mathematics” cares about, and use large categories to study them! All that needs
to be added to ZFC is an axiom saying that there exists a universe U; and such an
axiom is considered reasonable by set-theorists. (Note that the operations of power
set, direct product, etc., will be the same within the “sub-set-theory” of members
of U as in the total set theory.)

The above is the approach used by Mac Lane [18, pp.21-24]. However one
can go a little further, and, following A.Grothendieck [76, §1.1], use ZFC plus an
assumption that seems no less reasonable than the existence of a single universe,
and more elegant. Namely,

Axiom of Universes. Every set is a member of a universe.

So in particular, under this assumption every universe is a member of a larger
universe.

CONVENTION 6.4.2. We shall assume ZFC with the Axiom of Universes from
now on.

Given this set of axioms, we no longer have to think in terms of a 2-tiered
set theory such that “ordinary” mathematicians work in the lower tier of small
sets, and category theorists have access to the higher tier of large sets. Rather,
categories, just like other mathematical objects, can exist “at any level”. But when
we want to use categories to study a given sort of mathematical object, we study
the category of these objects at a fixed level (i.e., belonging to a fixed universe U),
while that category itself lies at every higher level (in every universe having U as
a member).
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Let us make this formal.

DEFINITION 6.4.3. The concept of category will be defined as in the provisional
Definition 6.1.2, but with the “system” of objects Ob(C) ezplicitly meaning a set.

DEFINITION 6.4.4. If U is a universe, a set X will be called U-small if X € U.
A mathematical object (e.g., a group, a ring, a topological space, a category) will
be called U-small if it is so as a set. In addition, a category C will be called
U-legitimate if Ob(C) CU and for all X, Y € Ob(C) one has C(X,Y) € U.

The categories of U-small sets, U-small groups, etc., will be denoted Set ),
Group(U), etc..

Thus, Set(y), Groupy, etc., are U-legitimate categories. Note that this im-
plies that for every universe U’ having U as a member, they are U’-small categories.
[13 ki

But we don’t want to encumber our notation with these subscripts “(y)”, so
we agree to suppress them most of the time:

DEFINITION 6.4.5. When we are not discussing universes, some chosen uni-
verse U will be understood to be fixed, and the terms “small” and “legitimate” will
mean “U-small” and “U-legitimate”. When we speak of mathematical objects (sets,
groups, rings, topological spaces etc.), these will be assumed small if the contrary is
not stated. As an exception, “category” will mean legitimate category if the con-
trary is not stated; and sets used to index the objects of categories will merely be
assumed to be subsets of U wunless otherwise specified. In particular, symbols such
as Set, Group, Top etc., will denote the legitimate categories of all small sets,
groups, topological spaces, etc..

Large (referring to sets or categories) will mean “not necessarily small or le-
gitimate”.

Thus, the term “large” does not specify any conditions on a set; it simply
removes the assumption of smallness.

Things now look more or less as they did before, except that we know what we
are doing!

The distinctions between small and large objects will come into our considera-
tions from time to time. For instance, when we generalize the construction of free
groups and other universal objects as subobjects of direct products, we will see that
the key condition we need is that we be able to choose an appropriate small set of
objects over which to take the direct product.

Exercise 6.4:1. Assume a universe U is given.

(Results such as those asked for below will in general be taken for granted in
this course; but in doing this exercise, you are asked to show detailed deductions.
For this purpose, recall that functions are understood to be appropriate sets of
ordered pairs, where such pairs are taken to be sets of the form {{X}, {X,Y}}
as discussed in the paragraph following (4.4.1); but that aside from that case,
n-tuples of elements of a set S are defined to be functions n — S.)

(i) Let S be a large set (a set not necessarily in U), and let f: S — U be
a function. Show that f € U <= S € U. (So in particular, any map from a
member of U to U is a member of U, but no map U — U is.)

(ii) Show that a large group G is small if and only if |G| is small.

(iii) Show that a large category C is small if and only if Ob(C) is small, and
for all X, Y € Ob(C), the set C(X,Y) is small.
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Although, as we have seen, one uses non-small categories to study small math-
ematical objects of other sorts, the tables can be turned. For instance, we may
consider closure operators on classes of small (or legitimate) categories, and the
lattice of closed sets of such an operator will then be a large lattice.

The next couple of exercises show some properties of the class of universes.
(The Axiom of Universes is, of course, to be assumed if the contrary is not stated.)

Exercise 6.4:2. (i) Show that the class of universes is not a set.

(ii) Will this same result hold if we weaken the Axiom of Universes to the
statement that there is at least one universe (as in Mac Lane)? What if we use
the intermediate statement that there is a universe, and that every universe is
a member of a larger universe? (In answering these questions, you may assume
that there exists a model of set theory satisfying the full Axiom of Universes.)

Exercise 6.4:3. Let us, one the one hand, recursively define the rank of a set by the
condition that rank(X) is the least ordinal greater than all the ordinals rank(Y")
for Y € X, and on the other hand, define the hereditary cardinality of a set by
the condition that her.card(X) is the least cardinal that is both > card(X) and
> her.card(Y) for all Y € X.

(i) Explain why we can make these definitions. (Cf. Exercise 4.4:1.)

(ii) Show that for every universe U there exists a cardinal « such that U
consists of all sets of hereditary cardinality < «, and/or show that for every
universe U there exists a cardinal « such that U consists of all sets of rank < «.
(iii) Obtain bounds for the hereditary cardinality of a set in terms of its rank,
and vice versa, and if you only did one part of the preceding point, deduce the
other part.
(iv) Characterize the cardinals « which determine universes as in (ii).
Do the arguments you have used require the Axiom of Universes?
(Incidentally, the term “rank” is used as above by set theorists, who write
V., for the class of sets of rank < «; but my use of “hereditary cardinality”
above is a modification of their usage, which speaks of sets as being “hereditarily
of cardinality < «”. The class of sets with this property is denoted H,.)

Exercise 6.4:4. Show that if U # U’ are universes, then either U € U’ or U’ € U.

Deduce that the relation “€ or =7 is a well-ordering on the class of universes.
(You may wish to use some results from the preceding exercise.)

Exercise 6.4:5. Suppose that we drop from our axioms for set theory the Axiom of
Infinity, and in our definition of “universe” replace the condition that a universe
contain w by the condition that it contain (). Show that under the new axiom-
system, one can recover the Axiom of Infinity using the Axiom of Universes. Show
that all but one of the sets which are “universes” under the new definition will
be universes under our existing definition, and characterize the one exception.

Exercise 6.4:6. In Exercise 4.5:15 we found that “most” infinite cardinals were
regular, namely, that all singular cardinals were limit cardinals; but we also saw
that among limit cardinals, regular cardinals were rare, and we found no example
but Ng. Show now that the cardinality of any universe is a regular limit cardinal.

Remarks: Set-theorists call a regular limit cardinal a weakly inaccessible car-
dinal, because it cannot be “reached” from lower cardinals using just the cardinal
successor operation and the operation of taking the union of a chain of cardinals
indexed by a lower cardinal. The inaccessible cardinals, which are the cardinalities
of universes, are the cardinals which cannot be reached from lower cardinals using
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all of the constructions of ZFC; i.e., the above two constructions together with the
power set construction, and the Axioms of the Empty Set and Infinity, which hand
us 0 and Ny. (Inaccessible cardinals are sometimes called strongly inaccessible car-
dinals.) Whether every weakly inaccessible cardinal is inaccessible depends on the
assumptions one makes on one’s set theory. The student familiar with the Gener-
alized Continuum Hypothesis will see that this assumption implies that these two
concepts do coincide. Discussions of inaccessible cardinals can be found in basic
texts on set theory. (For their relation to universes, cf. [4], [102]; for some alterna-
tive proposals for set-theoretic foundations of category theory, [109] and [75]; and
for a proposal in the opposite direction, [16].)

Notice that introducing “large sets” has not eliminated the need for the concept
of a “class”. In discussing set theory, one wants to refer to the collection of all sets;
and one of the above exercises refers to the class of all universes. However, the
need to work with classes, and the difficulties arising from not being able to use
set-theoretic techniques in doing so, is greatly reduced, because for many purposes,
references to large sets will now do.

We cannot be sure that the axiomatization we have adopted will be satisfactory
for all the needs of category theory. It is based on the assumption that “ordinary
mathematics” can be done within any universe U, so that the set of all U-small
objects is a reasonable substitute for what was previously treated as the class of all
objects. If some area of mathematics studied using category theory should itself
require the full strength of the Axiom of Universes, then to get an adequate version
of the category of “all” objects in that area, one might want to define a “second-
order universe” to mean a universe U’ such that every set X € U’ is a member of
a universe U € U’, and introduce a Second Axiom of Universes, saying that every
set belongs to a second-order universe! However, the fact that for pre-category-
theoretic mathematics, ZFC seemed an adequate foundation suggests that the set
theory we have adopted here should be good for a while.

Concerning the basic idea of what we have done, namely to assume a set theory
that contains “sub-set-theories” which themselves look like traditional set theory,
let us note that these are “sub-—set-theories” in the strongest sense: They involve
the same membership relation, the same power set operation, etc.. Set theorists
often work with “sub—set-theories” in weaker senses; for example, allowing certain
sets X to belong to the sub—set-theory without making all subsets of X members
of the sub-set-theory. (E.g., they may allow only those that are “constructible” in
some way.) The resulting model may still satisfy general axioms such as ZFC, but
have other properties significantly different from those of the set theory one started
with. This technique is used in proving results of the sort, “If a certain set of axioms
is consistent, so is a modified set of axioms”. The distinction in question can be
compared with the difference between considering a sublattice of a lattice, which
by assumption has the same meet and join operations, and considering a subset
which also has least upper bounds and greatest lower bounds, and hence can again
be regarded as a lattice, but where these least upper and greatest lower bounds are
not the same as in the original lattice, so that the object is not a sublattice.

We will find the following concept useful at times.

DEFINITION 6.4.6. A mathematical object will be called quasi-small if it is iso-
morphic to a small object.
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Here “isomorphic” is to be understood in the sense of the sort of object in
question. Thus, a quasi-small set means a set with the same cardinality as a small
set. A quasi-small group is easily seen to be a group whose underlying set is a
quasi-small set.

We shall now return to category theory proper. Our language will in general
be, superficially, as before; but as stated in Definition 6.4.5, there is now a fixed
universe U in the background, and when the contrary is not stated, words such as
“group” etc. now mean “U-small group”, etc., while “category” means “U-legitimate
category”.

6.5. Functors

Since categories are themselves a sort of mathematical object, we should have
a concept of “subcategory”, and some sort of concept of “homomorphism” between
categories. The first of these concepts is described in

DEFINITION 6.5.1. If C is a category, a subcategory of C means a category S
such that () Ob(S) is a subset of Ob(C), (ii) for each X, Y € Ob(S), S(X,Y)
is a subset of C(X,Y), and (iii) the composition and identity operations of S are
the restrictions of those of C.

Examples are clear: The category Ab of abelian groups is a subcategory
of Group. Within Monoid, we can look at the subcategory whose objects
are monoids all of whose elements are invertible (and whose morphisms are still
all monoid-homomorphisms between these); this will be isomorphic to Group.
Lattice is likewise isomorphic to a subcategory of POSet; here the lattice ho-
momorphisms form a proper subset of the isotone maps. A subcategory of POSet
with the same objects as the whole category, but a smaller set of morphisms, is
the one we called POSet.. Similarly, Set is a subcategory of RelSet with the
same set of objects, but a more restricted set of morphisms. The empty category
(no objects, and hence no morphisms) is a subcategory of every category.

The analog of homomorphism for categories is defined in

DEFINITION 6.5.2. If C and D are categories, then a functor F: C — D
means a pair (Fov, Far), where Fop is a map Ob(C) — Ob(D), and Fa, is a
family Fa, = (F(X,Y))x, yeonc) of maps

F(X,Y): C(X,Y) — D(Fon(X), Fop(Y)) (XY €Ob(C)),
such that

(i)  for any two composable morphisms X £> Y i> Z in C, one has
F(X, Z)(fg) = F(Y, Z)(f) F(X,Y)(9),

and
(ii) for every X € Ob(C),
F(X, X)(idx) = id p (x) -

When there is no danger of ambiguity, Fon, Fay, and F(X,Y) are generally
all abbreviated to F. Thus, in this notation, the last three displays become (more
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readably)
F: C(X,Y) — D(F(X), F(Y)) (X,Y €0b(C)),
F(fg) = F(f)F(9),
Flidx) = idp(x)-

How do functors arise in the prototypical situation where C and D consist
of mathematical objects and homomorphisms among them? Since we must first
specify the object of D to which each object of C is carried, such a functor
typically starts with a construction which gives us for each object of C an object
of D. And in fact, most mathematical constructions, though often discussed as
merely associating to each object of one sort an object of another, also have the
property that to every morphism of objects of the first sort there corresponds
naturally a morphism between the constructed objects, in a manner which satisfies
the conditions of the above definition.

Consider, for example the construction of the free group, with which we be-
gan this course. To every X € ODb(Set) this associates a group F(X), to-
gether with a map ux: X — |F(X)| having a certain universal property. Now
if f: X — Y is a set map, it is easy to see how to get a homomorphism
F(f): F(X) — F(Y). Intuitively, F(f) acts by “substituting f(z) for z” in
elements of F(X) and evaluating the results in F(Y). Recall that in terms
of the universal property of F(X), “substituting values in a group G for the
generators of F(X)” means determining a group homomorphism F(X) — G
by specifying its composite with the set map ux: X — |F(X)|. In particular,
for f: X = Y, our above description of F(f) translates to say that it is the
unique group homomorphism F(X) — F(Y) such that F(f) - ux = uy - f :

X f Y
ux uy
F
FOl 20 pery)

It is easy to check that if we define F(f) in this way for each set-map f, we get
F(fg)=F(f)F(g9) and F(idx) = idp(x). Hence the free group construction gives
a functor F': Set — Group.

Looking in the same way at the construction of abelianization, associating to
each group G the abelian group G* = G/[G, G|, we see that every group homo-
morphism f: G — H yields a homomorphism of abelian groups f2": Gab — H2P
(Exercise 3.4:3), describable either concretely in terms of cosets, or by a commuta-
tive diagram construction using the universal property of the canonical homomor-
phism G — G?#P. The constructions of free semilattices, universal abelianizations
of rings, etc., give similar examples.

Like most mathematical concepts, the concept of functor also has “trivial”
examples, that by themselves would not justify the general definition, yet which
play important roles in the theory. The “construction” associating to every group
G its underlying set |G| is a functor Group — Set, since homomorphisms of
groups certainly give maps of underlying sets. One similarly has underlying-set
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functors from Ring', Lattice, Top, POSet, etc., to Set. These all belong to
the class of constructions called “forgetful functors”. Those listed above “forget”
all structure on the object, and so give functors to Set; other forgetful functors we
have seen are the construction G +— Gpq of §3.11, taking a group (|G|, -, 71, e) to
the monoid (|G|, -, €), which “forgets” the inverse operation, and the construction
taking a ring to its underlying additive group, or to its underlying multiplicative
monoid.

The term “forgetful functor” is not a technical one, so one cannot say precisely
whether it should be applied to constructions like the one taking a lattice to its
“underlying” partially ordered set (“underlying” in quotes because the partial or-
dering is not part of the 3-tuple formally defining the lattice); but in any case,
this is another example of a functor. I likewise don’t know whether one would
apply the term “forgetful” to the inclusion of the subcategory Ab in the category
Group, which might be said to “forget” that the groups are abelian, but this too,
and indeed, the inclusion of any subcategory in any category, is easily seen to be
a functor. In particular, the inclusion of any category C in itself is the identity
functor, Idc, which takes each object and each morphism to itself.

If, instead of looking at the whole underlying set of a group, we consider the set
of its elements of exponent 2, we get another example of a functor Group — Set.
(Clearly every group homomorphism gives a map between the corresponding sets.)

If R is aring, the opposite ring R°P is defined to have the same underlying set,
and the same operations +,—,0, 1 as R, but reversed multiplication: zxy = y=x.
A ring homomorphism f: R — S will also be a homomorphism R° — S°P_ and
we see that this makes ( )°P a functor Ring' — Ring'; one which, composed
with itself, gives the identity functor. One has similar opposite-multiplication con-
structions for monoids and groups. The definitions of the opposite (or dual) of a
partially ordered set or lattice give functors with similar properties.

Recall that HtpTop is defined to have the same objects as Top, but has for
morphisms equivalence classes of continuous maps under homotopy. Thus we have
a functor Top — HtpTop which preserves objects, and sends every morphism to
its homotopy class.

We have mentioned diagram categories, such as the “commuting square dia-

gram” | | which is useful because “images” of it in any category C correspond

o —> o

to commuting squares of objects and arrows in C. We can now say this more pre-
cisely: Commuting squares in C correspond to functors from this diagram-category
into C.

Let us also note a few examples of mathematical constructions that are not
functors. These tend to be of two sorts: those in which morphisms from one object
to another may not preserve the properties used by the construction, and those
that involve arbitrary choices. We have noted that the construction associating
to every group G the set of elements of exponent 2, {z € |G| | 2% = e}, is a
functor Group — Set. However, if we define T(G) to be the set of elements of
order 2, {x € |G| | x> =e, x#e}, we find that a group homomorphism f may
take some of these elements to the identity element, so there is no natural way
to define “T(f)”. Similarly, the important group-theoretic construction of the
center Z(G) of a group G (the subgroup of elements a € |G| that commute with
all elements of G) is not functorial, because if a is in the center of G and we
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apply a homomorphism f: G — H, some elements of H outside the image of G
may fail to commute with f(a). The construction Aut, taking a group G to its
automorphism group, is also not a functor, roughly because when we map G into
another group H, there is no guarantee that H will have all the “symmetries”
that G does.

Some constructions of these sorts can be “made into” functors by modifying
the choice of domain category so as to restrict the morphisms thereof to maps
that don’t “disturb” the structure involved. Thus, the construction associating to
every group its set of elements of order 2 does give a functor Group;,; — Set,
if we define Group;,; to be the category whose objects are groups and whose
morphisms are injective (one-to-one) group homomorphisms. The construction of
the center likewise gives a functor Groupy,,; — Group, where the morphisms
of Group,,,; are the surjective group homomorphisms. One may make Aut a
functor by restricting morphisms to isomorphisms of groups.

An example of the other sort, where a construction is not a functor because it
involves choices that cannot be made in a canonical way, is that of finding a basis
for a vector space. Even limiting ourselves to finite-dimensional vector spaces, so
that bases may be constructed without the Axiom of Choice, the finitely many
choices one must make are still arbitrary, so that if one chooses a basis By for a
vector space V, and a basis By for a vector space W, there is no natural way to
associate to every linear map V — W a set map By — By .

In the above discussion, we have merely indicated where straightforward at-
tempts to make these constructions into functors go wrong. In the next four exer-
cises you are asked to prove more precise negative results.

Exercise 6.5:1. (i) Show that there can be no functor F': Group — Set taking
each group to the set of its elements of order 2, no matter how F is made to
act on morphisms.

On the other hand,

(ii) Show how to define a functor Group — RelSet taking every group to
its set of elements of order 2. (Since RelSet is an unfamiliar category, verify
explicitly all parts of the definition of functor.)

Exercise 6.5:2. (i) Show that there can be no functor F': Group — Group
taking each group to its center.
(ii) Can one construct a functor Group — RelSet taking every group to the
set of its central elements?

Exercise 6.5:3. (i) Give an example of a group homomorphism f: G — H and
an automorphism a of G such that there does not exist a unique automorphism
a’ of H such that a'f = fa. In fact, find such examples with f one-to-one
but not onto, and with f onto but not one-to-one, and in each of these cases, if
possible, an example where such a’ does not exist, and an example where such
a' exists but is not unique. (If you cannot get an example of one of the above
combinations, can you show that it does not occur?)

(ii) Find similar examples involving partially ordered sets in place of groups.

(iii) Prove that there is no functor from Group (alternatively, from POSet)
to Set (or even to RelSet) taking each object to its set of automorphisms.
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Exercise 6.5:4. If K isafield, let K denote the algebraic closure of K. We recall
that any field homomorphism f: K — L can be extended to a homomorphism

of algebraic closures, f: K — L.
(i) Show, however, that in general there is no way to choose an extension f of

each field homomorphism f so as to make the algebraic closure construction a
functor.

(i) If we remove the restriction that f be an extension of f, can we make
algebraic closure a functor?

The exercise below is instructive and entertaining. A full solution to the second
part is difficult, but one can get many interesting partial results.

Exercise 6.5:5. Let FSet denote the subcategory of Set having for objects the
finite sets, and for morphisms all set maps among these.

(i) Show that every functor F' from FSet to FSet determines a function f
from the nonnegative integers to the nonnegative integers, such that for every
finite set X, card(F(X)) = f(card(X)).

(ii) Investigate which integer-valued functions f can occur as the functions asso-
ciated to such functors. If possible, determine necessary and sufficient conditions
on f for such an F' to exist.

Note that given functors C g D E> E between any three categories, we can

form the composite functor C F_C); E taking each object X to F(G(X)) and
each morphism f to F(G(f)). Composition of functors is clearly associative, and
identity functors satisfy the identity laws, so we have a “category of categories”!
This is named in

DEFINITION 6.5.3. Cat will denote the (legitimate) category whose objects are
all small categories, and where for two small categories C and D, Cat(C, D) is
the set of all functors C — D, with composition of functors defined as above.

You might be disappointed with this definition, since only a few of the categories
we have mentioned have been small (the diagram-categories, and the categories Scat
and Pgay constructed from monoids S and partially ordered sets P). Thus, Cat
would appear to be of limited importance. But here the Axiom of Universes comes
to our aid. The universe U relative to which we have defined “small category” is
arbitrary. If we want to study the categories of all groups, rings, etc., belonging to
a universe U, and functors among these categories, we may choose a universe U’
having U as a member, and note that the abovementioned categories, and indeed,
all U-legitimate categories, are U’-small, hence are objects of Caty/). Thus we can
apply general results about the construction Cat to this situation.

(For some purposes, it might also be useful to have a symbol for the category
of all U-legitimate categories, which lies strictly between Caty) and Cat ), but
we shall not introduce one here.)

Considering functors as “homomorphisms” among categories, we should like to
define properties of functors analogous to “one-to-one-ness” and “onto-ness”. The
complication is that a functor acts both on objects and on morphisms. We have
observed that it is the morphisms in a category that are like the elements of a group
or monoid; this leads to the pair of concepts named below. They are not the only
analogs of one-one-ness and onto-ness that one ever uses, but they are the most
important:
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DEFINITION 6.5.4. Let F: C — D be a functor.

F is called faithful if for all X, Y € Ob(C), the map F(X,Y): C(X,Y) —
D(F(X), F(Y)) is one-to-one.

F s called full if for all X, Y € Ob(C), the map F(X,Y): C(X,Y) —
D(F(X), F(Y)) is onto.

A subcategory of C is said to be full if the corresponding inclusion functor is
full.

Thus, a full subcategory of C is determined by specifying a subset of the
object-set; the morphisms of the subcategory are then all the morphisms among
these objects. The subcategory Ab of Group is an example. Some examples of
nonfull subcategories are Set C RelSet and POSet. C POSet. The inclusion of
a full subcategory in a category is a full and faithful functor, while the inclusion of
a nonfull subcategory is a faithful functor, but is not full. The reader should verify
that most of our examples of forgetful functors are faithful but not full, as is, also,
the free-group functor Set — Group. The functor Top — HtpTop which takes
every object (topological space) to itself, and each morphism to its homotopy class,
is an example of a functor that is full but not faithful. The functor associating to
every group the set of its elements of exponent 2 is neither full nor faithful.

Exercise 6.5:6. Show that the abelianization construction, Group — Ab is nei-
ther full nor faithful.

Exercise 6.5:7. Is the functor Monoid — Group associating to every monoid
its group of invertible elements full? Faithful?

Exercise 6.5:8. (i) Show that the construction associating to each partially or-
dered set P the category P.at can be made in a natural way into a functor
F: POSet — Cat, and that as such it is full and faithful. This says that the
concept of functor, when restricted to the class of categories that correspond to
partially ordered sets, just gives the concept of isotone map between these sets!

(ii) Which isotone maps between partially ordered sets correspond under F' to
full functors? To faithful functors?

(ili) Show similarly that the construction associating to each monoid S the
category Scat is a full and faithful functor E: Monoid — Cat. Which monoid
homomorphisms are sent by E to full, respectively faithful functors?

Exercise 6.5:9. Show that for F': C — D a functor, neither of the following
conditions implies the other: (a) F is full, (b) for all X,Y € Ob(D) and
f € D(X,Y) there exist Xy, Yy € Ob(C) and f, € C(Xo, Yp) such that
F(Xo) =X, F(Yo) =Y, and F(fo) = f.

In §6.1 we sketched a way of “concretizing” any small category C (Exer-
cise 6.1:1 and preceding discussion). Let us make the details precise now.

DEFINITION 6.5.5. A concrete category means a category C given with a faith-
ful functor U: C — Set (a “concretization functor”). (More formally, one would
say that the concrete category is the ordered pair (C, U).)

So the result in question was that given any small category C, there exists a
faithful functor U: C — Set. The idea was to let the family of representing sets —
in our present notation, the system of sets U(X) (X € Ob(C)) — be “generated”
by a family of elements zy € U(Y), one for each Y € Ob(C), so that the general
element of U(X) would look like U(a)(zy) for Y € Ob(C) and a € C(Y, X); and
to impose no additional relations on these elements, so that they are all distinct.



196 6. CATEGORIES AND FUNCTORS

Let us use the ordered pair (Y, a) for the element that is to become U(a)(zy).
Then we should define U to take X € Ob(C) to {(Y,a) | Y € Ob(C),a €
C(Y, X)}. Given b e C(X, W), we see that U(b) should take (Y, a) € U(X) to
(Y, ba) € U(W). It is easy to verify that this defines a faithful functor U : C — Set,
proving

THEOREM 6.5.6 (Cayley’s Theorem for small categories). Every small category
admits a concretization, i.e., a faithful functor to the category of small sets. O

Exercise 6.5:10. Verify that the above construction U is a functor, and is faith-
ful. Which element of each set U(Y) corresponds to the zy of our motivating
discussion?

Incidentally, if we had required that categories have disjoint morphism-sets, we
could have dropped the Y ’s from the pairs (Y, a), since each a would determine
its domain. Then we could simply have taken U(X) = Uy copc) C(Y, X).

It is natural to hope for stronger results, so you can try

Exercise 6.5:11. (i) Does every legitimate category admit a concretization — a
faithful functor to the (legitimate) category of small sets? (Obviously, most of
those we are familiar with do.)

Since this question involves “big” cardinalities, you might prefer to examine
a mini-version of the same problem:

(ii) Suppose C is a category with countably many objects, and such that for
all X, Y € Ob(C), the set C(X,Y) is finite. Must C admit a faithful functor
into the category of finite sets?

(iii) If the answer to either question is negative, can you find necessary and
sufficient conditions on C for such concretizations to exist?

Of course, a given concretizable category will admit many concretizations, just
as a given group has many faithful representations by permutations.

Recall that the proof of Theorem 6.5.6 sketched above came out of our proof of
the corresponding result for “bimonoids”, and that in trying to prove that result,
we first wondered whether it would suffice to adjoin a generator in just one of
the two representing sets X and Y, but saw that the resulting representation
of our bimonoid might not be faithful. Given a category C and an object Y
of C, we can similarly construct a functor U: C — Set by introducing only
one generator zy € U(Y), again with no relations imposed among the elements
U(a)(zy). Though these functors also generally fail to be faithful, they will play an
important role in our subsequent work. Note that each such functor is the “part”
of the construction we used in Theorem 6.5.6 consisting of the elements U(a)(zy)
for one fixed Y. With Y fixed, each such element is determined by a € C(Y, X),
so U may be described as taking each object X to the hom-set C(Y, X); hence
its name:

DEFINITION 6.5.7. For Y € Ob(C), the hom functor induced by Y, hy : C —
Set, is defined on objects by
hy(X) = C(Y, X) (X € 0b(QC)),
while for a morphism b € C(X, W), hy(b) is defined to carry a € C(Y, X) to
ba € C(Y, W).
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(Some authors denote the above construction hY, with hy used for a dual
construction. I will address this point when we introduce that dual construction,
in Definition 6.6.3.)

Examples: Let Z denote the infinite cyclic group, with generator x. Then on
the category Group, the functor hy takes each group G to Group(Z, G). But
a homomorphism from Z to G is determined by what it does on the generator
x € |Z|, so the elements of hz(G) correspond to the elements of the underlying
set of G; i.e., hz is essentially the underlying set functor. You should verify that
its behavior on morphisms also agrees with that functor. Similarly, writing Z, for
the cyclic group of order 2, the functor hz, may be identified with the functor
taking each group to the set of its elements of exponent 2.

Recalling that 2 € Ob(Set) is a 2-element set, we see that hs: Set — Set is
essentially the construction X — X2.

For a topological example, consider the category of topological spaces with
basepoint, and homotopy classes of basepoint-preserving maps, and let (S, 0)
denote the circle with a basepoint chosen. Then hg1, 0y (X, zo) = |71 (X, x0)|. (Of
course, the interesting thing about 71 (X, xg) is its group structure. How this can
be described category-theoretically we shall discover in Chapter 9!)

In the last few paragraphs, I have said a couple of times that a certain functor
is “essentially” a certain construction. What was meant should be intuitively clear.
We will see how to make these statements precise in §6.9.

6.6. Contravariant functors, and functors of several variables

Consider the construction associating to every set X the additive group ZX
of integer-valued functions on X, with pointwise operations. This takes objects
of Set to objects of Ab, but given a set map f: X — Y, there is not a natural
map ZX — ZY — rather, there is a homomorphism Z¥ — ZX carrying each
integer-valued function a on Y to the function af on X.

There are many similar examples — the construction associating to any set X
the Boolean algebra (P(X), U, N, ¢, 0, X) of its subsets, the construction associ-
ating to a set X the lower semilattice (E(X), N) of equivalence relations on X,
the construction associating to a vector space V its dual V*, the construction
associating to a commutative ring the partially ordered set of its prime ideals. All
have the property that a map going one way among the given objects yields a map
going the other way among constructed objects. It is clear that these construc-
tions take identity maps to identity maps and composite maps to composite maps
(though the order of composition must be reversed because of the reversal of the
direction of the maps). These properties look like the definition of a functor turned
backwards. Let us set up a definition to cover this:

DEFINITION 6.6.1. If C and D are categories, then a contravariant functor
F: C — D means a pair (Fop, Far), where Fop (written F when there is no
danger of ambiguity) is a map Ob(C) — Ob(D), and Fa, is a family of maps

F(X,Y): C(X,Y) - D(F(Y), F(X)) (X,Y €O0b(C)),
such that (abbreviating these maps F(X,Y) to F),

(i)  for any two composable morphisms X 9y i)
F(fg) = F(g)F(f) in D,

Z in C, one has
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and
(ii) for every X € Ob(C), one has
F(idx) = idp(x).
Functors of the sort defined in the preceding section are called covariant functors

when one wants to contrast them with contravariant functors. But when the contrary
is not indicated, “functor” (unmodified) will still mean covariant functor.

It is easy to see that a composite of two contravariant functors is a covariant
functor, while a composite of a covariant and a contravariant functor, in either
order, is a contravariant functor.

Contravariant functors can in fact be expressed in terms of covariant functors,
thus eliminating the need to prove results separately for them. We shall do this
with the help of

DEFINITION 6.6.2. If C 1is a category, then C°P will denote the category de-
fined by
Ob(C°P) = Ob(C) CP(X,Y)=C(, X),

w(CP)(f, 9) = w(C)(g; f), id(CP)x =id(C)x.

Thus, a contravariant functor C — D is equivalent to a covariant functor
C°P — D. Of course, one could also describe it as equivalent to a covariant functor
C — D°P, and at this point we have no way of deciding which reduction is prefer-
able. However, we shall see soon that putting the “°P” on the domain category is
more convenient.

As in the theory of partially ordered sets, the “opposite” construction allows
us to dualize results. Whenever we have proved a result about a general category
C, the statement obtained by reversing the directions of all morphisms and the
orders of all compositions is also a theorem, which may be proved by applying the
original theorem to C°P.

There is a slight notational difficulty in dealing with a category C°P, while
referring also to the original category C. Though in the formal definition given
above we could distinguish the two composition operations as u(C) and u(C°P),
the usual notation for composition, f-g or fg, does not allow such a distinction.
There are various ways of getting around this. One can use a modified symbol,
such as -°P or x, for the composition of C°P. Or one can continue to denote
composition by juxtaposition, but use different symbols for the same objects and
morphisms when considered as elements of C and of C°P; e.g., one can let the
morphism written f € C(X,Y) also be written f € C°P(Y, X), so that one
would have ]?Z] = gf, relying on the convention that the meaning of juxtaposition
is determined by context — specifically, by the structure to which the elements being
juxtaposed belong. Still other solutions are possible. E.g., one could be daring, and
denote the same composite by f g in both C and C°P, using different conventions,
fg = uwu(f,g) in C and fg = p(g, f) in C°P; ie., writing morphisms with
domains “on the right” in one category and “on the left” in the other. (Cf. [53].)

Most often, one avoids the problem by not writing formulas in C°P. One uses
this category as an auxiliary concept in discussing contravariant functors and in du-
alizing results, but avoids talking explicitly about objects and morphisms inside it.
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In these notes, we shall regularly write a contravariant functor from C to D
as I': C°P — D, where F is a covariant functor on C°P, and shall take advantage
of the principle of duality mentioned. These are the main uses we shall make of the
%P construction; in the rare cases where we have to work explicitly inside C°P, we

will generally use modified symbols such as X, f (or X°P, f°P) for objects and
morphisms in C°P.

Note that in the category of categories, Cat, the morphisms are the covariant
functors.

Exercise 6.6:1. (i) Show how to make °P a functor R from Cat to Cat. Is
R a covariant or a contravariant functor?
(ii) Let R: Cat — Cat be as in part (i), let R': POSet — POSet be the
functor taking every partially ordered set P to the opposite partially ordered
set P°P and let C': POSet — Cat denote the functor taking each partially
ordered set P to the category Peat (§6.2). Show that RC = C' R'.

Thus, the construction of the opposite of a partially ordered set is essentially

a case of the construction of the opposite of a category!

(iii) State the analogous result with monoids in place of partially ordered sets.

We noted in earlier chapters that given a set map X — Y, there are ways of
getting both a map P(X) — P(Y) and a map P(Y) — P(X) (where P denotes
the power-set construction). The next few exercises look at this and some similar
situations.

Exercise 6.6:2. (i) Write down explicitly how to get from a set map f: X =Y
a set map Pi(f): P(X) = P(Y) and a set map P(f): P(Y) — P(X). Show
that these constructions make the power set construction a functor P;: Set —
Set and a functor P;: Set°® — Set respectively. (These are called the covariant
and contravariant power set functors.)

(ii) Examine what structure on P(X) is respected by maps of the form P (f)
and Py(f) defined as above. In particular, determine whether each sort of map
always respects the operations of finite meets, finite joins, empty meet, empty
join, unions of chains, intersections of chains, complements, and the relations
“C” and “C” in power-sets P(X). (Cf. Exercise 5.1:11. If you are familiar
with the standard topologization of P(X), you can also investigate whether
maps of the form P;(f) and P(f) are continuous.) Accordingly, determine
whether the constructions P; and P, which we referred to above as functors
from Set, respectively Set°”, to Set, can in fact be made into functors from
Set and/or Set°® to V-Semilat, to Bool' (the category of Boolean rings),
etc.. In each case, note only the strongest structure that you are showing. (E.g.,
there is no need to note that you can make a functor V-semilattice-valued if you
will in fact make it lattice-valued.)

Exercise 6.6:3. Investigate similarly the construction associating to every set X
the set E(X) of equivalence relations on X. I.e., for a set map f: X — Y, look
for functorial ways of inducing maps in one or both directions between the sets
E(X), E(Y), and determine what structure on these sets is respected by each
such construction.

Exercise 6.6:4. (i) Do the same for the construction associating to every group
G the set of subgroups of G.
(ii) Do the same for the construction associating to every group G the set of
normal subgroups of G.
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As with covariant functors, there is an important class of contravariant functors
which one can define on every category:

DEFINITION 6.6.3. For any category C and any object Y € Ob(C), the con-
travariant hom functor induced by Y, hY : C°P — Set, is defined on objects by

hY (X) = C(X,Y) (X € Ob(C)).

For a morphism b € C(W, X) the morphism hY (b): C(X,Y) — C(W,Y) is
defined to carry a € C(X,Y) to ab € C(W,Y). (The functor hy which we
previously named “the hom functor induced by Y 7 will henceforth be called “the
covariant hom functor induced by Y 7.)

(Note: Many authors, in particular, algebraic geometers, use hY for what
we call hy, and vice versa. The usage is divided; I have chosen the usage given
above because it matches the convention in homology and homotopy theory, where
subscripts appear on the covariant functors of homology and homotopy, and super-
scripts on the contravariant cohomology and cohomotopy functors.)

Examples: Let C = Set, and let Y be the set 2 = {0,1}. Recall that every
map from a set X into 2 is the characteristic function of a unique subset S C X.
Hence Set(X, 2) can be identified with P(X). The reader should verify that the
behavior of h%?: Set — Set on morphisms is exactly that of the contravariant
power-set functor.

Let k£ be a field, and in the category k-Mod of k-vector spaces, let k& denote
this field considered as a one-dimensional vector space. Then for any vector space
V, h¥(V) is the underlying set of the dual vector space, and for any linear map
b: V — W, h¥(b) is the induced map from the dual of the space W to the dual of
the space V.

Let R € Ob(Top) denote the real line. Then h® is the construction associating
to every topological space X the set of continuous real-valued functions on X. One
can vary this example using categories of differentiable manifolds and differentiable
maps, etc., in place of Top.

Here are three further examples for students familiar with the areas in question.

In the category of commutative algebras over the rational numbers, if C denotes
the algebra of complex numbers, then h® is the functor associating to every algebra
R the set of its “complex-valued points”, its classical spectrum. In particular, if

R is presented by generators xg, ..., x,—1 and relations pp =0, ..., pp—1 = 0,
then hC(R) can be identified with the solution-set, in complex n-space C", of the
system of polynomial equations pg =0, ..., pp—1 = 0.

If LocCpAb is the category of locally compact topological abelian groups, and
S = R/Z is the circle group, then h%(A) is the underlying set of the Pontryagin
dual of the group A [127, §1.7]. (In the study of nontopological abelian groups,
Q/Z plays a somewhat similar role [32, p. 145, Remark 2].)

Finally, in the category HtpTop, the set h°"(X) (where S™ denotes the
n-sphere) gives the underlying set of the n-th cohomotopy group, =" (X).

Exercise 6.6:5. Let 2 € Ob(POSet) denote the set 2 = {0,1}, ordered in the
usual way.

(i) Show that h?: POSet® — Set is faithful.

(i) Show that for P € Ob(POSet), the set h?(P) can be made a lattice with a
greatest and a least element, under pointwise operations. Show that in this way
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h? induces a functor A: POSet°? — Lattice™!, where Lattice®' denotes the
category of lattices with greatest and least elements, and lattice homomorphisms
respecting these elements.

(iii) Let us also write 2 € Ob(Lattice™') for the 2-element lattice! Thus we get
a functor h?: (Lattice”!)°P — Set. Show that this functor is not faithful.

(iv) Show that for L € Ob(Lattice”'), the set h?(L) is not in general closed
under pointwise meet or join, and may not contain a greatest or least element,
but that if we partially order lattice homomorphisms by pointwise comparison,
h? yields a functor B: (Lattice’!')°? — POSet.

(v) Show that for P a finite partially ordered set, B(A(P)) = P.

The above is just a teaser. The interested student might examine this pair
of functors further, and see what more he or she can prove; or wait till we return
to the topic in §9.12 with general tools at our disposal.

Exercise 6.6:6. Following up on the idea of Exercise 6.5:5, observe that every con-
travariant functor from the category FSet of finite sets into itself also determines
a nonnegative integer-valued function on the nonnegative integers. Investigate
which functions on the nonnegative integers arise as functions associated with
contravariant functors.

Exercise 6.6:7. Let RelFSet denote the full subcategory of RelSet whose ob-
jects are finite sets. Investigate similarly the integer-valued functions associ-
ated with functors RelFSet — FSet, FSet — RelFSet, and RelFSet —
RelFSet. In these cases, it does not matter whether we look at covariant or
contravariant functors — why not?

Exercise 6.6:8. We have noted that a composite of two contravariant functors
is a covariant functor, etc.. But in terms of the description of contravariant
functors as covariant functors C°? — D, it is not clear how to formally de-
scribe the composite of two contravariant functors (or a composite of the form
(contravariant functor) - (covariant functor)). Show how to reduce these cases to
composition of covariant functors, with the help of Exercise 6.6:1(i).

There are still some types of well-behaved mathematical constructions which we
have not yet fitted into our functorial scheme: (a) Given a pair of sets (A, B), we
can form the product set A x B. We likewise have product constructions for groups,
rings, topological spaces, etc., coproducts for most of the same types of objects, and
the tensor product construction on abelian groups. (b) From two objects A and B
of any category C, one gets C(A, B) € Ob(Set). (c) There are also constructions
that combine objects of different categories. For instance, from a commutative
ring R and a set X, one can form the polynomial ring over R in an X-tuple of
indeterminates, R[X].

In each of these cases, maps on the given objects yield maps on the constructed
objects. In cases (a) and (c), the maps of constructed objects go the same way as
the maps of the given objects, while in case (b) the direction depends on which
argument one varies: A morphism Y — Y’ yields a map C(X,Y) — C(X, Y’),
but a morphism X — X’ yields a map C(X’,Y) — C(X, Y).

It is natural to call these constructions functors of two variables. Like the
concept of contravariant functor, that of a functor of more than one variable can
be reduced to our original definition of functor via an appropriate construction on
categories.
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DEFINITION 6.6.4. Let (C;)icr be a family of categories. Then the product
category 'I_I'Z.elCi will mean the category C defined by

Ob(C) = M,; Ob(C;)  C((Xy)ier, (Yi)ier) = ¢, Ci(Xi, Vi),
M((fi)fa (gi)l) = (N(fiv gi))b id(Xi)ieI = (idxi)iEI'

The product of a finite family of categories is often written C x --- X E.
A functor F on a product category is called a functor of several variables; a
functor of two variables is often called a bifunctor.

Thus, a functor on a category of the form C x D°P may be described as a “bi-
functor covariant in a C-valued variable and contravariant in a D-valued variable”.
Note that if we tried to express contravariance by putting “°?” onto the codomains
instead of the domains of functors, we would not be able to express this mixed type
of functor; hence the preference for putting °® on domains.

A product category '|_|'i6 ;Ci has a projection functor onto each of the cate-
gories C; (¢ € I), taking each object and each morphism to its i-th component,
and as we might expect from our experience with products of other sorts, this is
characterizable by the following universal property:

THEOREM 6.6.5. Let (C;)ier be a family of categories, C =TI C; their prod-
uct, and P;: C — C; the projection functors. Then for every category D and
family of functors F;: D — C;, there exists a unique functor F: D — C such

that for each i € I, F; = B F. O

Exercise 6.6:9. Prove the above theorem.

Exercise 6.6:10. Show that a family of categories also has a coproduct. (First
state the universal property desired.)

I claim now that the two sorts of hom-functors, hx and hY, are pieces of a
single bifunctor. In the definition of this functor below, we use “ X "_notation for
objects and morphisms in opposite categories, though in presentations elsewhere,
you are likely to see no distinctions made.

DEFINITION 6.6.6. The bivariant hom-functor of a category C means the func-
tor

h: CP x C — Set
which is defined on objects by

h(X,Y) = C(X,Y) (X,Y €O0bQC)),

while for a morphism (p, q) € C°P(X, W) x C(Y, Z) (formed from morphisms
p € C(W, X), g€ C(Y, Z)) we define h(p, q) to carry a € C(X,Y) to qap €
C(W, Z).

Thus, each covariant hom-functor hx: C — Set can be described as 5 taking
objects Y to the objects h()?, Y), and morphisms ¢ to the morphisms h(idx, q);
and the contravariant hom-functors hY : C°°? — Set are similarly obtained by
putting Y and idy in the right-hand slot of the bifunctor h.

Exercise 6.6:11. Extend further the ideas of Exercises 6.5:5, 6.6:6 and 6.6:7, by
investigating functions in two nonnegative-integer-valued variables induced by
bifunctors FSet x FSet — FSet, FSet°® x FSet — FSet, etc..
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6.7. Category-theoretic versions of some common mathematical
notions: properties of morphisms

We have mentioned that in an abstract category, one cannot speak of “ele-
ments” of an object, hence one cannot meaningfully ask whether a given morphism
is one-to-one or onto. However, we have occasionally spoken of two objects of a
category C being “isomorphic”’. What we meant was, I hope, clear: An isomor-
phism between X and Y means an element f € C(X,Y) for which there exists a
2-sided inverse, that is, a morphism g € C(Y, X) such that fg=1idy, ¢ f =idx.
It is clear that in virtually any naturally occurring category, the invertible mor-
phisms are the things one wants to think of as the isomorphisms. (However, for
some mathematical objects other words are traditionally used: In set theory the
term is bijection, an invertible morphism in Top is called a homeomorphism, and
differential geometers call their invertible maps diffeomorphisms.) If X and Y are
isomorphic, we will as usual write X = Y. An isomorphism of an object X with
itself is called an automorphism of X; these together comprise the automorphism
group of X.

Exercise 6.7:1. Let C be a category.
(i) Show that if a morphism f € C(X, Y') has both a right inverse ¢g and a left
inverse ¢’, then these are equal. (Hence if h and k' are both two-sided inverses
of f, then h =1'.)
(ii) Show that the relation X =Y is an equivalence relation on Ob(C).

(iii) Show that isomorphic objects in a category have isomorphic automorphism
groups.

Our aim in this and the next section will be to look at various other concepts
occurring in “concrete mathematics” and ask, in each case, whether we can define a
concept for abstract categories which will yield the given concept in many concrete
cases. We cannot expect that there will always be as perfect a fit as there was for
the concept of isomorphism! But lack of perfect fit with existing concepts will not
necessarily detract from the usefulness of the concepts we find.

Let us start with the concepts of “one-to-one map” and “onto map”. The next
exercise shows that no condition can give a perfect fit in these cases.

Exercise 6.7:2. Show that a category C can have concretizations T, U, V, W:
C — Set such that for a particular morphism f in C,
T(f) is one-to-one and onto,
U(f) is one-to-one but not onto,
V(f) is onto but not one-to-one, and
W(f) is neither one-to-one nor onto.

(Suggestion: Take C = Scat, where S is the free monoid on one generator, or
C = 2cat, where 2 is the 2-element totally ordered set.)

Nevertheless, there is a category-theoretic property which in the vast majority
of naturally occurring concrete categories does correspond to one-one-ness.

DEFINITION 6.7.1. A morphism f: X — Y in a category C is called a
monomorphism if for all W € Ob(C) and all pairs of morphisms g, h € C(W, X),
one has fg = fh = g = h; equivalently, if every covariant hom-functor
hw: C — Set (W € Ob(C)) carries f to a one-to-one set map.
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Exercise 6.7:3. (i) Show that if (C, U) is a concrete category (i.e., C is a
category and U: C — Set a faithful functor) and f is a morphism in C such
that U(f) is one-to-one, then f is a monomorphism in C.

(ii) Show that if C is a small category and f a morphism in C, then f is a
monomorphism if and only if there exists a concretization functor U: C — Set
such that U(f) is one-to-one.

Exercise 6.7:4. Show that in the categories Set, Group, Monoid, Ring’,
POSet and Lattice, a morphism is one-to-one on underlying sets if and only
if it is a monomorphism. (Suggestion: look for one method that works in all
six cases.) If you are familiar with the basic definitions of general topology, also
verify this for Top.

Naturally occurring concrete categories where monomorphisms are not the one-
to-one maps are rare, but here is an example:

Exercise 6.7:5. A group G is called divisible if for every z € |G| and every
positive integer n, there exists y € |G| such that = = y".
(i) Show that in the category of divisible groups (a full subcategory of Group),
the quotient map Q — Q/Z (where Q is the additive group of rational numbers
and Z the subgroup of integers) is a monomorphism, though it is not a one-to-one
map.
(ii) Can you characterize group-theoretically the homomorphisms that are
monomorphisms in the category of divisible abelian groups? Of all divisible
groups?
(iii) Can you find a category-theoretic property equivalent in either of these
categories to being one-to-one?

If you are familiar with topological group theory, you may in the above

questions consider the category of connected abelian Lie groups and the quotient
map R — R/Z, instead of or in addition to divisible groups and Q — Q/Z.

It is natural to dualize the concept of monomorphism.

DEFINITION 6.7.2. A morphism f: X — Y in a category C is called an
epimorphism if for all Z € Ob(C) and all pairs of morphisms g, h € C(Y, Z)
one has gf = hf = g = h; equivalently, if all the contravariant hom-functors
h?: C — Set (Z € Ob(C)) carry f to one-to-one set maps; equivalently, if in
C°P the morphism f is a monomorphism.

This concept coincides with that of a surjective map in many naturally occur-
ring concrete categories; but in about equally many, it does not:

Exercise 6.7:6. (i) Show that if (C, U) is a concrete category, and f a mor-
phism in C such that U(f) is surjective, then f is an epimorphism in C.
(ii) Show that in the categories Set and Ab, the epimorphisms are precisely
the surjective morphisms.
(iii) Show that in the category Monoid, the inclusion of the free monoid on
one generator in the free group on one generator is an epimorphism, though not
surjective with respect to the underlying-set concretization. (Hint: uniqueness
of inverses.) Show similarly that in Ring', the inclusion of any integral domain
in its field of fractions is an epimorphism.
(iv) If you are familiar with elementary point-set topology, show that in the cat-
egory HausTop of Hausdorff topological spaces, the epimorphisms are precisely
the continuous maps with dense image.
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Exercise 6.7:7. (i) Determine the epimorphisms in Group.
(ii) Show the relation between this problem and Exercise 3.10:10.

(iii) Does the method you used in (i) also yield a description of the epimorphisms
in the category of finite groups? If not, can you nevertheless determine these?

Exercise 6.7:8. Let C = Ring', or, if you prefer, CommRing'.
(i) Show that for an object A of C, the following conditions are equivalent:
(a) The unique morphism Z — A is an epimorphism. (b) For each object R of
C, there is at most one morphism A — R.
(ii) Investigate the class of rings A with the above property. (Cf. Exer-
cise 3.10:10, and last sentence of Exercise 6.7:6(iii).)

Exercise 6.7:9. (i) Show that if R is a commutative ring, and f: R — S is an
epimorphism in Ring', then S is also commutative.

(Hint: Given aring A, construct a ring A’ of formal sums a+be (a, b € A)
with multiplication given by (a+ be)(c+ de) = ac+ (ad+ bc)e. For fixed r € A,
on what elements of A do the two homomorphisms A — A’ given by z +— =z
and z + (1 +re) " tz(l +re) agree?)

(ii) Show that if f: R — S is an epimorphism in CommRing’, then it is also
an epimorphism in Ring'.

(Hint: Given homomorphisms ¢, h: S — T agreeing on f(R), reduce to the

situation where the image of R in T is in the center. Then look at the ring of
endomorphisms of the additive group of T generated by left multiplications by
elements of ¢(S) and right multiplications by elements of A(S).)
(iii) Prove the converse of (ii), i.e., that if a homomorphism of commutative rings
is an epimorphism in Ring', then it is also an epimorphism in CommRing®.
In fact, show that this is an instance of a general property of epimorphisms in a
category and a subcategory.

Unlike the result of (iii), the results of (i) and (ii) are rather exceptional, as
indicated by
(iv) Show that for a commutative ring k, the inclusion of the ring of upper
triangular 2 x 2 matrices over k (matrices (a;;) such that as; = 0) in the ring
of all 2 x 2 matrices over k is an epimorphism in Ring'. Show, however, that
the identity (zy —yx)? =0 holds in the former ring but not the latter.

Thus, although the result of (i) can be formulated as saying “If f: R — §
is an epimorphism in Ring', and R satisfies the identity 2y —yz = 0, then so
does S, the corresponding statement with zy —y 2 replaced by (ry—yx)? is
false.

(v) Similarly, give an example showing that the analog of (ii) does not remain

true if Ring' and CommRing’ are replaced by an arbitrary category and any
full subcategory thereof.

(vi) Does the analog of (i) and/or (ii) hold for the category Monoid and its
subcategory AbMonoid ?

As some of the above exercises show, the property of being an epimorphism is
not a reliable equivalent of surjectivity; but they also show that it is an interesting
concept in its own right. In concrete categories, the statement that f: A — B is
an epimorphism means intuitively that the image f(A) “controls” B, in terms of
behavior under morphisms.

There is an unfortunate tendency for some categorical enthusiasts to consider
epimorphism to be the “category-theoretically correct” translation of surjective
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map, even in cases when the concepts do not agree. For instance, a standard
definition in module theory calls a module P projective if for every surjective
module homomorphism f: M — N, every homomorphism P — N factors through
f. (If you haven’t seen this concept, draw a diagram, and verify that every free
module is projective.) I have heard it claimed that one should therefore define
an object P of a general category C to be projective if and only if for every
epimorphism f: M — N of C, every morphism P — N factors through f. This
property is certainly of interest, but there is no reason to consider it to the exclusion
of others. In particular, if C is a category having some natural concretization
functor U: C — Set, there is no reason to reject the concept of projective object
defined in terms of factorization through “surjective” maps, i.e., maps f: M — N
such that U(f) is surjective. The fact that a property can be defined purely
category-theoretically does not make it automatically superior to another property.

(The right context for developing a theory of “projective objects” is probably
that of a category C given with a subfamily of morphisms S, which we wish to
put in the role of surjections. To make things behave nicely, one will presumably
want to put certain restrictions on S; for instance that it be contained in the
class of epimorphisms, as the surjective maps in concrete categories always are by
Exercise 6.7:6(i); probably also that it contain all invertible morphisms, and be
closed under composition. We would then say that an object P is “projective with
respect to the class S” if for every morphism f: M — N belonging to S, every
morphism P — N factors through f. This relative approach is taken in [99], where
a large number of properties are defined relative to a pair of classes of morphisms,
one in the role of the surjections and the other in the role of the injections.)

The use of the words “monomorphism” and “epimorphism” is itself unsettled.
In the days before category theory, the words were introduced by Bourbaki with
the meanings “injective (i.e., one-to-one) homomorphism” and “surjective (i.e.,
onto) homomorphism”. The early category-theorists brazenly gave these words
the abstract category-theoretic meanings we have been discussing. This made the
terms ambiguous in situations where the category-theoretic definition did not agree
with the old meaning. Mac Lane [18] tries to remedy the situation by restoring
“monomorphism” and “epimorphism” to their old meanings (applicable in concrete
categories) and calling the general category-theoretic concepts that we have been
discussing “monic” and “epic” morphisms, or “monos” and “epis” for short. How-
ever, the category-theoretic meanings are already well-established in many areas;
e.g., there have been many published papers dealing with epimorphisms in cate-
gories of rings. (A concept which includes the construction of the field of fractions
of a commutative domain is bound to be of interest!) My feeling is that “epi-
morphism” and “epic morphism” sound too similar to usefully carry Mac Lane’s
distinction; and that we should now stick with the category-theoretic meanings of
“epimorphism” and “monomorphism”. The phrases “surjective (or onto) homomor-
phism” and “injective (or one-to-one) homomorphism” give us more than enough
ways of referring to the concrete concepts.

In any case, when you see these words used by other authors, make sure which
meaning they are giving them.
Exercise 6.7:10. Suppose f € C(Y, Z), g € C(X,Y). Investigate implications

holding among the conditions “ f is a monomorphism”, “ ¢ is a monomorphism”,
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“ f g is a monomorphism” “ f is an epimorphism”, “g is an epimorphism” and
“f g is an epimorphism”.

A full answer would be an exact determination of which among the 64 pos-
sible combinations of truth-values for these 6 statements can hold for a pair of
morphisms, and which cannot! As a partial answer, you might determine which
of the 8 possible combinations of truth-values of the first 3 conditions can hold.
Then see whether duality allows you to deduce which combinations of the last 3
can hold, and whether, by examining when morphisms in a product of categories
are monomorphisms or epimorphisms, you can use the results you have found to
get a complete or nearly complete answer to the full 64-case question.

Exercise 6.7:11. Although in most natural categories of mathematical objects
the two obvious questions about a morphism are whether it is one-to-one and
whether it is onto, in the category RelSet we can ask additional questions such
as whether a given relation is a function.

(i) Can you find a general condition on a morphism in an arbitrary category,
which, for a morphisms f: X — Y in RelSet, is equivalent to being a set-
theoretic function X — Y 7

(ii) Examine other properties of relations, and whether they can be character-
ized by category-theoretic properties in RelSet. For instance, which members of
RelSet(X, X) represent partial orderings on X ? Given f, g € RelSet(X,Y),
how can one determine whether f C g as relations? Can one construct from the
category-structure of RelSet the contravariant functor R: RelSet®® — RelSet
taking each relation f € RelSet(X,Y) to the opposite relation, R(f) €
RelSet(Y, X)?

(iii) Can you find a necessary and sufficient condition on a subset f C X x Y
for it to be, when regarded as morphism in RelSet, a monomorphism, or an
epimorphism in that category? Left or right invertible?

Because of the way we used duality in getting from the concept of monomor-
phism to that of epimorphism, both of them refer to one-one-ness of the images of
a morphism under certain hom-functors. Let us look at the conditions that these
same images be onto:

Exercise 6.7:12. (i) Given f € C(X,Y), show that the following conditions
are equivalent:
(a) For all Z € Ob(C), hz(f) is surjective.
(b) f isright invertible; i.e., there exists g € C(Y, X) such that fg =idy.
(¢) For every covariant functor F': C — Set, F(f) is surjective.
(d) For every contravariant functor F': C — Set, F(f) is injective.
(e) For every category D and covariant functor F': C — D, F(f) is an
epimorphism.
(f) For every category D and contravariant functor F': C — D, F(f) is
a monomorphism.
(For partial credit, simply establish the equivalence of (a) and (b). Hint:
idy € hy (Y))
(ii) State the result which follows from the result of (i) by duality, indicating
briefly how one deduces this dual result from that of (i).

Let us look at what condition (b) of the above exercise means in familiar cat-
egories; in other words, what it means to have morphisms f and ¢ satisfying a
one-sided inverse relation,

(6.7.3) fg=idy (feC(X,Y), geC(Y, X)).
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First take C = Set. Then we see that if (6.7.3) holds, g must be one-to-one (if two
elements of Y fell together under g, there would be no way for f to “separate”
them); so let us think of g as embedding a copy of Y in X. The map f sends X to
Y so as to take each element g(y) back to y, while acting in an unspecified way on
elements of X that are not in the image of g. Thus the composite g f € C(X, X)
leaves elements of the image of ¢ fixed, and carries all elements not in that image
into that image; i.e., it “retracts” X onto the embedded copy of Y. Hence in an
arbitrary category, a pair of morphisms satisfying (6.7.3) is called a retraction of
the object X onto the object Y. In this situation Y is said to be a retract of X
(via the morphisms f and g).

Exercise 6.7:13. (i) Show that a morphism in Set is left invertible if and only
if it is one-to-one, with the exception of certain cases involving () (which you
should show are indeed exceptions) and right invertible if and only it is onto
(without exceptions).

(ii) Show that X is a retract of Y in the category Ab of abelian groups (or
more generally, the category R-Mod of left R-modules) if and ounly if X is
isomorphic to a direct summand in Y.

(iii) Give examples of a morphism in Ab that is surjective, but not right invert-
ible, and a morphism that is one-to-one, but not left invertible.

(iv) Characterize retractions in Group in terms of group-theoretic construc-
tions. Do they all arise from direct-product decompositions, as in Ab?

Combining part (i) of the above exercise with Exercise 6.7:3(1) and Exer-
cise 6.7:6(iii), we see that for morphisms in any concrete category, one has

left invertible = one-to-one = monomorphism,
right invertible = onto = epimorphism.

On the other hand, part (iii) of the above exercise and similar examples given in
earlier exercises show that none of these implications are reversible.

Exercise 6.7:14. Give an example of a morphism in some category which is both
an epimorphism and a monomorphism, but not an isomorphism. Investigate
what combinations of the properties “epimorphism”, “monomorphism”, “left in-
vertible” and “right invertible” force a morphism to be an isomorphism.

(Warning in connection with the above discussion and exercises: The meanings
of the terms “left” and “right” invertible become reversed when category-theorists
— or other mathematicians — compose their maps in the opposite sense to the one
we are using!)

We have noted that in the situation of (6.7.3) the composite e = g f is an
idempotent endomorphism of the object X, whose image, in concrete situations,
is a copy of the retract Y. The next exercise establishes two category-theoretic
versions of the idea that this idempotent morphism “determines” the structure of
the retract Y of X.

Exercise 6.7:15. (i) Let X,Y,Y’ € Ob(C), and suppose that f € C(X,Y),
f/ € C(X,Y’) have right inverses g, ¢’ respectively. Show that g f = ¢'f =
Yy >y’

(i) Let C be a category, and e € C(X, X) be an idempotent morphism:
e? = e. Show that C may be embedded as a full subcategory in a category D,
unique up to isomorphism, with one additional object Y (i.e., with Ob(D) =
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Ob(C)U{Y}) and such that there exist morphisms f € D(X,Y), g € D(Y, X)
satisfying

fg=1idy (in DY,Y)), g¢gf =e (in DX, X) = C(X, X)).

Returning to our search for conditions which correspond to familiar mathe-
matical concepts in many cases, let us ask whether we can define a concept of a
subobject of an object X in a category C.

If by this we mean a criterion telling which objects of a category such as Set or
Group are actually contained in which other objects, the answer is “certainly not”:
There can be no way to distinguish an object that is a subobject of another from one
that is simply isomorphic to such a subobject. However, in particular categories
of mathematical objects, we may well be able to say when a given morphism is
an embedding, i.e., corresponds to an isomorphism of its domain object with a
subobject of its codomain. For instance, in Set, Group, Monoid, Ring',
Lattice and similar categories, the embeddings are the monomorphisms. In these
cases, and more generally, whenever we know which morphisms we want to regard
as embeddings, we can recover the partially ordered set of subobjects of X as
equivalence classes of such morphisms:

Exercise 6.7:16. Let C be a category, and suppose we are given a subcategory
Cemp of C whose object-set consists of all the objects of C, and whose set of
morphisms is contained in the set of monomorphisms of C. The morphisms of
Ceomb are the morphisms of C that we intend to think of as embeddings. (But
you may not assume anything about Ceuy, except the conditions stated above.)
For any object X of C, let Embyx denote the category whose objects are pairs
(Y, f), where Y € Ob(C) and f € Cemp(Y, X), and where a morphism from
(Y, f) to (Z, g) means a morphism a:Y — Z of C such that f=ga.

(i) Show that each hom-set Embx (U, V) has at most one element. De-
duce that Emby is of the form Emb(X)cat for some (possibly large) preorder
Emb(X).

(ii) Let us call the partially ordered set constructed from the preorder Emb(X)
as in Proposition 4.2.2 “Sub(X)”. Show that if C is one of Set, Group, Ring
or Lattice, and we take Cgpp, to have for its morphisms all the monomorphisms
of C, then Sub(X) is isomorphic to the partially ordered set of subsets, sub-
groups, etc., of X.

(iii) Let X be a set, in general infinite, and S the monoid of set maps of X into
itself. Form the category Scat, and take (Scat)emp to have the monomorphisms
of Scay for its morphisms. Calling the one object of Scat “07, describe the
partially ordered set Sub(0).

The categories of algebraic objects mentioned so far in discussing one-one-ness
have had the property that every one-to-one morphism gives an isomorphism of its
domain with a subobject of its codomain. An example of a category for which this
is not true is POSet. For instance if P and @ are finite partially ordered sets
having the same underlying set, but the order-relation on @ is stronger than that
of P, then the identity map of the underlying set is a one-to-one isotone map from
P to @, but some elements of @ will satisfy order-relations that they don’t satisfy
in P; so we cannot regard P as a subobject of () with the induced ordering. This
leads to the questions
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Exercise 6.7:17. (i) Suppose the construction of the preceding exercise is ap-

plied with C the category POSet, and Cecyp(X,Y) the set of all monomor-
phisms in C(X,Y). For X € Ob(POSet), describe the partially ordered set
Sub(X).
(ii) Can you find a category-theoretic property characterizing those morphisms
of POSet which are “genuine” embeddings, i.e., correspond to isomorphisms of
their domain with subsets of their codomain, partially ordered under the induced
ordering?

6.8. More categorical versions of common mathematical notions:
special objects

I shall start this section with some “trivialities”.

In many of the classes of structures we have dealt with, there were one, or
sometimes two objects that one would call the “trivial” objects: the one-element
group; the one-element set and also the empty set; the one-element lattice and
likewise the empty lattice. The following definition abstracts the common properties
of these objects.

DEFINITION 6.8.1. An initial object in a category C means an object I such
that for every X € Ob(C), C(I, X) has exactly one element.

A terminal object in a category C means an object T such that for every
X € Ob(C), C(X,T) has exactly one element.

An object that is both initial and terminal is often called a zero object.

Thus, in Set, the empty set is the unique initial object, while any one-element
set is a terminal object. In Group, a one-element group is both initial and
terminal, hence is a zero object. The categories Lattice, POSet, Top and
Semigroup are like Set in this respect, while TopP' and Monoid are like
Group. In Ring!, the initial object is Z, though we would usually not call it
“trivial”; the terminal object is the one-element ring with 1 = 0 (which some
people do not call a ring).

A category need not have an initial or terminal object: The category of
nonempty sets, or nonempty partially ordered sets, or nonempty lattices, or fi-
nite rings, has no initial object; POSet. has no terminal object, nor does the
category of nonzero rings (rings in which 1 # 0). If P is the partially ordered set
of the integers, then P.,¢ has neither an initial nor a terminal object. Terminal
objects are also called “final” objects, and I may sometimes slip and use that word
in class.

LEMMA 6.8.2. If I, I' are two initial objects in a category C, then they are
isomorphic, via a unique isomorphism. Similarly, any two terminal objects are
isomorphic via a unique isomorphism. (I

Exercise 6.8:1. Prove Lemma 6.8.2.

Exercise 6.8:2. Suppose C is a category with an initial object I and a terminal
object T, and suppose f is a morphism with domain I or 7. We would like to
know whether f will always, sometimes, or almost never be an epimorphism or
a monomorphism. Here by “almost never” I mean “only if it is an isomorphism”,
while by “sometimes”, I mean “not for all choices of C and f, but in at least
some cases other than when f is an isomorphism”.
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(i) For each of the four combinations of one of the two distinguished objects
I and T, and one of the two conditions “epimorphism” or “monomorphism”,
answer the above question, i.e., prove the answer if it is “always” or “almost
never”, while if it is “sometimes”, give the two examples needed to establish this.

(ii) State the corresponding results for morphisms with codomain I and T,
noting briefly how the results of part (i) can be used to get these.

Exercise 6.8:3. Consider the following conditions on a category C :

(a) C has a zero object (an object that is both initial and terminal).
(b) It is possible to choose in each hom-set C(X, Y) a morphism Ox y in
such a way that for all X, Y, Z € Ob(C) and f € C(X,Y), g€ C(Y, 2)
one has OY,Zf = OX,Z = ng,y.
(c¢) It is possible to choose in each hom-set C(X,Y) a morphism Ox y
such that for all X, Y, Z € Ob(C) one has Oy, z Ox, y = Ox, z.
(d) For all X, Y € Ob(C), C(X,Y) #0.

(i) Show that (a) = (b) = (¢) = (d), but that none of these implications

is reversible.

(ii) Show that if C has either an initial or a terminal object, then the first and
third implications are reversible, but not, in general, the second.

(iii) Show that if C has an initial object and a terminal object (as the majority
of naturally occurring categories do), then (d) = (a), so that all four conditions
are equivalent.

Exercise 6.8:4. If C is a category with a terminal object T, let CP' denote the
category whose objects are pairs (X, p), where X € Ob(C), p € C(T, X), and
where CP'((X, p), (Y, q)) ={f € C(X,Y) | fp=q}.

(i) Verify that this defines a category, and that CP* will have a zero object.
(i) Show that if C = Top, this gives the category we earlier named Top®".
(iii) Show that if C already had a zero object, then CP! is isomorphic to C.

Exercise 6.8:5. If C is a category, call an object A of C quasi-initial if it satisfies
the condition of Exercise 6.7:8(1)(b). Generalize the result “(a) <= (b)” of that
exercise to a characterization of quasi-initial objects in categories with initial
objects.

What about the concept of free object? The definition of a free group F on
a set X refers to elements of groups, hence the generalization should apply to a
concrete category (C, U). You should verify that when C = Group and U is
the underlying set functor, the following definition reduces to the usual definition
of free group.

DEFINITION 6.8.3. If C is a category, U: C — Set a faithful functor, and X
a set, then a free object of C on X with respect to the concretization U will mean
a pair (Fx, u), where Fx € Ob(C), u € Set(X, U(Fx)), and this pair has the
universal property that for any pair (G, v) with G € Ob(C), v € Set(X, U(Q)),
there is a unique morphism h € C(Fx, G) such that v =U(h)u.

Loosely, we often call the object Fx the free object, and u the associated
universal map.

Exercise 6.8:6. Let V' denote the functor associating to every group G the set
|G|? of ordered pairs (z, y) of elements of G, and W the functor associating
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to G the set of “unordered pairs” {z, y} of elements of G (where = = y is
allowed).

(i) State how these functors should be defined on morphisms. (I don’t ask you
to verify the fairly obvious fact that these descriptions do give morphisms.) Show
that they are both faithful.

(ii) Show that for any set X, there exists a free group with respect to the
functor V, and describe this group.

(iii) Show that there do not in general exist free groups with respect to W.

Exercise 6.8:7. Let U: Ring' — Set be the functor associating to every ring R
the set of 2 x 2 invertible matrices over R. Show that U is faithful. Does there
exist for every set X a free ring Rx on X with respect to U?

The next exercise shows why the property of being a monomorphism charac-
terizes the one-to-one maps in most of the concrete categories we know — or more
precisely, shows that this characterization follows from another property we have
noted in these categories.

Exercise 6.8:8. Let (C, U) be a concrete category. Show that if there exists a
free object on a one-element set with respect to U, then a morphism f of C is
a monomorphism if and only if U(f) is one-to-one.

We could go further into the study of free objects, proving, for instance, that
they are unique up to isomorphism when they exist, and that when C has free
objects on all sets, the free-object construction gives a functor Set — C. Some
of this will be done in Exercise 6.9:9 later in this chapter, but for the most part
we shall get such results in the next chapter, as part of a theory embracing wide
classes of universal constructions.

Let us turn to another pair of constructions that we have seen in many cat-
egories (including Cat itself), those of product and coproduct. No concretization
or other additional structure is needed to translate these concepts into category-
theoretic terms.

DEFINITION 6.8.4. Let C be a category, I a set, and (X;)icr a family of
objects of C.

A product of this family in C means a pair (P, (p;)icr), where P € Ob(C)
and for each i € I, p; € C(P, X;), having the universal property that for any
pair (Y, (yi)icr) (Y € Ob(C), y; € C(Y, X;)) there exists a unique morphism
r € C(Y, P) such that y; =p;r (i €1I).

Likewise, a coproduct of the family (X;)ier means a pair (Q, (¢;)icr), where
Q € Ob(C) and for each i € I, q; € C(X;, Q), having the universal property
that for any pair (Y, (yi)ier) (Y € Ob(C), y; € C(X;,Y)) there exists a unique
morphism r € C(Q,Y) such that y; =rq; (i €I).

Loosely, we call P and @ the product and coproduct of the objects X;, the
pi: P — X, the projection maps, and the ¢;: X; — ) the coprojection maps.
(The term injection is used by some authors instead of coprojection.)

The category C is said to have finite products if every finite family of objects of
C has a product in C, and to have small products (often simply “to have products”)
if every family of objects of C indexed by a small set has a product; and similarly
for finite and small coproducts.
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Standard notations for product and coproduct objects are P = TI, crXi and
Q= J—l-ieIXi' For a product of finitely many objects one also writes Xgx---x X, _1.
There is no analogous standard notation for coproducts of finitely many objects; we
used “*” as the operation-symbol in Chapter 3, following group-theorists’ notation
for “free products”. Omne sometimes sees + or @, based on module-theoretic
notation. Still another notation that is used, and which I will follow from now on
in these notes, is Xgl ... U X, _1.
Observe that a product of the empty family is equivalent to a terminal object,
while a coproduct of the empty family is equivalent to an initial object.

Exercise 6.8:9. If P is a partially ordered set, what does it mean for a family of
objects of Peat to have a product? A coproduct?

Exercise 6.8:10. (i) Suppose we are given a family of families of objects in a
category C, ((Xyj)ier,)jes, such that for each j, TI, X;; exists, and such that
h J

we can also find a product of these product objects, P = ﬂjeJ(Wz‘te X;j). Show
that P will be a product of the family (Xjj;)icr,, jes-

(ii) Deduce that if a category has products of pairs of objects, it has products
of all finite nonempty families of objects.
(iii) Consider the case of (i) where J = {0,1}, Iy = 0, and I; = {0}. What
form do the products described there take, and what does the conclusion tell us?
Also state the dual of the result you get.

Exercise 6.8:11. (i) Let X be a set (in general infinite) and S the monoid of
maps of X into itself. When, if ever, does the category Scat have products of
pairs of objects? (Of course, there is only one ordered pair of objects, and only
one object to serve as their product, so the question comes down to whether two
morphisms p; and ps can be found having appropriate properties.)

(ii) Is there, in some sense, a “universal” example of a monoid S such that Scat
has products of pairs of objects?

Exercise 6.8:12. Let k£ be a field. Show that one can define a category C
whose objects are the k-vector-spaces, and such that for vector spaces U and
V, C(U, V) is the set of equivalence classes of linear maps U — V under the
equivalence relation that makes f ~ ¢ if and only if the linear map f — g has
finite rank. Show that in this category, finite families of objects have products
and coproducts, but infinite families in general have neither.

We saw in Exercise 6.7:13(i) that in Ab and R-Mod, any retraction of an
object arises from a decomposition as a direct sum, which in those categories is
both a product and coproduct. The next exercise examines the relation between
retractions, products and coproducts in general.

Exercise 6.8:13. (i) Show that if C is a category with a zero object, then for
any objects A and B of C, if the product Ax B exists, then A can be identified
with a retract of this product, and if the coproduct ALB exists, then A can be
identified with a retract of this coproduct.

(ii) Can you find a condition weaker than the existence of a zero object under
which these conclusions hold?

Though we saw in (i) that in a category with a zero object, a decomposition
of an object as a product or a coproduct leads to a retraction, it is not in general
true that every retraction comes from a product decomposition, nor that every
retraction comes from a coproduct decomposition. Indeed,
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(iii) Let A and B be nontrivial objects of Group. Thus, by part (i) above, the
subgroup A C AUB is a retract. Show, however, that it is not a factor in any
product decomposition of that group. Likewise, show that A C A x B, though a
retract, is not a factor in any coproduct decomposition of that group.

Some related facts are noted in the next exercise. (Part (iii) thereof requires
some group-theoretic expertise, or some ingenuity.)

Exercise 6.8:14. (i) Show that if A is the free group or free abelian group on
a generating set X, and Y is a subset of X, then the subgroup of A generated
by Y is a retract of A.

(ii) For the case of a free abelian group A, show, conversely, that if B a retract
of A, then A has a basis X such that B is the subgroup generated by a subset
of X.

(iii) On the other hand, show that if A is the free group on two generators z
and y, then A has cyclic subgroups which are retracts, but are not generated by
any subset of any free generating set for A. (Suggestion: try the cyclic subgroup
generated by z2y3, or by z?yxz~ly~1)

The next exercise shows that when one requires even large families of objects
to have products, one’s categories tend to become degenerate.

Exercise 6.8:15. Let C be a category and « a cardinal such that Ob(C) and all
morphism sets C(X, Y) have cardinality < « (e.g., the cardinality of a universe
with respect to which C is legitimate).

(i) Show that if every family of objects of C indexed by a set of cardinality
< « has a product in C, then C has the form P,,;, where P is a preorder
whose associated partially ordered set P/as is a complete lattice.

(ii) Deduce that in this case every family of objects of C (indexed by any set
whatsoever) has a product and a coproduct.

It is an easy fallacy to say, “since product is a category-theoretic notion, func-
tors must respect products.” Rather

Exercise 6.8:16. Find an example of categories C and D having finite products,
and a functor C — D which does not respect such products.

On the other hand:

Exercise 6.8:17. Show that if (C, U) is a concrete category, and there exists a
free object on one generator with respect to U, then U respects all products
which exist in C. (Cf. Exercise 6.8:8.)

Thus, in most of the concrete categories we have been interested in, the un-
derlying set of a product object is the direct product of the underlying sets of the
given objects. However, there is a well-known example for which this fails:

Exercise 6.8:18. A torsion group (also called a “periodic group”) is a group all
of whose elements are of finite order. Let TorAb be the category of all torsion
abelian groups.

(i) Show that a product in Ab of an infinite family of torsion abelian groups
is not in general a torsion group.

(ii) Show, however, that the category TorAb has small products.

(iii) Deduce that the underlying set functor TorAb — Set does not respect
products.
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Exercise 6.8:19. Does the category TorGroup of all torsion groups have small
products?

Exercise 6.8:20. Consider a category C having finite products. When we spoke
of making the product construction into a functor (in motivating the concept of
a functor of two variables), the domain category was to be the set of pairs of
objects of C. Clearly we can do the same using I-tuples for any fized finite set
I. But what if we look at the product construction as simultaneously applying
to I-tuples of objects as I ranges over all finite index sets?

To make this question precise, let Ob(C)™ denote the class of all families
(X;)ier such that I is a finite set (varying from family to family) and the X; are
objects of C. Can you make this the object-set of a category CT in a natural way
(which allows morphisms between families indexed by sets of possibly different
sizes), so that the product construction becomes a functor C* — C? If so, will

the same category CT serve as domain for the coproduct construction, assuming
C has finite coproducts?

For future reference, let us make

DEFINITION 6.8.5. Let I be a set (for instance, a natural number or other
cardinal), and C a category having I-fold products. If X is an object of C, then
when the contrary is not stated, X! will denote the I-fold product of X with itself,
which we may call the “I-th power of X 7. Likewise, if F' is a functor from another
category D to C, then when the contrary is not stated, F' will denote the functor
taking each object Y of D to the object F(Y)! of C, and behaving in the obvious
way on morphisms.

(Note that if F': C — C is an endofunctor of a category C, we might want to
write F" for the n-fold composite of F' with itself. In such a case we would have
to make an explicit exception to the above convention.)

What about category-theoretic versions of the constructions of kernel and cok-
ernel?

We saw that these constructions were specific to fairly limited kinds of mathe-
matical objects, such as groups and rings, but that a pair of concepts which embrace
them but are much more versatile are those of equalizer and coequalizer. The latter
concepts are abstracted in

DEFINITION 6.8.6. Let C be a category, X, Y € Ob(C), and f, g € C(X,Y).

Then an equalizer of f and g means a pair (K, k), where K is an object,
and k: K — X a morphism which satisfies fk = gk, and is universal for this
property, in the sense that for any pair (W, w) with W an object and w: W — X
a morphism such that fw = gw, there exists a unique morphism h: W — K such
that w =kh.

Likewise, a coequalizer of f and g means a pair (C, ¢) where C is an object,
and c:'Y — C a morphism which satisfies ¢ f = cg, and is universal for this
property, in the sense that for any pair (Z, z) with Z an object and z: Y — Z
a morphism such that z f = z g, there exists a unique morphism h: C — Z such
that z = hec.

Loosely, K and C are called the equalizer and coequalizer objects, and k, ¢ the
equalizer and coequalizer morphisms, or the canonical morphisms associated with
the equalizer and coequalizer objects. We say that C has equalizers (respectively
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coequalizers) if all pairs of morphisms between pairs of objects of C have equalizers
(coequalizers).

It turns out that in familiar categories, the concept of coequalizer yields a better
approximation to that of surjective map than does the concept of epimorphism:

Exercise 6.8:21. (i) Show that in each of the categories Group, Ringl7 Set,
Monoid, a morphism out of an object Y is surjective on underlying sets if and
only if it is a coequalizer morphism of some pair of morphisms from an object X
into Y.

(ii) Is the same true in POSet ? In the category of finite groups?
(iii) In the categories considered in (i) (and optionally, those considered in (ii))

investigate whether, likewise, the condition of being an equalizer is equivalent to
one-one-ness.

(iv) Investigate what implications hold in a general category between the con-
ditions of being an epimorphism, being right invertible, and being a coequalizer
map.

Exercise 6.8:22. Let f, g € Set(X, Y) be morphisms, and (C, ¢) their coequal-
izer.

(i) Show that card(X) + card(C) > card(Y). If you wish, assume X and Y
are finite.

(ii) Can one establish some similar relation between the cardinalities of X, of
Y, and of the equalizer of f and g in Set?

(iii) What can be said of the corresponding questions in Ab? In Group?

In categories such as Group, Ab and Monoid which have a zero object,
concepts of kernel and cokernel of a morphism f: X — Y may also be defined,
namely as the equalizer and coequalizer of f with the zero morphism X — Y (see
Exercise 6.8:3).

We turn next to a pair of constructions which we have not discussed before,
but which are related both to products and coproducts and to equalizers and co-
equalizers.

DEFINITION 6.8.7. Given objects X1, Xo, Xs of a category C, and mor-
phisms f1: X1 — X3, fo: Xo — X3 (diagram below), a pullback of the pair
of morphisms fi1, fo means a 3-tuple (P, p1, p2), where P is an object, and
p1: P — Xy, po: P — Xo are morphisms satisfying fip1 = fap2, and which
is universal for this property, in the sense that any 3-tuple (Y, y1, y2), with
y1: Y = Xy, yo: Y — Xy satisfying fry1 = foyo, is induced by a unique mor-

phism h:Y — P.
Y\

P X,
yat
6.8.8
(6.8.8) . f
X, f2 X3
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Dually, for objects Xo, X1, X2 and morphisms ¢g1: Xo — X1, ¢2: Xo —
Xo, a pushout of g1 and go means a 3-tuple (Q, q1, q2), where q1: X1 — @,
q2: Xo — Q satisfy g1 g1 = q2 g2, and which is universal for this property in the
sense shown below:

Xo X4
g2 q1
(6.8.9)
X, q2

\Q\\\
Y

As in the case of products and coproducts, the universal morphisms py, p2 from
a pullback object P are called its projection morphisms to the X;, and the universal
morphisms qi, g2 to a pushout object (Q are called its coprojection morphisms.

A commuting square in C is called a pullback diagram (respectively, a pushout
diagram) if the upper left-hand (lower right-hand) object is a pullback (pushout)
of the remainder of the diagram. We say that a category C has pullbacks if every
diagram of objects and morphisms X1, Xo, X3, f1, fo asin (6.8.8) has a pullback

P, and that C has pushouts if every diagram of objects and morphisms Xy, Xi,
Xo, g1, g2 as in (6.8.9) has a pushout Q.

The next exercise shows how to construct these creatures.

Exercise 6.8:23. (i) Show that if a category C has finite products and has
equalizers, then it has pullbacks. Namely, for every system of objects and mor-
phisms, X1, X5, X3, f1, fo asin the first part of the above definition, construct
a pullback as the equalizer of a certain pair of morphisms X; x Xy — X3.

(ii) State the dual result for pushouts (including the statement of how the
pushout may be obtained).

To get a picture of pullbacks in Set, note that any set map f: X — Y can
be regarded as a decomposition of the set X into subsets f~!(y), indexed by the
elements y € Y. When one looks at f this way, one calls X a set fibered by Y, and
calls f~1(y) the fiber of X at y € Y. Now in a pullback situation (6.8.8) in Set,
we see that from two sets X; and X5, each fibered by X3, we obtain a third set
P fibered by X3, with maps into the first two. From the preceding exercise one
can verify that the fiber of P at each y € X3 is the direct product of the fibers of
X7 and of X5 at y. Consequently, pullbacks are sometimes called fibered products,
whether or not one is working in a concrete category. The next exercise shows
that “fibered products” can be regarded as products in an appropriate category of
“fibered objects”.

Exercise 6.8:24. Given a category C and any Z € Ob(C), let Cz denote the
category of “objects of C fibered by Z”, that is, the category having for objects
all pairs (X, f) where X € Ob(C) and f € C(X, Z), and having for morphisms
(X, f) = (Y, g) all members of C(X,Y) making commuting triangles with the
morphisms f and g into Z.

Show that a pullback (6.8.8) in C is equivalent to a product of the objects

(X1, f1), (X2, f2) in Cx,.
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The pushout @ of a diagram (6.8.9) is also often called suggestively the “co-
product of X; and X5 with amalgamation of X,”, especially in concrete situations
where the morphisms f; and fy are embeddings. It also has names specific to par-
ticular fields: In topology, the @ of (6.8.9) is the space gotten by “gluing together”
the spaces X7 and X» along a common image of Xy. In commutative ring the-
ory, where the Xy, X; and X5 of (6.8.9) might be denoted K, R and S, the
pushout @ is written R®g S, and called the tensor product of R and S over K
as K-algebras.

In the spirit of Chapter 3, you might do

Exercise 6.8:25. (i) Show by a generators-and-relations argument that the cat-
egory Group has pushouts.

(ii) Obtain a normal form or other explicit description for the pushout, in the
category of groups, of one-to-one group homomorphisms f;: Gy — G; and
fo: Gg