
Chapter 7. Universal constructions in category-theoretic terms.

The language of category theory has enabled us to give general definitions of ‘‘free object’’,
‘‘product’’, ‘‘coproduct’’, ‘‘equalizer’’ and various other universal constructions. It is clear that
these different constructions have many properties in common. Let us now look for ways to unify
them, so that we will be able to prove results about them by general arguments, rather than
piecemeal.

7.1. Universality in terms of initial and terminal objects. In all the above constructions, we
deal with mathematical entities with certain ‘‘extra’’ structure, and seek one entity E with such
structure that is ‘‘universal’’. This suggests that we make the class of entities with such extra
structure into a category, and examine the universal property of E there.

For instance, the free group on three generators is universal among systems (G, a, b, c) where
G is a group, and a, b, c ∈ |G | . If we define a category whose objects are these systems
(G, a, b, c), and where a morphism (G, a, b, c) → (G ′ , a ′ , b ′ , c ′ ) means a group homomorphism
f : G → G ′ such that f (a) = a ′ , f (b) = b ′ , f (c) = c ′ , we see that the universal property of the
free group (F, x, y, z) says that it has a unique morphism into every object of the category – in
other words, that it is an initial object.

Similarly, given a group G, the abelianization of G is universal among pairs (A, f ) where
A is an abelian group, and f a group homomorphism G → A. If we define a morphism from one
such pair (A, f ) to another such pair (B, g) to mean a group homomorphism m : A → B such
that mf = g, we see that the definition of the abelianization of G says that it is initial in this
category.

Finally, a group, a ring, a lattice, etc., with a presentation X ! R clearly means an initial
object in the category whose objects are groups, etc., with specified X-tuples of elements satisfying
the system of equations R, and whose morphisms are homomorphisms respecting these
distinguished X-tuples of elements.

The above were examples of what we named ‘‘left universal’’ properties in §3.8. Let us look at
one ‘‘right universal’’ property, that of a product of two objects A and B in a category C . We
see that the relevant auxiliary category should have for objects all 3-tuples (X, a, b), where
X ∈ Ob(C), a ∈ C(X, A) b ∈ C(X, B), and for morphisms (X, a, b) → (Y, a ′ , b ′ ) all morphisms
X → Y in C making commuting triangles with the maps into A and B. A direct product of A
and B in C is seen to be a terminal object (P, p1 , p2) in this category.

You can likewise easily translate the universal properties of pushouts, pullbacks and coproducts
in arbitrary categories to those of initial or terminal objects in appropriately defined auxiliary
categories.

So all the universal properties we have considered reduce to those of being an initial or a
terminal object in an appropriate category. This view of universal constructions is emphasized by
Lang [31, p. 57 et seq.], who gives these two types of objects the more poetic designations
‘‘universally repelling’’ and ‘‘universally attracting’’. Since a terminal object in C is an initial
object in Cop, all these universal properties ultimately reduce to that of initial objects!

Lemma 6.8.2 tells us that initial (and hence terminal) objects are unique up to unique
isomorphism. This gives us, in one fell swoop, uniqueness up to canonical isomorphism for free
groups, abelianizations, products, coproducts, pushouts, pullbacks, objects presented by generators
and relations, and all the other universal constructions we have considered. The canonical
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isomorphisms that these constructions are ‘‘unique up to’’ correspond to the unique morphisms
between any two initial objects of a category. I.e., given two realizations of one of our universal
constructions, these isomorphisms will be the unique morphisms from each to the other that
preserve the extra structure.

We will look at questions of existence of initial objects in §7.10.

7.2. Representable functors, and Yoneda’s Lemma. The above approach to universal
constructions is impressive for its simplicity; but we would also like to relate these universal
objects to the original categories in question: Though the free group on an S-tuple of generators is
initial in the category of groups given with S-tuples of elements, and the kernel of a group
homomorphism f : G → H is terminal in the category of groups L given with homomorphisms
L → G having trivial composite with f, we also want to understand these constructions in relation
to the category Group .

Note that the objects of the various auxiliary categories we have used can be written as pairs
(X, a), where X is an object of the original category C , and a is some additional structure on
X. If we write F(X ) for the set of all possible values of this additional structure (e.g., in the case
that leads to the free group on a set S, the set of all S-tuples of elements of X ), we find that F
is in general a functor, covariant or contravariant, from C to Set . The condition characterizing a
left universal pair (R, u) is that for every X ∈ Ob(C) and x ∈ F(X ), there should be a unique
morphism f : R → X such that F( f )(u) = x. This condition – which we see requires a covariant
F so that the latter equation will make sense – is equivalent to saying that for each object X, the
set of morphisms f ∈ C(R, X ) is sent bijectively to the set of elements of F(X ) by the map
f → F( f )(u). The bijectivity of this correspondence for each X leads to an isomorphism between
the functor C(R, –), i.e., hR : C → Set , and the given functor F : C → Set . Thus, the universal
property of R can be formulated as a statement of this isomorphism:

Theorem 7.2.1. Let C be a category, and F : C → Set a functor. Then the following data are
equivalent:

(i) An object R ∈ Ob(C) and an element u ∈ F(R) having the universal property that for all
X ∈ Ob(C) and all x ∈ F(X ), there exists a unique f ∈ C(R, X ) such that F( f )(u) = x.

(ii) An initial object (R, u) in the category whose objects are all ordered pairs (X, x) with
X ∈ Ob(C) and x ∈ F(X ), and whose morphisms are morphisms among the first components of
these pairs which respect the second components.

(iii) An object R ∈ Ob(C) and an isomorphism of functors i : hR =∼ F in SetC.

Namely, given (R, u) as in (i) or (ii), one obtains an isomorphism i as in (iii) by letting
i(X ) take f ∈ hR (X ) to F( f )(u) ∈ F(X ), while in the reverse direction, one obtains u from i
as i(R )(idR ).

Sketch of Proof. The equivalence of the structures described in (i) and (ii) is immediate.
Concerning our description of how to pass from these structures to that of (iii), it is a

straightforward verification that for any u ∈ F(R), the map i described there gives a morphism of
functors hR → F. That this is an isomorphism is then the content of the universal property of (i).
In the opposite direction, given an isomorphism i as in (iii), if u is defined as indicated, then the
universal property of (i) is just a restatement of the bijectivity of the maps i(X ) : hR (X ) → F(X ).

Finally, it is easy to check that if one goes as above from universal element to isomorphism of
functors and back, one recovers the original element, and if one goes from isomorphism to

214 Chapter 7. Universal constructions.



universal element and back, one recovers the original isomorphism. 1

Exercise 7.2:1. Write out the ‘‘straightforward verifications’’ referred to in the second sentence of
the above proof, and those implied in the phrases ‘‘is then the content of’’ and ‘‘is just a
restatement of’’ in the next two sentences.

Dualizing (i.e., applying Theorem 7.2.1 to Cop and stating the resulting assertion in terms of
C), we get

Theorem 7.2.2. Let C be a category, and F a contravariant functor from C to Set (i.e., a
functor Cop → Set). Then the following data are equivalent:

(i) An object R ∈ Ob(C) and an element u ∈ F(R) with the universal property that for any
X ∈ Ob(C) and x ∈ F(X ), there exists a unique f ∈ C(X, R) such that F( f )(u) = x.

(ii) A terminal object (R, u) in the category whose objects are all ordered pairs (X, x) with
X ∈ Ob(C) and x ∈ F(X ), and whose morphisms are morphisms among the first components of
these pairs which respect the second components.

(iii) An object R ∈ Ob(C) and an isomorphism of contravariant functors i : hR =∼ F in SetCop
.

Namely, given (R, u) as in (i) or (ii), one obtains an isomorphism i as in (iii) by letting
i(X ) take f ∈ hR (X ) to F( f )(u) ∈ F(X ), while in the reverse direction, one obtains u from i
as i(R )(idR ). 1

Note that in Theorem 7.2.1(ii), the last phrase, ‘‘which respect second components’’, meant that
for a morphism f : X → Y to be considered a morphism (X, x) → (Y, y), we required F( f )(x) =
y, while in Theorem 7.2.2(ii), the corresponding condition is F( f )( y) = x.

We remark that the auxiliary categories used in point (ii) of the above two theorems are comma
categories, (1 ↓ F ) (Exercise 6.8:26(iii)).

The properties described above have names:

Definition 7.2.3. Let C be a category.
A covariant functor F : C → Set is said to be representable if it is isomorphic to a covariant

hom-functor hR for some R ∈ Ob(C).
A contravariant functor F : Cop → Set is likewise said to be representable if it is isomorphic

to a contravariant hom-functor hR for some R ∈ Ob(C).
In each case, R is called the representing object for F, and if i is the given isomorphism of

functors, then i(R )(idR ) is called the associated universal element of F(R).

So from this point of view, universal problems of the sort considered above in a category C
are questions of the representability of certain set-valued functors on C . Let us examine a few
set-valued functors, and see which of them are representable.

If U is the underlying-set functor on Group , a representing object for U should be a group
with a universal element of its underlying set. The object with this property is the free group on
one generator. More generally, if a category has free objects with respect to a concretization U,
then U will be represented by the free object on one generator, while the free object on a general
set I can be characterized as representing the functor U I (Definition 6.8.5).

The functor associating to every group the set of its elements of exponent 2 is represented by
the group 2 . More generally, the group with presentation by generators and relations X ! R
represents the functor associating to every group G the set of X-tuples of members of G which
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satisfy the relations R.
Is the functor associating to every commutative ring K the set |K [t] | of all polynomials over

K in one indeterminate t representable? A representing object would be a ring R with a
universal polynomial u(t) ∈ R[t]. The universal property would say that given any polynomial
p(t) over any ring K, there should exist a unique homomorphism R → K which, applied
coefficient-wise to polynomials, carries u(t) to p(t). But clearly there is a problem here: The
polynomial u will have some degree n, and if we choose a polynomial p of degree > n, it
cannot be obtained from u in this way. So the set-of-polynomials functor is not representable.

However, there is a concept close to that of polynomial but not subject to the restriction that
only finitely many of the coefficients be nonzero, that of a formal power series a0 + a1 t + a2 t2 +
... . If K is a ring, then the ring of formal power series over K is denoted K [[t]] ; its underlying
set |K [[t]] | = { a0 + a1 t + a2 t2 + ... } can be identified with the set of all sequences (a0 , a1 , ... )
of elements of K, i.e., with |K |ω = Uω(K ). We know that the functor Uω is represented by the
free commutative ring on an ω- tuple of generators, that is, the polynomial ring [A0 , A1 , ...]. And
indeed, the formal power series ring over this polynomial ring contains the element A0 + A1 t +
A2 t2 + ... , which clearly has the property of a universal power series.

Exercise 7.2:2. (i) Show that the functor associating to every monoid S the set of its
invertible elements is representable, but that the functor associating to S the set of its right-
invertible elements is not.
(ii) What about the functor associating to every monoid S the set of pairs (x, y) such that
xy = e and yx = e ? The set of pairs (x, y) merely satisfying xy = e ? The set of 3-tuples
(x, y, z) such that xy = xz = e ?
(iii) Determine which, if any, of the functors mentioned in (i) and (ii) are isomorphic to one
another.

Exercise 7.2:3. Let P denote the contravariant power-set functor, associating to every set X the
set P(X ) of its subsets, and E the contravariant functor associating to every set X the set
E(X ) of equivalence relations on X. Determine whether each of these is representable.

Exercise 7.2:4. Let A, B be objects of a category C . Describe a set-valued functor F on C
such that a product of A and B, if it exists in C , means a representing object for F, and
likewise a functor G such that a coproduct of A and B in C means a representing object for
G. (One of these will be covariant and the other contravariant.)

Exercise 7.2:5. Let (C, U ) be a concrete category. Show that the following conditions are
equivalent. (a) The concretization functor U is representable. (b) C has a free object on one
generator. Moreover, show that if C has coproducts, then these are also equivalent to (b ′ ) C
has free objects on all sets.

Students who know some Lie group theory might try

Exercise 7.2:6. Let LieGp denote the category of Lie groups and continuous group
homomorphisms. Let T : LieGp → Set denote the functor associating to a Lie group L the set
of tangent vectors to L at the neutral element. Which of the following covariant functors
LieGp → Set are representable? (a) the functor T, (b) the functor T2: L → T(L) × T(L),
(c) the functor L → {(x, y) ∈ T(L) × T(L) ! [x, y] = x }.

Exercise 7.2:7. Given a set X, let GpStruct(X ) denote the set of all group-structures on X
(consisting of a composition operation µ , an inverse operation ι , and a neutral element e). A
group can be considered as a set X given with an element s ∈ GpStruct(X ), and the category
Group has an initial object. This looks as though it should mean the underlying set of this
group is a representing object for GpStruct; but something is clearly wrong, since a map from

216 Chapter 7. Universal constructions.



this set into a set X does not determine a group structure on X. Resolve this paradox.

The equivalence, in each of Theorems 7.2.1 and 7.2.2, of parts (ii) and (iii) shows that the
concept of representable functor can be characterized in terms of initial and terminal objects. The
reverse is also true:

Exercise 7.2:8. Let C be any category. Display a covariant functor F and a contravariant
functor G from C to Set such that an initial, respectively a terminal object of C is
equivalent to a representing object for F, respectively G.

The implication (i)⇒ (iii) in Theorem 7.2.1 shows that an isomorphism between the hom-functor
hR associated with an object R, and an arbitrary functor F, is equivalent to a specification of an
element of F(R) with the universal property given in (i). In fact, every morphism, invertible or
not, from a hom-functor hR to a functor F corresponds to a choice of some element of F(R).
Though utterly simple to prove, this is an important tool. We give both this result and its
contravariant dual in

Theorem 7.2.4 (Yoneda’s Lemma). Let C be a category, and R an object of C .
If F : C → Set is a covariant functor, then morphisms f : hR → F are in one-to-one

correspondence with elements of F(R ), under the map f → f (R)(idR ).
Likewise, if F : Cop → Set is a contravariant functor, morphisms f : hR → F are in one-to-

one correspondence with elements of F(R ), again under the map f → f (R)(idR ).

Proof. In the covariant case, we must describe how to get from an element x ∈ F(R) an
appropriate morphism fx : hR → F. We define fx to carry a ∈ hR (X ) = C(R, X ) to
F(a)(x) ∈ F(X ). The verification that this is a morphism of functors, and that this construction is
inverse to the indicated map from morphisms of functors to elements of F(R), is immediate.

The contravariant case follows by duality (or by the dualized argument). 1

Again –

Exercise 7.2:9. Show the verifications omitted in the proof of the above result.

The following line of thought yields some intuition on Yoneda’s Lemma. Recall that if G is a
group, then a G-set, i.e., a functor from the category Gcat to Set , can be looked at as a
(possibly non-faithful) representation of G by permutations. In the same way, for any category
C , a functor F : C → Set can be thought of as a (possibly non-faithful) representation of C by
sets and set maps. Like a G-set, such a representation F can be regarded as a mathematical
‘‘object’’; in this case the ‘‘elements’’ of that object are the members of the sets F(X )
(X ∈ Ob(C)). This was the point of view of our development of Cayley’s Theorem for small
categories. In proving that result, we constructed such an object by introducing one generator in
each set F(X ), and no relations; in the discussion that followed we observed that if one
introduced only a generator in the set F(X ) for a particular X ∈ Ob(C), and again no relations,
the resulting ‘‘freely generated’’ object would be essentially the hom-functor which we named hX .
Yoneda’s Lemma is the statement of the universal property of this ‘‘free’’ construction – that a
morphism from this ‘‘representation of C by sets’’ to any other ‘‘representation of C by sets’’ is
uniquely determined by specifying where the one generator, the identity element idX ∈ hX (X ), is
to be sent. We make this formulation explicit in
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Corollary 7.2.5. Let C be a category and R an object of C .
In the (large) category whose objects are pairs (F, x) where F is a functor C → Set and x

an element of F(R ), the pair (hR , idR ) is the initial object. Equivalently, the object
hR ∈ Ob(SetC) is a representing object for the ‘‘evaluation at R’’ functor SetC → Set, the
universal element being idR ∈ hR (R).

Likewise, in the category whose objects are pairs (F, x) where F is a functor Cop → Set
and x an element of F(R ), the pair (hR, idR ) is the initial object; equivalently, the object

hR ∈ Ob(SetCop
) represents the (again covariant! ) ‘‘evaluation at R’’ functor SetCop

→ Set. 1

This points to a general principle worth keeping in mind: when dealing with a morphism from a
hom-functor to an arbitrary set-valued functor, look at its value on the identity map!

What if we apply Yoneda’s Lemma (covariant or contravariant) to the case where the arbitrary

functor F is another hom-functor hS , respectively hS? We get

Corollary 7.2.6. Let C be a category.
Then for any two objects R, S ∈ Ob(C), the morphisms from hR to hS as functors C → Set

are in one-to-one correspondence with morphisms S → R. Thus, the mapping R → hR gives a
contravariant full embedding of C in SetC, the ‘‘Yoneda embedding’’.

Likewise, morphisms from hR to hS as functors Cop → Set correspond to morphisms

R → S, giving a covariant full ‘‘Yoneda embedding’’ of C in SetCop
.

These two embeddings may both be obtained from the bivariant hom-functor Cop × C → Set
by distinguishing one or the other argument, i.e., regarding this bifunctor in one case as a functor

Cop → SetC, and in the other as a functor C → SetCop
.

Sketch of Proof. By Lemma 6.10.1 the bivariant hom functor does indeed yield functors Cop →

SetC and C → SetCop
on distinguishing one or the other argument, and we see that the object R

is sent to hR , respectively hR. Given a morphism f : S → R in C , one verifies that the
induced morphism of functors hf : hR → hS takes idR to f ∈ hS (R ). Yoneda’s Lemma with
F = hS tells us that the map f → hf is one-to-one and onto, so our functor Cop → SetC is full
and faithful. The contravariant case follows by duality. 1

Exercise 7.2:10. Verify the above characterization of the morphism of functors induced by a
morphism f : S → R.

Exercise 7.2:11. Show how to answer most of the parts of Exercise 6.9:5, and also
Exercise 6.9:7(i), using Yoneda’s Lemma.

Remark 7.2.7. It may seem paradoxical that we get the contravariant Yoneda embedding using
covariant hom-functors, and the covariant Yoneda embedding using contravariant hom-functors,
but there is a simple explanation. When we write the hom bifunctor Cop × C → Set as a functor

to a functor category, C → SetCop
or Cop → SetC, by distinguishing one variable, the variance

in that variable determines the variance of the resulting Yoneda embedding, while the variance in
the other variable determines the variance of the hom-functors that the embedding takes on as its
values. Whichever way we slice it, we get covariance in one, and contravariance in the other.

What is the value of the Yoneda embedding? First, note that categories of the form SetC

have very good properties; e.g., they have small limits and colimits. Hence Yoneda embeddings
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embed arbitrary categories into ‘‘good’’ categories. Moreover, if one wishes to extend a category
C by adjoining additional objects with particular properties, one can often to do this by identifying
C with the category of representable contravariant functors on C , or the opposite of the category
of representable covariant functors, and then taking for the additional objects certain other functors
that are not quite representable.

In §6.5 we saw that systems of universal constructions could frequently be linked together, by
natural morphisms among the constructed objects, to give functors. From the above corollary, we
see that this should happen in situations where the functors that these universal objects are
constructed to represent are linked by a corresponding system of morphisms of functors, in other
words (by Lemma 6.10.1) where they form the components of a bifunctor. There is a slight
complication in formulating this precisely, because the given representable functors are not
themselves the hom-functors hR or hR, but only isomorphic to these, and the choice of
representing objects R is likewise determined only up to isomorphism. To prepare ourselves for
this complication, let us prove a lemma showing that a system of objects separately isomorphic to
the values of a functor in fact form the values of an isomorphic functor.

Lemma 7.2.8. Let F : C → D be a functor, and for each X ∈ Ob(C), let i(X ) be an
isomorphism of F(X ) with another object G(X ) ∈ Ob(D).

Then there is a unique way to assign to each morphism of C , f ∈ C(X, Y ) a morphism
G( f ) ∈ D(G(X ), G(Y )) so that the objects G(X ) and morphisms G( f ) constitute a functor G :
C → D , and i constitutes an isomorphism of functors, F =∼ G.

Proof. If G is to be a functor and i a morphism of functors, then for each f ∈ C(X, Y ) we
must have G( f ) i(X ) = i(Y ) F( f ). Since i(X ) is an isomorphism, we can rewrite this as G( f ) =
i(Y ) F( f ) i(X )–1. It is straightforward to verify that G, so defined on morphisms, is indeed a
functor. This definition of G( f ) insures that i is a morphism of functors F → G, and it clearly
has an inverse, defined by i –1(X ) = i(X ) –1. 1

Exercise 7.2:12. Write out the verification that G, constructed as above, is a functor.

We can now get our desired result about tying representing objects together into a functor. In
thinking about results such as the next lemma, I find it useful to keep in mind the case where C =
Set , D = Group , and A is the bifunctor associating to every set X and group G the set | G | X

of X-tuples of elements of G.

Lemma 7.2.9. Suppose that C and D are categories, and that for each X ∈ Ob(C) we are
given a functor A(X, –) : D → Set and an object F(X ) ∈ Ob(D) representing this functor, via an
isomorphism i(X ) : A(X, –) =∼ hF(X ) .

Then if the given functors A(X, –) are in fact the values of a bifunctor A : Cop × D → Set at
the objects of C, then the objects F(X ) of D can be made the values of a functor F : C → D
in a unique way so that the isomorphisms i(X ) comprise an isomorphism of bifunctors

(7.2.10) i : A(–, –) =∼ D(F(–), –) .

Conversely, if the objects F(X ) are the values at the objects X of a functor F : C → D, we
can make the family of functors A(X, –) into a bifunctor A : Cop × D → Set in a unique way so
that the isomorphisms i(X ) again give an isomorphism (7.2.10) of bifunctors.
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Proof. On the one hand, if A : Cop × D → Set is a bifunctor, the induced system of functors
A(X, –) : D → Set will together constitute a single functor which we may call B : Cop → SetD

(Lemma 6.10.1). For each X ∈ Ob(C) we have an isomorphism i(X ) of B(X ) with a hom-
functor hF(X ) , so by the preceding lemma we get an isomorphic functor C : Cop → SetD, such
that C(X ) = hF(X ) , and the isomorphism i : B =∼ C is made up of the i(X )’s. Now by
Corollary 7.2.6, the covariant hom-functors hY (Y ∈ Ob(D)) form a full subcategory of SetD

isomorphic to D via the Yoneda embedding Y → hY . Hence the functor C : Cop → SetD is
induced by precomposing this embedding Dop → SetD with a unique functor Cop → Dop,
which is equivalent to a functor F : C → D , and this F is the functor of the statement of the
lemma.

Inversely, if F is given as a functor, let us consider each functor A(X, –) as an object B(X )
of SetD. Then for each X we have an isomorphism i(X ) : B(X ) =∼ hF(X ) , and applying the
preceding lemma to the isomorphisms i(X )–1, we conclude that the objects B(X ) are the values
of a functor B : Cop → SetD, which we may regard as a bifunctor A : Cop × D → Set , and again
the values of i become an isomorphism of bifunctors. 1

The above lemma concerns systems of objects representing covariant hom-functors; let us state
the corresponding result for contravariant hom-functors. A priori, this means replacing D by
Dop. But it is then natural to replace the ‘‘parametrizing’’ category Cop by C so as to keep the
parametrization of the constructed objects of D covariant. And having done that much, why not
interchange the names of C and D so as to get a set-up parallel to that of the preceding case?
Doing so, we get

Lemma 7.2.11. Suppose that C and D are categories, and that for each Y ∈ Ob(D) we are
given a functor A(–, Y ) : Cop → Set and an object U(Y ) ∈ Ob(C) representing this
contravariant functor, via an isomorphism j(Y ) : A(–, Y ) =∼ hU(Y ).

Then if the given functors A(–, Y ) are the values of a bifunctor A : Cop × D → Set at the
objects of D, the family of objects U(Y ) of C can be made the values of a functor U : D → C
in a unique way so that the isomorphisms j(Y ) constitute an isomorphism of bifunctors

(7.2.12) j : A(–, –) =∼ C(–, U(–)) .

Conversely, if the objects U(Y ) are the images of the objects Y under a functor U : C → D,
we can make the family of functors A(–, Y ) into a bifunctor A : Cop × D → Set in a unique way
so that the isomorphisms j(Y ) together give an isomorphism (7.2.12) of bifunctors. 1

7.3. Adjoint functors. Let us look at some examples of the situation of the two preceding lemmas
– families of objects that we characterized individually as the representing objects for certain
naturally occurring functors, but that turned out, themselves, to fit together into a functor. By those
lemmas, this means that the system of functors that these objects represented fit together into a
bifunctor. We shall see that in each of these cases, this structure of bifunctor was actually present
in the original situation, providing an explanation of why our constructions yielded functors.

The free group on each set X is the object of Group representing the functor G → |G | X =
Set(X, U(G )). So the free group functor arises by representing the family of functors
Group → Set obtained by inserting all sets as the first argument of the bifunctor

Set(–, U(–)) : Setop × Group → Set .

The analogous description obviously applies in any category C having free objects with respect to
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a concretization U : C → Set .
If G is a group, the abelianization of G is the object of Ab representing the functor

Ab → Set given by A → Group(G, A). The symbol Group(G, A) makes sense because Ab is
a subcategory of Group , but to put this example in the context of the general pattern, let us write
V for the inclusion functor of Ab in Group . We then see that the abelianization functor arises
by representing the family of set-valued functors obtained by inserting values in the first argument
of the bifunctor

Group(–, V(–)) : Groupop × Ab → Set .

In the same way, if W denotes the forgetful functor Group → Monoid , then the functor taking a
monoid to its universal enveloping group arises by representing the family of set-valued functors
obtained by inserting values in the first argument of the bifunctor

Monoid(–, W(–)) : Monoidop × Group → Set .

The above were left universal examples, that is, constructions F : C → D such that each object
F(X ) represented a covariant functor D → Set . We see that in each such case, the bifunctor from
which these covariant functors were extracted had the form

(7.3.1) C(–, U(–)) : Cop × D → Set ,

for some functor U : D → C . Taking (7.3.1) to be the A in Lemma 7.2.9, we see that the
universal properties of the objects F (X ) in terms of U can be formulated in each of these cases
as

C(–, U(–)) =∼ D(F(–), –)

– a strikingly symmetrical condition!

Let us consider one right universal example. Given a monoid S, we considered above the
construction of the universal group G with a homomorphism of S into Gmd ; but there is also a
universal group G with a homomorphism of Gmd into S, namely the group G = Sinv of
invertible elements (‘‘units’’) of S. If we write F : Group → Monoid for the forgetful functor
G → Gmd , and call the above group-of-units functor U : Monoid → Group , we see that U(S )
represents the contravariant functor associating to each group G the set Monoid(F(G ), S ). If we
write C and D for Group and Monoid , then on taking D(F(–), –) for the bifunctor A in
the last formulation of Lemma 7.2.11, we get an isomorphism characterizing this right universal
construction U :

D(F(–), –) =∼ C(–, U(–)).

This is exactly the same as the isomorphism characterizing our examples of left universal
constructions – but written in reverse order, and looked at as characterizing U in terms of F,
rather than F in terms of U ! The fact that these two situations are characterized by the same
isomorphism means that a functor F gives objects representing the covariant functors C(X, U(–))
if and only if U gives objects representing the contravariant functors D(F(–), Y ).

Let us test this conclusion, by turning our characterization of the free group construction upside
down. Since the free group F(X ) on a set X is left universal among groups G with set maps of
X into their underlying sets U(G ), the underlying set U(G ) of a group G should be right-
universal among all sets X with group homomorphisms from the free group F(X ) into G. And
indeed, though it may seem bizarre to treat the free-group construction as given and the
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underlying-set construction as something to be characterized, the universal property certainly holds:
For any group G, U(G ) is a set with a homomorphism u : F(U(G )) → G, such that given any
homomorphism f from a free group F(X ) on any set into G, there is a unique set map
h : X → U(G ) (which you should be able to describe) such that f = uF(h). This property of
underlying sets is sometimes even useful. For instance, in showing that every group can be
presented by generators and relations, one wishes to write an arbitrary group G as a homomorphic
image of a free group on some set X. The above property says that there is a universal choice of
such X, namely the underlying set U(G ) of G.

Before setting out to tie together all our ways of describing these universal constructions, let us
prove a lemma that will allow us to relate isomorphisms of bifunctors as above to systems of maps
X → U(F(X )) and F(U(Y )) → Y. (This observation is an instance of the general principle noted
following Corollary 7.2.5.)

Lemma 7.3.2. Let C and D be categories and U : D → C , F : C → D functors, and consider
the two bifunctors Cop × D → Set,

C(–, U(–)), D(F(–), –) .

Then a morphism of bifunctors

(7.3.3) a : C(–, U(–)) → D(F(–), –)

is determined by its values on identity morphisms idU(D) ∈ C(U(D), U(D)) (D ∈ Ob(D)). In fact,
given a as above, if we write α (D) = a(U(D), D)(idU(D)) ∈ D(F(U(D)), D), then this family of
morphisms comprises a morphism of functors,

(7.3.4) α : FU → IdD

and this construction yields a bijection between morphisms (7.3.3) and morphisms (7.3.4). Given a
morphism (7.3.4), the corresponding morphism (7.3.3) can be described as acting on
f ∈ C(C, U(D)) by first applying F to get F( f ) : F(C) → FU(D), then composing this with
α (D) : FU(D) → D, getting a( f ) = α (D) F ( f ) : F(C) → D.

Likewise, a morphism of bifunctors in the opposite direction to (7.3.3),

(7.3.5) b : D(F(–), –) → C(–, U(–))

is determined by its values on identity morphisms, in this case morphisms idF(C) ∈ D(F(C), F(C))
(C ∈ Ob(C)), and writing β(C) = b(C, F(C))(idF(C)) ∈ C(C, U(F(C))), we get a bijection
between morphisms (7.3.5) and morphisms

(7.3.6) β : IdC → UF .

Given β, the corresponding morphism b can be described as taking f ∈ D(F(C), D) to
U( f )β(C) ∈ C(C, U(D)).

Sketch of Proof. Consider a morphism a as in (7.3.3). For each D ∈ Ob(D) this gives a
morphism of functors C(–, U(D)) → D(F(–), D). Since the first of these functors is hU(D), the
Yoneda Lemma says this morphism is determined by its value on the identity morphism of U(D).
It is straightforward to verify that the condition that these morphisms of functors C(–, U(D)) →
D(F(–), D) should comprise a single morphism of bifunctors (7.3.3) is equivalent to the condition
that the values of these morphisms on identities should comprise a morphism of functors (7.3.4).
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The reader can easily check that the description of how to recover (7.3.3) from (7.3.4) also leads to
a morphism of functors, and that this construction is inverse to the first.

The second paragraph follows by duality. 1

Exercise 7.3:1. Write out the ‘‘straightforward’’ verification and the ‘‘easy check’’ referred to in
the first paragraph of the proof of the lemma.

To get a feel for the above construction, you might start with the morphism of bifunctors a
that associates to every set map from a set X to the underlying set U(G ) of a group G the
induced group homomorphism from the free group F(X ) into G. Determine the morphism of
functors α that the above construction yields, and check explicitly that the ‘‘inverse’’ construction
described does indeed recover a. In this example, one finds that a is invertible; calling its
inverse b, you might similarly work out for this b the constructions of the second assertion of
the lemma.

With the help of Lemmas 7.2.9, 7.2.11 and 7.3.2, we can now give several descriptions of the
type of universal construction discussed at the beginning of this section.

Theorem 7.3.7. Let C and D be categories. Then the following data are equivalent:

(i) A pair of functors U : D → C, F : C → D, and an isomorphism

i : C(–, U(–)) =∼ D(F(–), –)

of functors Cop × D → Set.

(ii) A functor U : D → C, and for every C ∈ Ob(C), an object RC ∈ Ob(D) and an element
uC ∈ C(C, U(RC )) which are universal among such object-element pairs, i.e., which represent
the covariant functor C(C, U(–)) : D → Set (cf. Theorem 7.2.1 and Definition 7.2.3 ).

(ii*) A functor F : C → D, and for every D ∈ Ob(D), an object RD ∈ Ob(C) and an element

D ∈ D(F(RD ), D) which are universal among such object-element pairs, i.e., which represent
the contravariant functor D(F(–), D) : Cop → Set.

(iii) A pair of functors U : D → C, F : C → D, and a pair of morphisms of functors

η : IdC → U F, ε : F U → IdD ,

such that the two composites

U ____η oU→ UFU ____U oε→ U, F ____F oη→ FUF ____ε oF→ F,

are the identity morphisms of U and F respectively. (For the ‘‘ o’’ notation see Lemma 6.10.2.)

Sketch of Proof. The equivalence of (i) with (ii) and with (ii*) is given by Lemma 7.2.9 with
A(–, –) = C(–, U(–)), and Lemma 7.2.11 with A(–, –) = D(F(–), –), respectively. By
Lemma 7.3.2, an isomorphism of bifunctors as in (i) must correspond to a pair of morphisms of
functors η : IdC → UF, ε : FU → IdD which induce mutually inverse morphisms of bifunctors.
I claim that the conditions needed for these induced morphisms to be mutually inverse are those
shown diagrammatically in (iii).

In the verification of this statement (made an exercise below), one assumes α and β given as
in Lemma 7.3.2, uses the formulas for a and b in terms of these to express the composites ab
and ba, and must prove that these composites are the identity morphisms. By Yoneda’s Lemma,
it suffices to check these equalities on appropriate identity morphisms. (With what objects of C
and D in the slots of D(F(–), –), respectively C(–, U(–))?) This approach quickly gives the

§7.3. Adjoint functors. 223



desired statements. However, if one prefers to see directly that these statements are equivalent to
ab and ba fixing all morphisms f ∈ D(F(C ), D), respectively g ∈ C( C, U(D)), then one may
combine the equations saying that the latter conclusions hold with the commutativity of the diagram
expressing the functoriality of a, respectively b, applied to the morphism f, respectively g. 1

Exercise 7.3:2. (i) Write out the verification sketched in the last paragraph of the above proof.
(ii) Show that η will be composed of the ‘‘universal morphisms’’ uC of point (ii) of the
theorem, and ε will be composed of the universal morphisms D of point (ii*).
(iii) Take one universal construction, e.g., that of free groups, write down the equalities
expressed diagrammatically in part (iii) of the above theorem for this construction in terms of
maps of set- and group-elements, and explain why they hold in this case.

Definition 7.3.8. Given categories C and D and functors U : D → C, F : C → D, an
isomorphism

i : C(–, U(–)) =∼ D(F(–), –)

of bifunctors Cop × D → Set, or equivalently, a pair of morphisms of functors ε , η satisfying
the condition of point (iii) of the above theorem, is called an adjunction between U and F.

In this situation, U is called the ‘‘right adjoint’’ of F, and F the ‘‘left adjoint’’ of U
(referring to their occurrence in the right and left slots of the hom-bifunctors in the above
isomorphism). The morphisms of functors η and ε are called, respectively, the unit and counit
of the adjunction.

Historical note: The term ‘‘adjoint’’ was borrowed from analysis, where the adjoint of a
bounded operator between Hilbert spaces, A : X → Y, is the operator B : Y → X characterized by
the condition on inner products (x, By) = (Ax, y).

The student who finds condition (iii) of Theorem 7.3.7 hard to grasp will be happy to know that
we will not make much use of it in the next few chapters. (I have trouble with it myself.) But we
will use the morphisms η and ε named in that condition, so you should get a clear idea of how
these act. (What we will seldom use is the fact that the indicated compositional condition on a pair
of morphisms η , ε is equivalent to their being the unit and counit of an adjunction.
Nevertheless, I recommend working Exercise 7.3:2 this once.)

The terms ‘‘unit’’ and ‘‘counit’’ will be easier to explain when we consider the concepts of
monad and comonad in Chapter 10 (not yet written).

We can now characterize as right or left adjoints many of the universal constructions we are
familiar with. The three diagrams below show the cases we used above to motivate the concept.
In each of these, a pair of successive vertical arrows between two categories represents a pair of
mutually adjoint functors, the right adjoint being shown on the right and the left adjoint on the left.

Group Group Ab

free under- Sgp for- U(S ) abel- for-

group lying ↑
,,–

get- ↑
,,–

ianiz- get-

set S ful S ation ful
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,
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,
,
↓

↑
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,
,
,
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↑
,,
,
,
,

↑
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Set Monoid Group
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The middle diagram is interesting in that the forgetful functor there (in the notation of §3.11,
G → Gmd) has both a left and a right adjoint. In the first diagram, we can, as mentioned, replace
Group with any category C having free objects with respect to a concretization U. A still
wider generalization is noted in the next exercise.

Exercise 7.3:3. If you did not do Exercise 7.2:5, prove that if C is a category with small
coproducts and U : C → Set a functor, then U has a left adjoint if and only if it is
representable.

(Exercise 7.2:5 was essentially the case of this result where U was faithful, so that it could
be called a ‘‘concretization’’ and its left adjoint a ‘‘free object’’ construction; but faithfulness
played no part in the proof. In Chapter 9 we shall extend the concept of ‘‘representable functor’’
from set-valued functors to algebra-valued functors, and generalize the above result to the
resulting much wider context.)

Exercise 7.3:4. Show that the left (or right) adjoint of a functor, if one exists, is unique up to
canonical isomorphism, and conversely, that if A and B are isomorphic functors, then any
functor which can be made a left (or right) adjoint of A can also be made a left (or right)
adjoint of B.

Exercise 7.3:5. Show that if A : C → D , B : D → C give an equivalence of categories, then B
is both a right and a left adjoint to A.

The next exercise is a familiar example in disguise.

Exercise 7.3:6. Let C be the category with Ob(C) = Ob(Group), but with morphisms defined
so that for groups G and H, C(G, H ) = Set( |G | , |H | ). Thus Group is a subcategory of C ,
with the same object set but smaller morphism sets. Does the inclusion functor Group → C
have a left and/or a right adjoint?

There are many other constructions whose universal properties translate into adjointness
statements: The forgetful functor Ring1 → Monoid that remembers only the multiplicative
structure has as left adjoint the monoid ring construction. The forgetful functor Ring1 → Ab that
remembers only the additive structure has for left adjoint the tensor ring construction. (These two
constructions were discussed briefly toward the end of §3.12.) The inclusion of the category of
compact Hausdorff spaces in that of arbitrary topological spaces has for left adjoint the Stone-Čech
compactification functor (§3.17). The functor associating to every commutative ring its Boolean
ring of idempotent elements has as left adjoint the construction asked for in Exercise 3.14:3(iv).
The forgetful functors going from Lattice to ∨ -Semilattice and ∧ -Semilattice , and from these
in turn to POSet , have left adjoints which you were asked to construct in Exercise 5.1:8.

The student familiar with Lie algebras (§8.7 below) will note that the functor associating to an
associative algebra A the Lie algebra ALie with the same underlying vector space as A, and
with the commutator operation of A for Lie bracket, has for left adjoint the universal enveloping
algebra construction. (The Poincaré-Birkhoff-Witt Theorem gives a normal form for this universal
object; I hope to treat such normal form results in a much later chapter. Cf. [40])

Suppose C is a category having products and coproducts of all pairs of objects. We know
that each of these constructions will give a functor C ×C → C . Can these functors be
characterized as adjoints of some functors C → C ×C? Similarly, can the tensor product functor
Ab × Ab → Ab be characterized as an adjoint of some functor Ab → Ab × Ab?

The universal property of the product functor C ×C → C is a right universal one, so if it
arises as an adjoint, it should be a right adjoint to some functor A : C → C ×C . No such functor
was evident in our definition of products. However, we can search for such an A by posing the
universal problem whose solution would be a left adjoint to the product functor: Given
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X ∈ Ob(C) , does there exist (Y, Z ) ∈ Ob(C ×C) with a universal example of a morphism
X → Y × Z ? Since a morphism X → Y × Z corresponds to a morphism X → Y and a morphism
X → Z, this asks whether there exists a pair (Y, Z ) of objects of C universal for having a
morphism from X to each member of this pair. In fact, the pair (X, X ) is easily seen to have the
desired universal property. This leads us to define the ‘‘diagonal functor’’ ∆ : C → C ×C taking
each object X to (X, X ), and each morphism f to ( f , f ). It is now easy to check that the
universal property of the direct product construction is that of a right adjoint to ∆ . Moreover,
similar reasoning shows that the universal property of the coproduct is that of a left adjoint of ∆ .
So in a category C having both products and coproducts, we have the diagram of adjoint functors

C

↑
,,
,
,
,

I..I

,,
,
,
,
↓

∆
↑
,,
,
,
,

I
..
I

C × C .

We recall that if C is Ab , the constructions of pairwise products and coproducts (‘‘direct
products and direct sums’’) coincide. So in that case we get a ‘‘cyclic’’ diagram of adjoints.

Exercise 7.3:7. Does the direct product construction on Set have a right adjoint? Does the
coproduct construction have a left adjoint?

The next exercise is one of my favorites:

Exercise 7.3:8. Recall that 2 denotes the category with two objects, 0 and 1, and exactly one
nonidentity morphism, 0 → 1, so that for any category C , an object of C2 corresponds to a
choice of two objects A0 , A1 ∈ Ob(C) and a morphism f : A0 → A1 .

Let p0 : Group2 → Group denote the functor taking each object (A0 , A1 , f ) to its first
component A0 , and likewise every morphism (a0 , a1) : (A0 , A1 , f ) → (B0 , B1 , g) of
Group2 to its first component a0 .

Investigate whether p0 has a left adjoint, and whether it has a right adjoint. If a left adjoint
is found, investigate whether this in turn has a left adjoint (clearly it has a right adjoint – namely
p0 ) ; likewise if p0 has a right adjoint, investigate whether this in turn has a right adjoint; and
so on, as long as further adjoints on either side can be found.

Exercise 7.3:9. Let G be a group, and G-Set the category of all G-sets.
You can probably think of one or more very easily described functors from Set to G-Set ,

or vice versa. Choose one of them, and apply the idea of the preceding exercise; i.e., look for a
left adjoint and/or a right adjoint, and for further adjoints of these, as long as you can find any.

When you are finished, does the chain of functors you have gotten contain all the ‘‘easily
described functors’’ between these two categories that you were able to think of? If not, take
one that was missed, and do the same with it.

Exercise 7.3:10. Translate the idea indicated in observation (a) following Exercise 3.8:1 into
questions of the existence of adjoints to certain functors between categories G1-Set and
G2-Set , determine whether these adjoints do in fact exist, and if they do, describe them as well
as you can.

Let us now consider the case of the tensor product construction, 2× : Ab × Ab → Ab . It is the
solution to a left universal problem, and we can characterize this problem as arising, as described in
Lemma 7.2.9, from the bifunctor Bil: (Ab × Ab)op × Ab → Set , where for abelian groups A,
B, C we let Bil((A, B), C) denote the set of bilinear maps (A, B) → C. From the preceding
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examples, we might expect Bil((A, B), C) to be expressible in the form (Ab × Ab)((A, B), U(C))
for some functor U : Ab → Ab × Ab .

But, in fact, it cannot be so expressed; in other words, the tensor product construction
Ab × Ab → Ab , though it is a left universal construction, is not a left adjoint. The details (and a
different sense in which the tensor product is a left adjoint functor construction) are something you
can work out:

Exercise 7.3:11. (i) Show that the functor 2× : Ab × Ab → Ab has no left or right adjoint.
(ii) On the other hand, show that for any fixed abelian group A, the functor A2× – :
Ab → Ab is left adjoint to the functor Hom(A, –) : Ab → Ab . (I am writing Hom(A, B) for
the abelian group of homomorphisms from A to B, in contrast to Ab(A, B) the set of such
homomorphisms – an arbitrary and ad hoc notational choice.)
(iii) Investigate whether the functor A2× – : Ab → Ab has a left adjoint, and whether
Hom(A, –) : Ab → Ab has a right adjoint. If such adjoints do not always exist, do they exist
for some choices of A ?

If you are familiar enough with ring theory, generalize the above problems to modules over a
fixed commutative ring k, or to bimodules over pairs of noncommutative rings.

Exercise 7.3:12. For a fixed set A, does the functor Set → Set given by S → S × A have a
left or right adjoint?

A situation which is similar to that of the tensor product, in that the question of whether a
construction is an adjoint depends on what we take as the variable, is considered in

Exercise 7.3:13. In this exercise ‘‘ring’’ will mean commutative ring with 1; recall that we
denote the category of such rings CommRing1.

If R is a ring and X any set, R[X ] will denote the polynomial ring over R in an X-tuple
of indeterminates.
(i) Show that for X a nonempty set, the functor PX : CommRing1 → CommRing1 taking
each ring R to R[X ] has neither a right nor a left adjoint, and similarly that for R a ring, the
functor QR : Set → CommRing1 taking each set X to R[X ] has neither a right nor a left
adjoint.
(ii) On the other hand, show that the functor CommRing1 × Set → CommRing1 taking a
pair (R, X ) to R[X ] is an adjoint (on the appropriate side) of an easily described functor.
(iii) For any ring R, let CommRing1

R denote the category of commutative R-algebras (rings
S given with homomorphisms R → S ), and R-algebra homomorphisms (ring homomorphisms
making commuting triangles with R. In the notation of Exercise 6.8:26(ii), this is the comma
category (R ↓ CommRing1).)

Similarly, for any set X, let CommRing1
X denote the category of rings S given with set

maps X → | S | , and again having for morphisms the ring homomorphisms making commuting
triangles. (This is the comma category (X ↓ U ), where U is the underlying set functor of
CommRing1. Note that to keep the symbols CommRing1

R and CommRing1
X unambiguous,

we must remember to use distinct symbols for rings and sets.)
Show that for any R, the functor Set → CommRing1

R taking X to R[X ] can be
characterized as an adjoint, and that for any X, the functor CommRing1 → CommRing1

X
taking R to R[X ] can also be characterized as an adjoint.
(iv) Investigate similar questions for the formal power series construction, R[[X ]]; in
particular, whether the analog of (i) is true.

Here is still another way to make the tensor product construction into an adjoint functor:
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Exercise 7.3:14. (i) Let Bil be the category whose objects are all 4-tuples (A, B, β, C)
where A, B, C are abelian groups, and β : (A, B) → C is a bilinear map, and with morphisms
defined in the natural way. (Say what this natural way is!) Show that the forgetful functor
Bil → Ab × Ab , taking each such 4-tuple to its first two components, has a left adjoint, which is
‘‘essentially’’ the tensor-product construction.
(ii) Show that an analogous trick can be used to convert any isomorphism of bifunctors as in
the Lemma 7.2.9 into an adjunction. (Between what categories?) Do the same for the situation
of Lemma 7.2.11.

Exercise 7.3:15. Describe all pairs of adjoint functors at least one member of which is a constant
functor, i.e., a functor taking all objects of its domain category to a single object X of its
codomain category, and all morphisms of its domain category to idX .

What happens when we compose two functors arising from adjunctions?
Note that the abelianization of the free group on a set X is a free abelian group on X. That

is, when we compose these two functors, each of which is a left adjoint, we get another functor
with that property. The general statement is simple, and is delightfully easy to prove.

Theorem 7.3.9. Suppose E
___U→←____

F
D

___V→←____
G

C are pairs of adjoint functors, with U and V

the right adjoints, F and G the left adjoints. Then E
____V U→←____
F G

C are also adjoint, with V U

the right adjoint and F G the left adjoint.

Proof. C(–, V U(–)) =∼ D(G(–), U(–)) =∼ E(F G(–), –) . 1

Exercise 7.3:16. Suppose U, V, F and G are as above, η and ε are the unit and counit of
the adjoint pair U, F, and η ′ and ε ′ are the unit and counit of the adjoint pair V, G.
Describe the unit and counit of the adjoint pair V U, F G.

For further examples of the above theorem, consider two ways we can factor the forgetful
functor from Ring1 to Set . We can first pass from a ring to its multiplicative monoid, then go to
the underlying set thereof, or we can first pass from the ring to its additive group, and then to the
underlying set:

Ring1______×
→ Monoid

,,
,
,
↓

+
,,
,
,
↓

Ab ______→ Set

Taking left adjoints, we get the two decompositions of the free ring construction noted in §3.12: as
the free-monoid functor followed by the monoid-ring functor, and as the free abelian group functor
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followed by the tensor algebra functor:

Ring1 ←______Monoid

↑
,,
,
,

↑
,,
,
,

Ab ←______Set

7.4. Number-theoretic interlude: the p-adic numbers, and related constructions. While you
digest the concept of adjunction (fundamentally simple, yet daunting in its multiple facets), let us
look at some constructions of a different sort, which we did not meet any examples of in the
‘‘Cook’s tour’’ of Chapter 3. In this section we will develop a particular case important in number
theory; the general category-theoretic concept will be defined in the next section. A much broader
generalization, which also embraces several constructions we have studied, will be developed in the
section after that.

Suppose we are interested in solving the equation

(7.4.1) x2 = –1

in the integers, . Of course, we know it has no solution in the real numbers, let alone the
integers, but we will ignore that dreary fact for the moment.

We may observe that the above equation does have a solution in the finite ring 5 , in fact,
two solutions, 2 and 3. Up to sign, these are the same, so let us look for a solution of (7.4.1) in

satisfying

x ≡ 2 (mod 5).

An integer x which is ≡ 2 (mod 5) has the form 5y +2, so we may rewrite (7.4.1) as

(5y +2)2 = –1

and expand, to see what information we can learn about y. We get 25y2+20y = –5. Hence
20y ≡ –5 (mod 25), and dividing by 5, we get 4y ≡ –1 (mod 5). This has the unique solution

y ≡ 1 (mod 5),

which, substituted back, determines x modulo 25:

x = 5y +2 ≡ 5.1+2 = 7 (mod 25).

We continue in the same fashion: At the next stage, putting x = 25z +7 we have
(25z +7)2 = –1. You should verify that this implies

z ≡ 2 (mod 5),

which leads to

x ≡ 57 (mod 125).

Can we go on indefinitely? This is answered in
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Exercise 7.4:1. (i) Show that given i > 0, and c ∈ such that c2 ≡ –1 (mod 5 i ), there
exists c ′ ∈ such that c ′ 2 ≡ –1 (mod 5 i+1), and c ′ ≡ c (mod 5 i ).
(ii) Show that any integer is uniquely determined by its residues modulo 5, 52, 53, ... ,
5 i, ... .

Part (ii) of the above exercise shows that if there were an integer satisfying (7.4.1), the
sequence of residues arising by repeated application of the step of part (i) would determine it. But
now let us return to our senses, and remember that (7.4.1) has no real solution, and ask what, if
anything, we have found.

Clearly, we have shown that there exists a sequence of residues, x1 ∈ | 5 | , x2 ∈ | 52 | , ... ,
xi ∈ | 5 i | , ... , each of which satisfies (7.4.1) in the ring in which it lives, and which are
‘‘consistent’’, in the sense that each xi+1 is a ‘‘lifting’’ of xi , under the series of natural ring
homomorphisms

. . . → 5 i+1 → 5 i → . . . → 52 → 5 .

Let us name the ith homomorphism in the above sequence fi : 5 i+1 → 5 i ; thus, fi takes the
residue of any integer n modulo 5 i+1 to the residue of n modulo 5 i. Now note that the set of
all strings

(7.4.2) (... , xi , ... , x2 , x1) such that xi ∈ | 5 i | and fi (xi+1 ) = xi (i = 1, 2, ... )

forms a ring under componentwise operations. What we have shown is that this ring contains a
square root of –1. Since, as we have noted, an integer n is determined by its residues modulo
the powers of 5, the ring is embedded in this ring, though of course the square root, in this
ring, of –1 ∈ | | does not lie in the embedded copy of the ring . (‘‘If the fool would persist in
his folly, he would become wise,’’ William Blake [52].)

The ring of sequences (7.4.2) is called the ring of 5-adic integers. The corresponding object
constructed for any prime p, using the system of maps

(7.4.3) . . . → p i+1 → p i → . . . → p2 → p ,

is called the ring of p-adic integers. These rings are of fundamental importance in modern number
theory, and come up in many other areas as well. The notation for them is not uniform; the symbol
we will use here is ( p) . (The ( p) in parenthesis denotes the ideal of the ring generated by
the element p. What is meant by putting it as a subscript of and adding a hat will be seen a
little later. Many number-theorists simply write p for the p-adic integers, denoting the field of
p elements by ⁄ p or p ; cf. [24, p.272], [31, p. 162, Example].)

The construction of p is in some ways analogous to the construction of the real numbers
from the rationals. Real numbers are entities that can be approximated by rational numbers under
the distance metric; p-adic integers are entities that can be approximated by integers via
congruences modulo arbitrarily high powers of p. This analogy is made stronger in

Exercise 7.4:2. Let p be a fixed prime number. If n is any integer, let p (n) denote the
greatest integer e such that pe divides n, or the symbol + ∞ if n = 0. The p-adic metric
on is defined by dp (m, n) = p

– p (m – n)
. Thus, it makes m and n ‘‘close’’ if they are

congruent modulo a high power of p.
(i) Verify that dp is a metric on , and that the ring operations are continuous in this
metric. Deduce that the completion of with respect to this metric (the set of Cauchy
sequences modulo the usual equivalence relation) can be made a ring containing .
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(ii) Show that this completion is isomorphic to ( p) .
(iii) Show that every element x of this completion has a unique ‘‘left-facing base-p
expression’’ x = Σ 0 ≤ i < ∞ ci p i, where each ci ∈ {0, 1, ... , p –1}. In particular, show that any
such infinite sum is convergent in the p-adic metric. What is the expression for –1 in this
form?

We showed above that one could find a solution to the equation x2 = –1 in (5) . Let us note
some simpler equations one can solve:

Exercise 7.4:3. (i) Show that every integer n not divisible by p is invertible in ( p) .
(ii) Are the ‘‘base-p expressions’’ (in the sense of the preceding exercise) for the elements
n–1 eventually periodic?

It follows from point (i) of the above exercise that we can embed into the p-adic integers not
only , but the subring of consisting of all fractions with denominators not divisible by p.
Now when one adjoins to a commutative ring R inverses of all elements not lying in some prime
ideal P, the resulting ring (which, if R is an integral domain, is a subring of the field of
fractions of R) is denoted RP , so what we have embedded in the p-adic integers is the ring

( p) . In ( p) , every nonzero element is clearly an invertible element times a power of p, from
which it follows that the nonzero ideals are precisely the ideals ( p i ). It is easy to verify that the
factor-ring ( p) ⁄ ( p i ) is isomorphic to p i ; hence the system of finite rings and homomorphisms
(7.4.3) can be described as consisting of all the proper factor-rings of ( p) , together with the
canonical maps among them. Hence the p-adic integers can be thought of as elements which can
be approximated by members of ( p) modulo all nonzero ideals of that ring. Ring-theorists call
the ring of such elements the completion of ( p) with respect to the system of its nonzero ideals,
hence the symbol ( p) .

We will not go into a general study of what algebraic equations have solutions in the ring of
p-adic integers. A result applicable to a large class of rings including the p-adics is Hensel’s
Lemma; see [24, Theorem 8.5.6] or [22, §III.4.3] for the statement.

Let us characterize abstractly the relation between the diagram (7.4.3) and the ring of p-adic
integers which we have constructed from it. Since a p-adic integer is by definition a sequence
(... , xi , ... , x2 , x1) with each xi ∈ p i , the ring of p-adic integers has projection homomorphisms
pi onto each ring p i . (Apologies for the double use of the letter ‘‘p’’!) Since the components
xi of each element satisfy the compatibility conditions fi (xi+1 ) = xi , these projection maps
satisfy

fi pi+1 = pi ,

i.e., they make a commuting diagram

(7.4.4)

. . . → p i+1 → p i → . . . → p2 → p .

( p)

.... . .

I claim that ( p) is right universal for these properties. Indeed, given any ring R with
homomorphisms ri : R → p i which are ‘‘compatible’’, i.e., satisfy fi ri+1 = ri , we see that for
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any a ∈ R, the system of images ( ... , ri (a), ... , r2(a), r1(a)) defines an element r (a) ∈ ( p) .
The resulting map r : R → ( p) will be a homomorphism such that ri = pi r for each i, and
will be uniquely determined by these equations.

This universal property is expressed by saying that ( p) is the inverse limit of the system
(7.4.3); one writes

( p) = Lim←__i p i .

We will give the formal definition of this concept in the next section.
A very similar example of an inverse limit is that of the system

(7.4.5) . . . → k[x] ⁄ (x i+1) → k[x] ⁄ (x i ) → . . . → k[x] ⁄ (x2) → k[x] ⁄ (x) ,

where k[x] is the ring of polynomials in x over a field k, and (x i ) the ideal of all multiples of
x i. A member of k[x] ⁄ (x i ) can be thought of as a polynomial in x specified modulo terms of
degree ≥ i. If we take a sequence of such partially specified polynomials, each extending the next,
these determine a formal power series in x. So the inverse limit of the above system is the formal
power series ring k[[x]]. This ring is well known as a place where one can solve various sorts of
equations. Some of these results are instances of Hensel’s Lemma, referred to above; others, such
as the existence of formal-power-series solutions to differential equations, fall outside the scope of
that lemma.

We constructed the p-adic integers using the canonical surjections p i+1 → p i . Now there
are also canonical embeddings p i → p i+1 , sending the residue of n modulo p i to the
residue of pn modulo p i+1. These respect addition but not multiplication, i.e., they are
homomorphisms of abelian groups but not of rings. If we write out this system of groups and
embeddings,

(7.4.6) p → p2 → . . . → p i → p i+1 → . . .

it is natural to think of each group as a subgroup of the next, and to try to take their ‘‘union’’ G.
But they are not literally subgroups of one another, so we need to think further about what we want
this G to be.

Clearly, for every element x of each group in the above system, we want there to be an
element of G representing the image of x. Furthermore, if an element x of one of the above
groups is mapped to an element y of another by some composite of the maps shown in (7.4.6),
then these two elements should have the same image in G. Hence to get our G, let us form a
disjoint union of the underlying sets of the given groups, and divide out by the equivalence relation
that equates two elements if the image of one under a composite of the given maps is the other. It
is straightforward to verify that this is an equivalence relation on the disjoint union, and that
because the maps in the above diagram are group homomorphisms, the quotient by this relation
inherits a group structure. If we call the maps in (7.4.6) ei : p i → p i+1 , and the maps to the
group we have constructed qi : p i → G, then the identifications we have made have the effect
that for each i,

qi +1 ei = qi ,

i.e., that the diagram
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(7.4.7)

p → p2 → . . . → p i → p i+1 → . . .

... . . .

G

commutes. Since we have made only these identifications, G will have the universal property that
given any group H and family of homomorphisms ri : p i → H satisfying ri +1 ei = ri for each
i, there will exist a unique homomorphism r : G → H such that ri = r qi for all i. This
universal property is expressed by saying that the group G is the direct limit, Lim__→ i p i , of the
given system of groups.

Group theorists denote the direct limit G of the system (7.4.6) by the suggestive symbol p∞ .

Exercise 7.4:4. (i) Show that p∞ is isomorphic to the subgroup of ⁄ generated by the
elements [ p–1], [ p–2], ... .
(ii) Show that the ring of endomorphisms of the abelian group p∞ is isomorphic to ( p) .

Exercise 7.4:5. Let us call an element x of a group G completely divisible if for every positive
integer n there is a y ∈ |G | such that yn = x (or if G is written additively, ny = x).
(i) Show that no nonzero element of the additive group of ( p) is completely divisible.

On the other hand
(ii) Show that if A is any nonzero subgroup of ( p) such that ( p) ⁄ A is torsion-free, then

every element of ( p) ⁄ A is completely divisible; in fact, that ( p) ⁄ A is the underlying
additive group of a -vector-space.

7.5. Direct and inverse limits. Before we give abstract definitions of our two types of limits, let
us give an example showing that one may want to consider limits of systems indexed by more
general partially ordered sets than the natural numbers. Consider the concept of a germ of a
function at a point z of the complex plane or any other topological space X. This arises by
considering, for every neighborhood S of z, the set F(S ) of functions of the desired sort on the
set S (for instance, analytic functions if X is the complex plane), and observing that when one
goes from a neighborhood S to a smaller neighborhood T, one gets a restriction map F(S ) →
F(T ) (not in general one-to-one, since distinct functions on the set S may have the same
restriction to the subset T, and not necessarily onto, since not every admissible function on T
need extend to an admissible function on S ). To get germs of functions at z, one intuitively
wants to consider this system of sets of functions for smaller and smaller neighborhoods of z, and
‘‘take the limit’’. To do this formally, one takes a disjoint union of all the sets F(S ), and divides
out by the equivalence relation that makes two functions a ∈ F(S1), b ∈ F(S2) equivalent if and
only if they have the same image in F(T ) for some neighborhood T ⊆ S1 ∩ S2 of z.

If the sets of functions F(S ) are given with some algebraic structure (structures of groups,
rings, etc.) for which the above restriction maps are homomorphisms, we find that an algebraic
structure of the same sort is induced on the direct limit set. The key point is that given functions
a, b defined on different neighborhoods S and T of z, both will have images in the
neighborhood S ∩ T of z, and these images can be added, multiplied, etc. there, allowing us to
define the sum, product, etc., of the images of a and b in the limit set.

If we look for the conditions on a general partially ordered index set that allow us to reason in
this way, we get
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Definition 7.5.1. Let P be a partially ordered set.
P is said to be directed (or upward directed ) if it is nonempty, and for any two elements x, y

of P, there exists an element z majorizing both x and y.
P is said to be inversely directed (or downward directed ) if it is nonempty and for any two

elements x, y of P, there exists an element z which is ≤ both x and y; equivalently, if Pop

is directed.
(The word ‘‘filtered’’ is sometimes used instead of ‘‘directed’’ in these definitions.)

(If you did Exercise 5.2:9, you will find that these conditions are certain of the ‘‘interpolation’’
properties of that exercise.)

We can now give the general definitions of direct and inverse limits. The formulations we give
below assume that the morphisms of our given systems go in the ‘‘upward’’ direction with respect
to the ordering on the indexing set. It happens that in our initial example of ( p) , the standard
ordering on the positive integers is such that the morphisms went the opposite way; in our
construction of p∞ they went the ‘‘right’’ way; while in the case of germs of analytic functions,
if one orders neighborhoods of z by inclusion, the morphisms again go the ‘‘wrong’’ way
(namely, from the set of functions on a larger neighborhood to the set of functions on a smaller
neighborhood). This can be corrected formally by using, when necessary, the opposite partial
ordering on the index set. Informally, in discussing direct and inverse limits one often just
specifies the system of objects and maps, and understands that to apply the formal definition, one
should partially order the set indexing the objects so as to make maps among them go ‘‘upward’’.

Definition 7.5.2. Let C be a category, and suppose we are given a family of objects Xi ∈ Ob(C)
(i ∈ I ), a partial ordering on the index set I , and a system ( fi j ) of morphisms, fi j ∈ C(Xi , Xj )
(i < j, i, j ∈ I ) such that for i < j < k, one has fjk fi j = fik . (In brief, suppose we are given a
partially ordered set I , and a functor F : Icat → C .)

If I is inversely directed, then (Xi , fi j )I is called an inversely directed system of objects and
maps in C . An inverse limit of this system means an object L given with morphisms pi : L → Xi
which are compatible, in the sense that for all i < j ∈ I, pj = fi j pi , and which is universal for
this property, in the sense that given any object W and morphisms wi : W → Xi such that for all
i < j ∈ I, wj = fi j wi , there exists a unique morphism w : W → L such that wi = pi w for all
i ∈ I .

Likewise, if I is directed, then (Xi , fi j )I is called a directed system in C ; and a direct limit
of this system means an object L given with morphisms qi : Xi → L such that for all i < j ∈ I,
qi = qj fi j , and which is universal in the sense that given any object Y and morphisms yi :
Xi → Y such that for all i < j ∈ I, yi = yj fi j , there exists a unique morphism y : L → Y such
that yi = yqi for all i ∈ I .

(Synonyms sometimes used for inverse and direct limit are projective and inductive limit,
respectively.)

Loosely, one often writes the inverse limit object Lim←__i Xi , and the direct limit object
Lim__→ i Xi . More precisely, letting F denote the functor Icat → C corresponding to the inversely
directed or directed system (Xi , fi j ), one writes these objects as Lim←__ F and Lim__→ F
respectively.

The morphisms pj : Lim←__i Xi → Xj are called the projection maps associated with this inverse
limit, and the qj : Xj → Lim__→ i Xi the coprojection maps associated with the direct limit.

In the next-to-last paragraph of the above definition, by the ‘‘functor ... corresponding to the ...
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system (Xi , fi j )’’ we understand the functor which takes on the value Xi at the object i, the
value fi j at the morphism (i, j) (i < j in I ), and the value idXi

at the morphism (i, i ). In the
case where the indexing partially ordered set consists of the positive or negative integers, note that
the full system of morphisms is determined by the morphisms fi, i+1 (which can be arbitrary),
hence in such cases one generally specifies only these morphisms in describing the system.

Direct and inverse limits in Set may be constructed by the techniques we illustrated earlier:

Lemma 7.5.3. Every inversely directed system (Xi , fi j ) of sets and set maps has an inverse limit,
given by

(7.5.4)
Lim←__ Xi = {(xi ) ∈ I

..
I I Xi ! xj = fi j (xi ) for i < j ∈ I }, with

the pj given by projection maps, Lim←__ Xi ⊆ I
..
I Xi → Xj .

Likewise, every directed system (Xi , fi j ) of sets and set maps has a direct limit, gotten by
forming the disjoint union of the Xi and dividing out by the equivalence relation under which
x ∈ Xi and x ′ ∈ Xi ′ are equivalent if and only if they have the same image in some Xj
( j > i , i ′ ). 1

One may ask what the point is, in our definitions of direct and inverse limit, of requiring that
the partially ordered set I be directed or inversely directed. One could set up the definitions
without that restriction, and in most familiar categories one can, in fact, construct objects which
satisfy the resulting condition. But the behavior of these constructions tends to be quite different
from those we have discussed unless these directedness assumptions are made. (For instance, the
explicit description in Lemma 7.5.3 of the equivalence relation in the construction of a direct limit
of sets is no longer correct.) In any case, such a generalized definition would be subsumed by a
still more general definition to be made in the next section! So the value of the definition in the
form given above is that it singles out a situation in which the limit objects can be studied by
certain techniques.

Exercise 7.5:1. (i) If (Xi , fi j )I is a directed system in a category C , and J a cofinal subset
of I, show that Lim__→ J Xj =∼ Lim__→ I Xi ; precisely, that J will also be a directed partially ordered
set, and that any object with the universal property of the direct limit of the given system can be
made into a direct limit of the subsystem in a natural way, and vice versa.
(ii) Show that the isomorphism of (i) is an instance of a morphism (in one direction or the
other) between Lim__→ J Xj and Lim__→ I Xi which can be defined whenever J ⊆ I are both directed
and both limits exist, whether or not J is cofinal.
(iii) State the result corresponding to (i) for inverse limits. (For this we need a term for a
subset of a partially ordered set which has the property of being cofinal under the opposite
ordering; let us use ‘‘downward cofinal’’. When speaking of inverse systems, one sometimes
just says ‘‘cofinal’’, with the understanding that this is meant in the only sense that is relevant to
such systems.)
(iv) What can you deduce from (i) and (iii) about direct limits over directed partially ordered
sets having a greatest element, and inverse limits over inversely directed partially ordered sets
having a least element?
(v) Given any directed partially ordered set I and any noncofinal directed subset J of I,
show that there exists a directed system of sets, (Xi , fi j ), indexed by I, such that Lim__→ I Xi =∼∼ /
Lim__→ J Xj .
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Exercise 7.5:2. (i) Suppose (Xi , fi j )I is a directed system in a category C , and f : J → I a
surjective isotone map, such that J, like I , is directed. Show that Lim__→ j ∈ J Xf ( j) =∼
Lim__→ i ∈ I Xi .
(ii) Deduce that if D is a subcategory of C , and L is an object of C that can be written
as a direct limit of objects and morphisms in D , then L can be written as such a direct limit
taken over a directed partially ordered set of the form Pfin(S ), where S is a set, and Pfin(S )
denotes the partially ordered set of all finite subsets of S, ordered by inclusion.

The next few exercises concern direct and inverse limits of sets. We shall see in the next
chapter that direct and inverse limits of algebras have as their underlying sets the direct or inverse
limits of the objects’ underlying sets (assuming, in the case of direct limits, that the algebras have
only finitary operations); hence the results obtained for sets in the exercises below will be
applicable to algebras.

The construction of the p-adic integers was based on a system of surjective homomorphisms.
The first point of the next exercise looks at inverse systems with the opposite property, and the
second considers the dual situation for direct limits.

Exercise 7.5:3. (i) Let (Si , fi j ) be an inversely directed system in Set such that all the
morphisms fi j are one-to-one, and let us choose any element i0 ∈ I. Show that Lim←__i Si can
be identified with the intersection, in Si0

, of the sets fi i0
(Si ) (i < i0).

(ii) Let (Si , fi j ) be a directed system in Set such that all the morphisms fi j are onto, and
let us choose any element i0 ∈ I. Show that Lim__→ i Si can be identified with the quotient set of
Si0

by the union of the equivalence relations induced by the maps fi0 i : Si0
→ Si (i > i0).

Exercise 7.5:4. (i) Show that the inverse limit of any inverse system of finite nonempty sets is
nonempty.

(Suggestions: Either build the description of an element of the inverse limit up ‘‘from
below’’, by looking at partial assignments satisfying appropriate extendibility conditions, and
apply Zorn’s Lemma to get a maximal such assignment, or else ‘‘narrow down on an element
from above’’, by looking at ‘‘subsystems’’ of the given inverse system, i.e., systems of nonempty
subsets of the given sets carried into one another by the given mappings, and using Zorn’s
Lemma to get a minimal such subsystem. You might find it instructive to work out both of these
proofs.)
(ii) Show that (i) can fail if the condition ‘‘finite’’ is removed, even for inverse limits over the
totally ordered set of negative integers.
(iii) If you have some familiarity with general topology, see whether you can generalize
statement (i) to a result on topological spaces, with ‘‘compact Hausdorff’’ replacing ‘‘finite’’.

As an application of part (i) of the above exercise, suppose we are given a subdivision of the
plane into regions, possibly infinitely many, and are studying the problem of coloring these regions
with n colors so that no two adjacent regions are the same color. Let the set of all our regions be
denoted R, the adjacency relation A ⊆ R × R (i.e., (r1 , r2) ∈ A if and only if r1 and r2 are
adjacent regions), and the set of colors C. For any subset S ⊆ R, let XS denote the set of all
colorings of S (maps S → C) under which no two adjacent regions have the same color; let us
call these ‘‘permissible colorings of S ’’. If S ⊆ T, then the restriction to S of a permissible
coloring of T is a permissible coloring of S; thus we have a restriction map XT → XS . Now –

Exercise 7.5:5. (i) Show that in the above situation, the sets XS , as S ranges over the finite
subsets of R, form an inversely directed system, and that XR may be identified with the
inverse limit of this system in Set .
(ii) Deduce using Exercise 7.5:4(i) that if each finite family S ⊆ R can be colored, then the
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whole picture R can be colored. (Note: the assumption that every finite family S can be
colored does not say that every permissible coloring of a finite family S can be extended to a
permissible coloring of every larger finite family T !)

Exercise 7.5:6. (i) Show that if (Xi , fi j ) is a directed system of sets, and each fi j is one-to-
one, then the canonical maps qj : Xj → Lim__→ Xi are all one-to-one.
(ii) Let (Xi , fi j ) be an inversely directed system of sets such that each fi j is surjective.
Show that if I is countable, then the canonical maps pj : Lim←__ Xi → Xj are surjective.
(Suggestion: First prove this in the case where I is the set of negative integers. Then show
that any countable inversely directed partially ordered set either has a least element, or has a
downward-cofinal subset order-isomorphic to the negative integers, and apply Exercise 7.5:1(iii).)
(iii) Does this result remain true for uncountable I ? In particular, what if I is the opposite

of an uncountable cardinal?

Exercise 7.5:7. Show that every group is a direct limit of finitely presented groups.
(This result is not specific to groups. We shall be able to extend it to more general algebras

when we have developed the necessary language in the next chapter.)

The remaining exercises in this section develop some particular examples and applications of
direct and inverse limits, including some further results concerning the p-adic integers. In these
exercises you may assume the result which, as noted earlier, will be proved in the next chapter, that
a direct or inverse limit of algebras whose operations are finitary can be constructed by forming the
corresponding limit of underlying sets and giving this an induced algebra structure. None of these
exercises, or the remarks connecting them, is needed for the subsequent sections of these notes.

One can sometimes achieve interesting constructions by taking direct limits of systems in which
all objects are the same; this is illustrated in the next three exercises. The first shows a
sophisticated way to get a familiar construction; in the next two, direct limits are used to get
curious examples.

Exercise 7.5:8. Consider the directed system (Xi , fi j ) in Ab , where I is the set of positive
integers, partially ordered by divisibility (i considered less than or equal to j if and only if i
divides j), each object Xi is the additive group , and for j = ni, fi j : → is given by
multiplication by n.
(i) Show that Lim__→ Xi may be identified with the additive group of the rational numbers.
(ii) Show that if you perform the same construction starting with an arbitrary abelian group A
in place of , the result is a -vector-space which can be characterized by a universal property
relative to A.
(iii) Can you describe the ring multiplication of in terms of the description of its
underlying abelian group in (i)?

Exercise 7.5:9. For this exercise, assume known the facts that every subgroup of a free group is
free, and in particular, that in the free group on two generators x, y, the subgroup generated by
the two commutators x–1y–1x y and x–2y–1x2y is free on those two elements.

Let F denote the free group on x and y, and f the endomorphism of F taking x to
x–1y–1x y and y to x–2y–1x2y. Let G denote the direct limit of the system F → F →
F → ... , where all the arrows shown are the above morphism f .

Show that G is a nontrivial group such that every finitely generated subgroup of G is free,
but that G is equal to its own commutator, G = [G, G ]; i.e., that the abelianization of G is
the trivial group. Deduce that though G is ‘‘locally free’’, it is not free.

Exercise 7.5:10. Let k be a field. Let R denote the direct limit of the system of k-algebras
k[x] → k[x] → k[x] → ... , where each arrow is the homomorphism sending x to x2. Show
that R is an integral domain in which every finitely generated ideal is principal, but not every
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ideal is finitely generated. (Thus, for each ideal, the minimum cardinality of a generating set is
either 0, 1 or infinite.)

For the student familiar with the Galois theory of finite-dimensional field extensions, the next
exercise shows how the Galois groups of infinite-dimensional extensions can be characterized in
terms of the finite-dimensional case.

Exercise 7.5:11. Suppose E ⁄ K is a normal algebraic field extension, possibly of infinite degree.
Let I be the set of subfields of E normal and of finite degree over K. If F2 ⊆ F1 in I, let
fF1 , F2

: AutK F1 → AutK F2 denote the map which acts by restricting automorphisms of F1
to the subfield F2 .
(i) Show that the definition of fF1 , F2

makes sense, and gives a group homomorphism.

(ii) Show that if we order I by reverse inclusion of fields, then the groups AutK F (F ∈ I )
and homomorphisms fF1 , F2

(F1 ≤ F2) form an inversely directed system of groups.

(iii) Show that AutK E is the inverse limit of this system in Group .
(iv) Can you find a normal algebraic field extension whose automorphism group is isomorphic
to the additive group of the p-adic integers?

Exercise 7.5:12. (i) (Open question.) Suppose a group G is the inverse limit of a system of
finite groups. If G is a torsion group (i.e., if all elements of G are of finite order), must G
have finite exponent (i.e., must there exist an integer n such that xn = e is an identity of G )?

Though the above question is very difficult, the next two parts are reasonable exercises, and
may help render that question more tractable:
(ii) Show that (i) is equivalent to the corresponding question in which we assume that G is
the inverse limit of a system of finite groups indexed by the negative integers (under the natural
ordering), with all connecting morphisms surjective.
(iii) Translate (i) (possibly with the help of (ii)) into a question on finite groups which you
could pose to a person not familiar with the concept of inverse limit. (The more natural-
sounding, the better.)

Back to the p-adic integers, now. Part (i) of the next exercise seemed to me too simple to be
true when I saw it described (in a footnote in a Ph.D. thesis) as ‘‘well-known’’. But it is, in fact,
not hard to verify

Exercise 7.5:13. (i) Show that [[x]] ⁄ (x – p) =∼ ( p) , where [[x]], we recall, denotes the ring
of formal power series over in one indeterminate x, and (x – p) denotes the ideal of that
ring generated by x – p.
(ii) Examine other constructions of factor-rings of formal power series rings. For instance, can
you describe [[x]] ⁄ (x – p2) ? [[x]] ⁄ (x2 – p) ? [[x]] ⁄ ( px2 –1) ? R [[x]] ⁄ ( f (x)) for a general
commutative ring R and a polynomial or power series f (x), perhaps subject to some additional
conditions? R [[x, y]] ⁄ I for some fairly general class of ideals I ?

(If you consider [[x]] ⁄ (x – n) for n not a prime power, you might first look at
Exercise 7.5.15 below.)

Exercise 7.5:14. (i) Show that the function p of Exercise 7.4:2 satisfies p (xy) = p (x) +

p ( y) and p (x+y) ≥ min( p (x), p ( y)) (x, y ∈ ).
(ii) Deduce that ( p) is an integral domain.
(iii) Show that p can be extended in a unique manner to a ∪ {+ ∞}-valued function on
satisfying the properties noted in (i).
(iv) Show that the completion of with respect to the metric dp induced by the above
extended function p is the field of fractions of ( p) .
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(v) Show that elements of this field have expansions x = Σi ci p i, where again
ci ∈ {0, 1, ... , p –1}, and where i now ranges over all integer values (not necessarily positive),
but subject to the condition that the set of i such that ci is nonzero is bounded below.

This field is called the field of p-adic rationals, and denoted ( p) (or p ).

Is the ‘‘adic’’ construction limited to primes p, or can one construct, say, a ring of ‘‘10-adic
integers’’, (10)? One encounters a trivial difficulty in that there are two ways of interpreting this
symbol. But we shall see below that they lead to the same ring; so there is a well-defined object to
which we can give this name. However, its properties will not be as nice as those of the p-adic
integers for prime p.

Exercise 7.5:15. Let (10) denote the ring of all rational numbers which can be written with
denominators relatively prime to 10.
(i) Determine all nonzero ideals I ⊆ (10) and the structures of the factor-rings (10) ⁄ I.
Sketch the diagram of the inverse system of these factor-rings and the canonical maps among
them.
(ii) Show that the inverse system ... → 10 i → ... → 100 → 10 constitutes a downward
cofinal subsystem of the above inverse system.

Hence by Exercise 7.5:1 the inverse limits of these two systems are isomorphic, and we shall
denote their common value (10) . It is clear from the form of the second inverse system that
elements of (10) can be described by ‘‘infinite decimal expressions to the left of the decimal
point’’.
(iii) Show that the relation [2] .[5] = [0] in 10 can be lifted to get a pair of nonzero
elements which have product 0 in 100 , that these can be lifted to such elements in 1000 ,
and so on, and deduce that (10) is not an integral domain.
(iv) Prove, in fact, that (10) =∼ (2) × (5) .

A construction often used in number theory is characterized in

Exercise 7.5:16. Show that the inverse limit of the system of all factor-rings of by nonzero
ideals is isomorphic to I

..
I p ( p) , where the direct product is taken over all primes p. (This

ring is denoted .)

A feature we have not yet mentioned, but which is important in the study of inverse limits, is
topological structure. Recall that the inverse limit of a system of sets and set maps (Xi , fi j ) was
constructed as a subset of I

..
I Xi . Let us now regard each Xi as a discrete topological space, and

give I
..
I Xi the product topology. In general, a product of discrete spaces is not discrete; however,

a product of compact spaces is compact, so if our discrete spaces Xi are finite, their product will
be compact. It is not hard to show that the subset Lim←__ Xi ⊆ I

..
I Xi will be closed in the product

topology, and hence, if the Xi are finite, will be compact in the induced topology.

Exercise 7.5:17. (i) Verify the assertion that Lim←__ Xi ⊆ I
..
I Xi is always closed in the product

topology, and is therefore compact if all Xi are finite.
(ii) Show that Exercise 7.5:4(i) (and hence Exercise 7.5:5(ii)) can be deduced using the
compactness of Lim←__ Xi .
(iii) Show that the compact topology described above agrees in the case of ( p) with the
topology arising from the metric dp of Exercise 7.4:2.

In fact, results like Exercise 7.5:5(ii), saying that a family of conditions can be satisfied
simultaneously if all finite subfamilies of these conditions can be so satisfied, are called by
logicians ‘‘compactness’’ results, because the proofs can generally be formulated in terms of the
compactness of some topological space.
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I can now say that the usual formulation of the open question of Exercise 7.5:12(i) is, ‘‘If a
compact topological group is torsion, must it have finite exponent?’’ (Note that a topological group
is by definition required to have a Hausdorff topology.) The equivalence of this with the question
of that exercise follows from a deep result, that any compact group is an inverse limit of surjective
maps of compact Lie groups (see [101, Theorem IV.4.6, p.175]), combined with the observation
that if any of these Lie groups had positive dimension, we would get elements of infinite order.
Thus, any compact torsion group is an inverse limit of 0-dimensional compact Lie groups, i.e.,
finite discrete groups, under the product topology.

An inverse limit of finite structures is called profinite (based on the synonym ‘‘projective limit’’
for ‘‘inverse limit’’). I hope to eventually add to these notes a chapter treating profinite algebras
(meanwhile, for some interesting results see [48]), and objects with related conditions, such as pro-
finite-dimensionality. Let us look briefly at the latter condition in

Exercise 7.5:18. Let V be a vector space over a field k.
(i) Show that the dual space V* is the inverse limit, over all finite-dimensional subspaces
V0 ⊆ V, of the spaces V0*.
(ii) Can you get the result of (i) as an instance of a general result describing duals of direct
limits of vector spaces?
(iii) If you did Exercise 5.5:5(ii)-(iii), show that the topology described there is that of the
inverse limit of the finite-dimensional discrete spaces V0* referred to above. Show moreover
that the only linear functionals V* → k continuous in this topology are those induced by the
elements of V.

The remainder of this section constitutes a digression for curiosity’s sake.
Ordinary real numbers expressed in base p have expansions going endlessly to the right, and

finitely many steps to the left of the decimal point, while p-adic rationals (Exercise 7.5:14) have
expansions going endlessly to the left, and finitely many steps to the right. Is it possible to define
an arithmetic of elements with formal base-p expansions going endlessly in both directions?

Exercise 7.5:19. Let p be a prime. For every integer n, we have a subgroup pn ⊆ , hence
we can form the quotient group ⁄ pn . Observe that these groups are each isomorphic to the
circle group ⁄ , and form an inverse system ... → ⁄ p2 → ⁄ p → ⁄ → ... , where
the connecting maps take the residue of a real number modulo p i+1 to its residue modulo

p i. Let G be the inverse limit of this system of groups.
(i) Show how to express elements of G as formal doubly infinite series Σi ∈ ci p i, where
ci ∈ {0, 1, ... p –1}, (i = ... , –1, 0, 1, ... ). Show that such a representation is unique except for
the cases where for all sufficiently small i, ci either becomes constant with value 0 or
constant with value p –1.
(ii) Show that ( p) and both embed as dense subgroups of G.

Groups of the above sort appear in the theory of locally compact abelian groups, where they are
called ‘‘solenoids’’, from a term in electronics meaning ‘‘a hollow tightly wound coil of wire’’.
For students familiar with Pontryagin duality, the solenoid G constructed above will be seen to be
the dual of the discrete additive group of [p–1] (the ring of rational numbers of the form np– i).

The above group G may also be obtained as a completion: For p a prime, let us define a
function p on the real numbers, by letting p (x) be the supremum of all integers n such that
x ∈ pn . This will be + ∞ if x = 0, a nonnegative integer if x is a nonzero integer, a negative
integer if x is a noninteger rational number of the form m ⁄p i, and – ∞ if none of these cases
hold. (This does not agree with the definition of p (x) we gave in Exercise 7.5:14 for rational x,
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though it does for x in the subring [ p–1].) Now for any two real numbers x, y, define
dp, | |(x, y) = infz ∈ ( p

– p (x – z)
+ |z – y | ). Observe that although p

– p (x – z)
takes on the value

+ ∞ for most z, there exist values of z for which it is finite, so the infimum shown will be finite
for all x and y.

Exercise 7.5:20. (i) Show that dp, | | is a metric on the real line , and is bounded above.
(ii) Show how to obtain from a doubly infinite series Σi ∈ ci p i a Cauchy sequence in
under this metric, and show that all elements of the completion of in the metric dp, | | can be
represented by such series.
(iii) Deduce that this completion is isomorphic to the solenoid G of the preceding exercise.

Exercise 7.5:21. (i) Show that the topology on G arising from the above metric agrees with
that obtained by regarding G as an inverse limit of compact groups ⁄ pn . Deduce that the
additive group operations of extend continuously to this completion.
(ii) Let r be a real number, and r : → the operation of multiplication by r. Show that
r is continuous in the metric dp, | | if and only if r ∈ [p–1]. Deduce that multiplication as a
map × → is not bicontinuous in this metric. Hence the ring structure on does not
extend to the solenoid.
(iii) Can addition of elements of the solenoid be performed by the same operations on digits
that one uses to add ordinary real numbers in base p ? What goes wrong if we try to apply the
ordinary procedure for multiplying numbers in base p ?
(iv) If n is a positive integer not a power of p, show that the elements ‘‘n–1’’ of and of

( p) have distinct images under the embeddings of Exercise 7.5:19(ii). Deduce that the
additive group of the solenoid has nonzero elements of finite order. Can you characterize such
elements in terms of their ‘‘base p’’ expansions?
(v) Show that the solenoid described above is isomorphic to the group Ab( [p–1], ⁄ ).
(This is equivalent to the assertion of in the paragraph following Exercise 7.5:19(ii)).

7.6. Limits and colimits. Direct and inverse limits are similar in their universal properties to
several other constructions we have seen. Let us recall these.

Given two objects X1 , X2 of a category C , a product of X1 and X2 in C is an object P
given with morphisms p1 and p2 into X1 and X2 , and universal for this property.

Given a pair of parallel morphisms X1
→→ X2 in C , an equalizer of this system is an object

K given with a morphism k into X1 having equal composites with those two morphisms, and
again universal. To improve the parallelism with similar constructions, let us rename the morphism
k as k1 , and let k2 : K → X2 denote the common value of the composites of k1 with the two
morphisms X1

→→ X2 . Then we can describe K as having a morphism into each of X1 , X2 ,
such that the composite of k1 : K → X1 with each of the two given morphisms X1 → X2 is the
morphism k2 : K → X2 , and such that (K, k1 , k2) is universal for these properties. We see that
this is exactly like the universal property of an inverse limit, except that the indexing category .→→ .

is not of the form Icat for a partially ordered set I.
In the same way, a pullback of a pair of morphisms f1 : X1 → X3 , f2 : X2 → X3 can be

redefined as an object P given with morphisms p1 , p2 , p3 into X1 , X2 , X3 respectively,
satisfying f1 p1 = p3 and f2 p2 = p3 , and universal for this property.

Let us look at a case we haven’t discussed yet. If G is a group and S a G-set, then the
fixed-point set of the action of G on S means {x ∈ | S | ! (∀ g ∈ |G | ) gx = x}. If we denote the
action of each g ∈ |G | on S by gS : | S | → | S | , then the fixed-point set is universal among sets
A with maps i : A → |S | such that for all g ∈ |G | , i = gS i. Given an object X of any category
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C , and an action of a group G on X, we can look for an object with the same universal
property, and, if it exists, call it the ‘‘fixed object’’ of the action.

We have seen constructions dual to those of product, equalizer and pullback. A construction
dual to that of fixed object should take an object X of C with an action of G on it to an object
B of C with a map j : X → B unchanged under composition on the right with the actions of
elements of G, and universal for this property. Examples of this concept are examined in

Exercise 7.6:1. Let G be a group.
(i) If X is a set on which G acts by permutations, and x an element of X, one defines
the orbit of x under G to be the set Gx = {gx ! g ∈ |G |}. Let B be the set of such orbits
Gx, called the orbit space of X. Show that this set B, together with the map X → B taking
x to Gx, has the universal property discussed above.
(ii) Show that if G acts by automorphisms on (say) a ring R, then there is an object S in
the category of rings with this same universal property, but that its underlying set will not in
general be the orbit space of the action of G on the underlying set of R.
(iii) If G acts by automorphisms on an object X of POSet , again show the existence of an
object B with the above universal property. Show moreover that if G is finite, the underlying
set of B will be the orbit space of the underlying set of X, and the universal map X → B will
be strictly isotone; but that if G is infinite, neither statement need be true.
(iv) Do the assertions of (iii) about the case where G is finite remain true if we replace
POSet by Lattice?

As noted above, the universal properties we have been examining have statements formally
identical with those of direct and inverse limits, except that the partially ordered set I of that
definition is replaced by other categories D (for example the two-object category .→→ . or the
one-object category Gcat ). As names for the more general concepts embracing such cases, one
uses modified versions of the terms ‘‘direct limit’’ and ‘‘inverse limit’’.

Definition 7.6.1. Let C and D be categories, and F : D → C a functor.
Then a limit of F, written Lim←__ F or Lim←__D F(X ), means an object L ∈ Ob(C) given with

morphisms p(X ) : L → F(X ) for all X ∈ Ob(D), such that for f ∈ D(X, Y ) one has p(Y ) =
F( f ) p(X ), and universal for this property, in the sense that given any object M ∈ Ob(C) and
family of morphisms m(X ) : M → F(X ) (X ∈ Ob(D)) which similarly make commuting triangles
with the morphisms F( f ), there exists a unique morphism h : M → L such that for all X,
m(X ) = p(X ) h.

Likewise, a colimit of F, written Lim__→ F or Lim__→D F(X ), means an object L ∈ Ob(C) given
with morphisms q(X ) : F(X ) → L for all X ∈ Ob(D) such that for f ∈ D(X, Y ) one has q(X ) =
q(Y ) F( f ), and universal for this property, in the sense that given M ∈ Ob(C) and morphisms
m(X ) : F(X ) → M (X ∈ Ob(D)) making commuting triangles with the morphisms F( f ), there
exists a unique morphism h : L → M such that for all X, m(X ) = h q(X ).

The morphisms p(X ) in the definition of a limit may be called the projection morphisms, and
the q(X ) in the definition of colimit may be called the coprojection morphisms.

One says that a category C ‘‘has small limits’’ if all functors from small categories D into
C have limits; likewise C ‘‘has small colimits’’ if all functors from small categories into C
have colimits.

Remarks on terminology. Since the above concepts generalize not only direct and inverse
limits, but also a large number of other pairs of constructions, they might just as well have been
given names suggestive of one of the other pairs. I think that the reason ‘‘limit’’ and ‘‘colimit’’
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