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1. Introduction

In this survey we discuss the Yang-Mills equations, one of the central non-linear PDEs in
theoretical physics and differential geometry. We will define the equations and explain their
importance in quantum field theory and the study of four-manifolds. Then we will discuss
some relations of Yang-Mills theory to many aspects of non-linear PDE theory, like variational
problems and solitons. Finally, we also summarize an array of results in understanding
properties of these equations and the existence and explicit construction of solutions in special
geometries. This includes an in depth look at known instanton solutions in R4 with some
helpful graphics.

2. Background on Bundles and Connections

We review some standard geometric material needed to define the equations. This can all be
found in Kobayashi and Nomizu’s standard text [15].

Recall a principal G-bundle is a fibre bundle π : P →M with a right G-action of a Lie group
G that preserves the fibres and acts freely and transitively on them. A principal connection
on a principal bundle P is an element A ∈ Ω(P, g); i.e. a one-form on P with values in the
Lie algebra of G. One can think of this as a projection from TP to the vertical subbundle
V P = kerπ∗ ∼= P × g.

Given a principal G-bundle P and a vector space V with a G-representation, we may define
an associated bundle:

E = P ×G V := P × V/(p · g, v) ∼ (p, g · v),

which is a vector bundle with fibre isomorphic to V and a structure group G.
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Example 2.1. The group G acts naturally on its Lie algebra via the adjoint action Ad. So
for a pricipal G bundle P , we obtain the adjoint bundle P ×G g, which we denote ad(P ).

A connection or covariant derivative on a vector bundle E is a linear map ∇ : Γ(E) → Ω1(E)
satisfying a Leibniz rule,

∇(fs) = f∇(s) + df ⊗ s, ∀ f ∈ C∞(M), s ∈ Γ(E).

A principal connection A on P defines a connection ∇A on any associated bundle E. In a
local trivialization τ , ∇A may be written as the usual exterior derivative on vector-valued
functions plus some g-valued 1-form Aτ . Because of this, the space of connections on E is an
infinite dimensional affine space modelled on Ω1(ad(P )).

A gauge transformation ψ is a bundle automorphism respecting the G-structure. Such a
gauge transformation acts on connections via,

∇ψ(A)s = ψ∇A(ψ
−1s).

The collection of gauge transformations form the gauge group, denoted G .

For a fixed connection A, the connection extends to family of maps dA : Ωk(E) → Ωk+1(E),
collectively called the exterior covariant derivative, determined by dA = ∇A for k = 0 and
the Leibniz rule,

dA(ω ∧ µ) = (dAω) ∧ µ+ (−1)kω ∧ dAµ,

for ω ∈ Ωk(E).

We have a map d2A : Ω0(E) → Ω2(E) which we may regard as an ad(P )-valued (or more
generally End(E)-valued) 2-form FA called the curvature. The curvature always satisfies the
Bianchi identity: dAFA = 0. We see that FA in a trivialization τ has the form,

(2.1) F τA = dAτ +Aτ ∧Aτ .

Also under a gauge transformation ψ, FA is mapped to ψFAψ
−1.

3. The Yang-Mills Equations

Suppose X is a Riemannian n-manifold. Recall the Hodge-star operator ⋆ : Ωk(X) →
Ωn−k(X) defines a natural inner product on k-forms,

(ω, µ) =

∫
X
ω ∧ ⋆µ =

∫
X
⟨ω, µ⟩ dvol ,

where ⟨, ⟩ is the inner product on tangent spaces defined by the metric and dvol is the
Riemannian volume form. If g is endowed with an invariant symmetric bilinear form (for
example the Killing form if G compact) then ad(P ) has an induced inner product on its
fibres. Combining this with the inner product on forms induced by X’s metric, we have a
metric on spaces of forms valued in g and ad(P ).

For a vector bundle E →M with connection A, we may define a formal adjoint to the exterior
covariant derivative d∗A : Ωk(E) → Ωk−1(E) given by,∫

X
⟨dAω, µ⟩ dvol =

∫
X
⟨ω,d∗Aµ⟩ dvol

for ω ∈ Ωk(E), µ ∈ Ωn−k−1(E) .
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The Yang-Mills equations are the non-linear PDEs for a connection A on a vector bundle E
over a Riemannian manifold X in terms of a condition on A’s curvature:

(3.1) d∗AFA = 0.

This can be equivalently expressed as dA ⋆ FA = 0. The non-linearity of (3.1) arises from
both non-linear terms in FA (see (2.1)) and the dependence of dA on A.

Using the inner product on g, we may define the L2 norm of the curvature:

∥FA∥2L2 =

∫
A
⟨FA, FA⟩g dvol .

That is, we wedge the 2-form part of FA, multiply the norm squared of the ad(P ) part, and
then integrate. We call the integrated term,

LYM = ⟨FA, FA⟩g,

the Yang-Mills Lagrangian. We will show in section 5 that the corresponding Euler-Lagrange
equations reproduce the Yang-Mills equations.

Example 3.1. In the case where X is four dimensional, the Hodge star operator ⋆ defines an
automorphism of the bundle of two forms and the Bianchi identity dAFA = 0 then gives that
(anti-)self dual connections or instantons A, defined by ⋆FA = ±FA, solve the Yang-Mills
equations. These are an example of the phenomena of solitons, which appear frequently in
the study of certain classes of non-linear PDE; we will explore this fact later. We frequently
refer to ⋆FA = ±FA as the ASD equations and solutions as ASD connections for short.

Example 3.2. Consider a trivial U(1) complex line bundle over R1,3, meaning R4 with the
Minkwoski metric. Suppose A is a connection, i.e. an ordinary one-form and its curvature
is F = dA, since the non-linear term vanishes as U(1) is abelian. We may expand F in the
following way,

F = (E1 dx+ E2 dy + E3 dz) ∧ dt+B1 dy ∧ dz +B2 dz ∧ dz +B3 dx ∧ dy ,

for 3-vector valued functions E⃗, B⃗. We can also let,

A =W1 dx+W2 dy +W3 dz − φdt .

We find that E⃗ = ∇φ and B⃗ = ∇× W⃗ .

Enforcing the Yang-Mills equations and Bianchi identity, dF = d ⋆ F = 0 gives the following

four equations for E⃗ and B⃗:

∇ · E⃗ = 0, ∇ · B⃗ = 0, ∇× B⃗ = ∂tE⃗, and ∇× E⃗ = −∂tB⃗.

These are the vacuum Maxwell’s equations for E⃗ and B⃗: the electric and magnetic fields. In

this interpretation, the covariant version of A, (φ, W⃗ ), is what is usually called the electro-
magnetic four-potential and F is the electromagnetic field tensor.

Example 3.3. Consider a trivial SU(2)-bundle over R4. We may write the connection A as a
su(2)-valued field in four-vector notation with matrix-valued components Aµ. The curvature
tensor then has components,

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].
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The Yang-Mills Lagrangian is written as ⟨Fµν , Fµν⟩g and the associated Yang-Mills equations

can be expressed as,
∂µF

µν + [Aµ, F
µν ] = 0.

The ASD equations in this Euclidean case are,

Fµν = ± ∗ Fµν = ±1

2
εµναβF

αβ.

4. Some Motivation

4.1. Physics. The Yang-Mills equations are important in physics because they are in some
sense the simplest example of a gauge theory. As we saw above, in the U(1) case the Yang-
Mills equations reduces to the vacuum Maxwell’s equations [9, pp. 38]. It was the insight of
physicists Chen-Ning Yang and Robert Mills in the 1950s that this could be extended fruitfully
to non-abelian groups [22]. Indeed, the equations of motion of the fundamental forces (or
gauge bosons) of particle physics are described in quantum field theory by the quantized
versions of the Yang-Mills equations for gauge groups SU(2) × U(1) in electroweak theory
and SU(3) in quantum chromodynamics (see part three of [17] for an in-depth treatment
of the physics and [12] for a mathematical description). The complete Lagrangian of the
standard model of particle physics can be written as:

LSM = −1

4

〈
FW+B
µν , FµνW+B

〉
su(2)⊕u(1)

− 1

4

〈
FGµν , F

µν
G

〉
su(3)

+ LD + LH + LY .

The first two kinetic terms are the Yang-Mills Lagrangians for gauge fields: for the W and Z
bosons and photon (electroweak theory), and for the gluons (QCD). The remaining potential
terms are the Dirac Lagrangian governing fermions like electrons, neutrinos, and quarks
and their interactions with gauge fields, the Higgs Lagrangian governing the interactions of
gauge fields and the Higgs field that endows them with mass, and the Yukawa Lagrangian
governing the interaction of fermions with the Higgs field [12, Chapter 8]. We describe the
general Yang-Mills Lagrangian in the next section; the form of this Lagrangian essentially
implies that Yang-Mills theory provides the kinetic input of fundamental physics.

While these physical theories concern the quantized version of Yang-Mills theory, the classical
theory is still of interest to better understand the quantum case. One is often interested in
properties of the equations which are preserved or broken under quantization, requiring an
understanding of the classical equations. Additionally, as we discuss in the next section, clas-
sical solutions like instantons on R4 can correspond directly to phenomena in the quantum
theory of R1,3; hence an understanding of the classical theory gives predictions for the quan-
tum one. Lastly, the formalization of Yang-Mills theory has also been of profound interest
to mathematical physicists. For instance, one of the seven Millenium Prize Problems deals
with finding a rigorous construction of a quantum Yang-Mills theory in R4 for any compact
simple structure group G so that there is a “mass gap,” meaning a positive minimal mass for
a particle in the theory [14].

4.2. Geometry. The Yang-Mills equations became of interest to differential geometers in
part due to the work of Simon Donaldson. As we prove in 5.1, the Yang-Mills equations and
their four-dimensional refinement the ASD equations are invariant under the action of G .
Letting B denote the space of solutions to the ASD equations on a given vector bundle (with
topology induced from metric on space of connections), we may define a quotient space,

M(X, g,E) = B/G ,
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called the moduli space of ASD Yang-Mills connections. It turns out that under conditions
on the vector bundle E, for a generic metric g, M is a smooth manifold apart from finitely
many classifiable singularities. The spaceM can also be shown to be orientable with a natural
compactification (these facts rely on many analytic results about the equations developed by
Uhlenbeck, Taubes, and others) [9, Chapters 4,5]. Donaldson used properties of these moduli
spaces to prove novel theorems about and construct invariants of smooth four-manifolds. This
theory is thoroughly exposited in Donaldson and Kronheimer’s well known monograph [9],
and detailed more accessibly in the book of Freed and Uhlenbeck [11]. The central result is as
follows. Recall for X four dimensional, taking the cup product of two elements of H2(X;Z)
and pairing with [X] ∈ H4(X;Z) defines a symmetric bilinear pairing on H2(X;Z). We may
interpret this as an invertible integer matrix Q called the intersection form.

Theorem 4.1 (Donaldson’s Theorem [7]). If a simply connected smooth four manifold X
has a definite intersection form QX , i.e. the eigenvalues of Q are all positive or all negative,
then Q is diagonalizable over Z.

This result rules out many possible forms from being the intersection form of a smooth simply
connected manifold. Since manifolds realizing these other forms exist in the topological
category, we are led to many examples of non-smoothable topological four-manifolds. This
result led to the proof that R4 admits (uncountably many) non-standard smooth structures,
in contrast to Euclidean space in all other dimensions [18]. Donaldson won a Fields medal for
his work and spawned increasing interest among geometers in studying PDEs coming from
particle physics, developing the field of mathematical gauge theory. Other gauge theories have
later been developed, also of interest to geometers, including Seiberg-Witten and Chern-
Simons theories. Gauge theory has been one of the most fruitful approaches to resolving
problems in low-dimensional topology and geometry in the last thirty years (see [8] for a
short summary).

Remark 4.2. In the following sections we will mostly restrict to the theory of when X is four
dimensional. This is obviously natural from a physics viewpoint, and as we have seen it turns
out to be where many of the geometric applications of gauge theory have been.

5. PDE Phenomena

5.1. A Variational Approach. Recalling the Yang-Mills Lagrangian, we can define a nat-
ural functional on the space of connections, analogous to the Dirchlet energy, namely:

(5.1) S(A) = ∥FA∥2L2 =

∫
X

LYM dvol .

Proposition 5.1. The Euler-Lagrange equations for the functional S(A) in (5.1) are the
Yang-Mills equations.

Proof. Suppose A is a critical point of S and suppose we vary A in the direction of a ∈
Ω1(ad(P )). We calculate,

d

dt

∣∣∣∣
t=0

S(A+ ta) =
d

dt

∣∣∣∣
t=0

∫
X
⟨FA+ta, FA+ta⟩g dvol .
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By (2.1),

=
d

dt

∣∣∣∣
t=0

∫
X
⟨dA(A+ ta) + (A+ ta) ∧ (A+ ta),

dA(A+ ta) + (A+ ta) ∧ (A+ ta)⟩g dvol

=
d

dt

∣∣∣∣
t=0

∫
X
⟨FA + tdAa+ t2a ∧ a, FA + tdAa+ t2a ∧ a⟩g dvol

=

∫
X
2⟨dAa, FA⟩g dvol

= 2

∫
X
⟨a,d∗AFA⟩g dvol .

We conclude A is a critical point if and only if this vanishes for all a ∈ Ω1(ad(P )). From
definiteness of our inner product, we obtain the desired result. □

From information on characteristic classes, one can deduce the following result which makes
the simplification of Yang-Mills to the first order ASD equations quite natural.

Proposition 5.2. If X is four dimensional, the absolute minima of the action functional S
occur precisely at the (anti-)self dual solutions of the Yang-Mills equations.

Corollary 5.3. The Yang-Mills equations are a gauge theory, by which we mean (3.1) is
invariant under the action of the gauge group G . The ASD equations also are gauge invariant.

Proof. Since we choose an invariant inner product on ad(g), for ψ ∈ G ,

S(ψ ·A) = ∥ψFAψ−1∥2L2 = ∥FA∥2L2 = S(A).

The result for Yang-Mills cleary follows.

The result for the ASD equation follows either from Proposition 5.2 above or noticing that
the star operator and gauge transformations commute. □

5.2. Sobolev Estimates and Elliptic Operators. To study analytic details of these equa-
tions, one is often led to generalize from the smooth setting and work with connections and
curvature in larger Sobolev spaces. In these spaces, one has many standard results from
functional analysis and PDE theory at one’s disposal to apply in proving theorems. We state
a few standard results in Sobolev theory that are critical to gauge theory. Our presentation
is based on that in [9, Appendix]; a standard reference for these results is [6].

Proposition 5.4 (Sobolev Embedding). If X is an n-dimensional compact manifold, then
there is a bounded inclusion map from the Sobolev space of sections L2

k to the space of r-
continuously differentiable section Cr whenever k − n

2 > r.

Corollary 5.5. A section on a compact manifold which lies in L2
k for each k is smooth.

Proposition 5.6 (Elliptic Regularity). Suppose D is an order ℓ elliptic operator on a vector
bundle E → X over a compact manifold. For each k ≥ 0, there is some constant C depending
on k, so that for all sections s ∈ Γ(E),

∥s∥L2
k+1

≤ C(∥Ds∥L2
k
+ ∥s∥L2).
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Proposition 5.7 (Sobolev Inequality). Let E → X be a vector bundle over a compact n-
manifold. Suppose k ≥ ℓ and

k − n

p
≥ ℓ− n

q
.

Then there is a bounded inclusion map of spaces of sections Lpk ↪→ Lqℓ .

From this, one can deduce various results about Soblev multiplication. I.e. that the product
of a section in some Sobolev space and a function in another Soblev space must also lie in
some Sobolev space.

Proposition 5.8 (Fredholm Alternative). Let D : Γ(E) → Γ(F ) be an elliptic operator
between sections of vector bundles with given metrics over a compact manifold X. Then D
has an elliptic adjoint D∗ and D is Fredholm (its kernel and cokernel are finite dimensional).
Moreover, a section s ∈ Γ(F ) is in the image of D if and only if ⟨s, t⟩ = 0 for all t ∈ kerD∗.

Let d+ denote the usual exterior derivative on forms composed with the projection to the
space of self-dual forms with respect to a metric on X. One can show that both d + d∗ and
d++d∗ are elliptic operators. For a given connection A, the operator d∗AdA is a second order
elliptic operator. Hence we may apply the elliptic regularity and Fredholm alternative results
to study these operators.

A common application of these ideas in gauge theory (and more broadly in studying weak
solutions of many elliptic PDEs) is the technique of “elliptic bootstrapping.” Here, one pos-
sesses some section ψ ∈ L2

k so that for some (say first order) elliptic operator D, Dψ can be
written in terms of ψ and perhaps some other known quantities which are bounded pointwise
or belong to certain Sobolev spaces. Using Sobolev multiplication and Sobolev inequalities,
we may be able to bound the expression for Dψ in L2

k. Then, elliptic regularity implies that
ψ is bounded in its L2

k+1 norm. In certain circumstances, we may be able to extend this

bootstrapping inductively so that ψ ∈ L2
i implies ψ ∈ L2

i+1 for each i, and hence ψ is in L2
k

for every k. The Sobolev embedding theorem then implies that ψ is actually smooth. This
technique is often useful to show, modulo changes of gauge, we may take our solutions to a
certain gauge theory PDE like the ASD or Yang-Mills equations to be smooth objects and
to obtain some sort of compactness for the moduli space of solutions.

5.3. Solitons of the Theory. We have described instanons as (anti-)self dual solutions of
the Yang-Mills equations. These solutions are so named because they are spatially and tem-
porally localized in R4 with the Euclidean metric. The local nature of instantons, combined
with the fact that two instantons may scatter off each other [10, §8.2.1], gives these solutions
the same character as localized wave packet solutions that occur for many PDEs like the KdV
equations and the nonlinear Schrödinger equation. The important class of solutions to non-
linear problems with these properties are commonly called solitons. One can often produce
solitons from the inverse scattering transform and a Lax pair. There is a more complicated
analogue for instantons called twistor theory, first developed by Roger Penrose. A detailed
account of this theory is given in Chapter 7 of [10].

These insantons have several other important properties from a physics perspective. As we
described above, they are absolute minima of the action. This has the interpretation of being
zero energy solutions, and so instantons may be thought of as vacuum fluctuations. One can
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also associate to these solutions an integer called its topological charge (see (6.1)).1 This
integer can be thought of as the number of instantons in our solution, which corresponds
physically to how many local wave packets it contains [1, pp. 463]. We construct some of
these N -instanons in the next section. It is a general fact that classical Euclidean solutions
influence the quantum theory of tunneling for Minkowski solutions. The consequence of this
is that in quantum Yang-Mills theory there are a family of topological vacua, parameterized
by the integers, and the N -instanon classical solutions corresponds to tunneling between
these vacua, with the change in state dependent on N [1, pp. 463].

A related family of solutions are merons, which are localized and carry half a unit of topo-
logical charge. These again have physical significance in the quantum theory of tunneling.
There are predictions that the charge-one instanton solutions should be decomposable into
two merons [1, pp. 464]. At isolated moments of time, the meron solutions will appear like
magnetic monopoles. So, merons resemble short-lived monopoles that appear out of the vac-
uum [1, pp. 496]. There are also more general one-parameter families of elliptic solutions
which interpolate between a charge one instanton and a pair of charge one half merons [1,
pp. 497].

A physically interesting extension of the Yang-Mills equations are the Yang-Mills-Higgs equa-
tions. In addition to the usual structures of Yang-Mills theory, we consider Φ to be a section
of E. The Yang-Mills-Higgs Lagrangian is,

LYMH = −1

2
⟨FA, FA⟩g + ⟨dAΦ, dAΦ⟩E .

The corresponding Yang-Mills-Higgs equations are:

dA ⋆ FA + [Φ, dAΦ] = 0 and dA ⋆ dAΦ = 0

subject to the boundary condition limx→∞ |Φ|(x) = 1. Physically, these equations describe
a gauge field which is coupled to the Higgs field [12, 7.6]. Thus it gives a massive version of
the Yang-Mills equations.

The Yang-Mills-Higgs equations have several interesting classes of solutions. The theory gives
rise to monopoles, which generalize the hypothetical magnetic monopoles of the U(1) theory.
These solutions are localized and can be made with finite energy. A related class of solutions
are dyons, which are essentially monopoles allowed to have electric charge [1, pp. 464]. A
third family consisting of the solitons in the abelian (U(1)) two dimensional Yang-Mills-Higgs
theory are vortices. This theory has applications to the theory of superconductivity, where
these solutions appear naturally. The vortices are so named because the field Φ, which lies in a
two dimensional bundle, acts like a rotational vector field around the soliton of the theory [13,
1.6]. A thorough introduction to the Yang-Mills-Higgs equations and these special solutions
is provided in Jaffe and Taube’s monograph [13].

6. Explicit Constructions and Existence Results

6.1. Gauge Fixing and Removable Singularities. Since the Yang-Mills equations are
gauge invariant, it can be useful to find representatives in a certain gauge equivalence class of
solutions with special properties. One may think of this as a “gauge fixing,” where we select
a certain slice of solutions from the total space and remove the extra degrees of freedom. A

1This is called a topological charge because the charge relates to the homotopy type of maps S3 → G (this
comes from mapping the asymptotic data of our solution at infinity, thought of as a copy of S3, to G). It is a
non-trivial fact that π3(G) = Z for simple compact Lie groups [3] and so the charge is typically integer valued.
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particular common choice generalizes the notion of Coloumb gauge from electromagnetism
where the magnetic vector potential is chosen to be divergenceless. We say a connection B
is in the Coloumb gauge relative to A if d∗A(B − A) = 0. The central result here is that on
the n-ball we can place connections with small enough curvature into Coulomb gauge.

Theorem 6.1 (Uhlenbeck’s Lemma, 1982 [20]). Let X = Bn and G be a compact subgroup

of SO(ℓ). Let 2p ≥ n and consider a connection one-form Ã ∈ Lp1(B
n,Rℓ × ad(P )). There

are constants ε(n) > 0, C(n) <∞ so that if,

∥F∥n/2
Ln/2 ≤ ε,

then ∇
Ã
= d + Ã is gauge equivalent via ψ ∈ Lp2(B

n, G) to a connection ∇A so that,

d∗A = 0 and ∥A∥Lp
1
≤ C∥F∥Lp .

One motivation for the utility of this result in Yang-Mills theory is that the ASD equation,
which we can write locally as d+A + (A ∧ A)+, is not elliptic at the highest order since d+

is not elliptic. But if we impose the Coulomb condition d∗A = 0, then we can rewrite the
first order linearization of the ASD equations as (d+ + d∗)A = 0. Since d+ + d∗ is elliptic,
the theory of elliptic regularity described above can now be wielded in studying the ASD
equations.

In the same year, Uhlenbeck also published work detailing how, up to a change of gauge, the
domain of solutions can be extended in four-dimensions.

Theorem 6.2 (Uhlenbeck’s Removable Singularities Theorem [21]). Let A be a Yang-Mills
connection on a G-bundle E, with G ⊂ SU(ℓ), over the punctured 4-ball B4 \ {0}. Suppose
∥FA∥L2 is finite. Then there is a gauge transformation ψ under which ψ(A) extends to a
smooth Yang-Mills connection on a bundle E over B4.

Corollary 6.3 ([21]). Suppose A is a Yang-Mills connection on a bundle E over R4 so that
∥FA∥L2 is finite. Let f : S4 \ {0} → R4 be the stereographic projection map. Then f∗A is a
Yang-Mills connection on f∗E over S4 \ {0} extending under some gauge transformation to
a Yang-Mills connection on a bundle f∗E over S4.

6.2. The BPST Construction and its Generalizations. The most well known explicit
Yang-Mills solution is a charge one instanton solution due to Belavin, Polyakov, Schwartz,
and Tyupkin from 1975, commonly called the BPST instanton [5]. This is a self dual solution
on R4 with structure group SU(2). We define 2× 2 matrices,

ωa = iσa, a = 1, 2, 3, and ω4 =

(
1 0
0 1

)
,

where σa are the Pauli matrices. Then we define the ’t Hooft tensors,

ηµν = −1

4
(ω†
µων − ω†

νωµ).

The BPST solution is then given by,

Aµ(x) =
2xν

x2 + λ2
ηµν
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for a parameter λ > 0. The corresponding curvature is given by,

Fµν(x) =
4λ2

(x2 + λ2)2
ηµν .

The topological charge we discussed earlier is given by the second Chern class,

(6.1) c2(F ) = − 1

16π2

∫
R4

tr(Fµν ⋆ Fµν) dx .

Different topological charges correspond to different asymptotic behaviours of solutions. On
S4, different topological charges mean the connection A is associated with a different isomor-
phism class of vector bundle over S4. For the BPST instanton we calculate,

c2(F ) =
6

π2

∫
R4

λ4

(x2 + λ2)4
dx = 1.

In Figure 1, we graph the tensor coefficients of the BPST solution restricted to two input
variables. We can also graph the curvature as in Figure 2.

Figure 1. Three plots of the xy slice of the ηi1 coefficient of the BPST
instanton for λ = 1/4. The solution is localized in space and time.

These one instanton solutions are parameterized by five variables, their centre x0 ∈ R4 and
their scale λ > 0. After a gauge transformation, we may write our BPST solution as,

(6.2) Ãµ(x) = (∂ν log f)ηµν where f(x) = 1 +
λ2

x2
.

The details of this are presented in the book of Yang and the paper of Actor [1, 23]. One can
generalize to a wider class of functions,

(6.3) f(x) = 1 +
N∑
j=1

λ2j
(x− pj)2

, λj > 0, pj ∈ R4.
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(a) λ = 2 (b) λ = 1 (c) λ = 0.75

Figure 2. Three plots of the xy slice of the ηij coefficient of the BPST
instanton’s curvature for different values of λ. We see how the solutions have
a localized focus, appearing like a point-particle or soliton. Their size depends
quite strongly on the magnitude of λ.

In 1976, ’t Hooft realized that these functions give N -instanton solutions when f is plugged

into the formula for Ã in (6.2) [23, §3.1.3]. This gives solutions of topological charge N
consisting of N pointlike solitons with centres pj and scales λj . A couple examples are given
in Figure 3. The curvatures of these N -instantons add linearly, as seen in Figure 4.

(a) (pi, λi) = ((2,−5), 0.3), ((−3, 1), 0.5) (b) (pi, λi) = ((3,−2), 0.4), ((−3, 3), 0.6), ((4,−3), 0.5)

Figure 3. Plots of coefficients for N = 2 and N = 3 instanton solutions. Far
apart instantons do not interact, while nearby ones add in a form of non-linear
superposition.

There is also an explicit two-meron solution of the Yang-Mills SU(2) equation on R4 due to
deAlfaro, Fubini, and Furlan from 1976 [1, pp. 505]. Given a, b ∈ R4 we construct a singular
two-meron solution with merons centered at a and b as,

A0(x) =
1

2

(
(x− a)µ
(x− a)2

σ0 +
(x− b)µ
(x− b)2

)
σµ,

Ai(x) = −
[
ϵiµν

(
(x− a)ν
(x− a)2

+
(x− b)ν
(x− b)2

)
+ δiµ

(
(x− a)0
(x− a)2

+
(x− b)0
(x− b)2

)]
σµ, i = 1, 2, 3.
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(a) (b)

Figure 4. Plots of coefficients for the curvatures corresponding to the con-
nections from Figure 3; the scales have all been doubled to aid in visibility.
Here we can see that the curvatures add linearly.

The corresponding formula for the curvature is too complicated to state here, but one can
deduce it from the equations given in [1]. The topological charge density of this connection
(i.e. the integrand of (6.1)) will be one half times the sum of two δ functions centered at a
and b. A plot of a two-meron connection is given in Figure 5.

(a) σ0 coefficient of A0 (b) σ1 coefficient of A0

Figure 5. Plots of coefficients for the two meron connection with merons
centered at (t, x) = (−1, 3) and (2,−4). The corresponding curvatures should
be highly localized at these points. Our solution is singular at the meron’s
centres, similar in form to a monopole. We may also think of our two merons
as a one-instanton connection which has been split into two charge-1/2 pieces.

A one-meron solution is constructed by moving one of our merons to infinity. We can similarly
constuct anti-meron solutions and meron-anti-meron pairs. While they are known to exist,
no one has found general explicit formulae for higher numbers of meron-anti-meron solutions
[1, pp. 506]. To see the connection to instantons, one can compute that for a single instanton
centred at 0, as the scale λ approaches zero, the solution becomes two merons both at
the origin [1, pp. 496]. To better understand merons, their connection to instantons, and
whether they possess a physical interpretation in the quantum theory, may require an explicit
construction of general meron solutions.
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6.3. The ADHM Construction. One can observe from (6.3) that ’t Hooft’s solutions give
a 5N parameter of N -instanton solutions. This has been enlarged to an explicit family of
5N+4 solutions, and index theory implies there should in fact be an 8N−3 parameter family
of solutions [23, pp. 87].

Since our instantons have finite curvature density, Uhlenbeck’s Removable Singularities the-
orem implies that our instantons on R4 can be compactified to instantons on S4. We now
briefly discuss this problem of classifying instantons on S4.

The classification of instantons on S4 was discovered independently by Atiyah and Hitchin,
and Drinfield and Manin in 1976. They classify these instantons for SU(2) and indeed any
compact Lie group in a well known two page paper [2]. Their work is now referred to as the
ADHM construction.

Despite being so terse, the result is rather technical and so we do not repeat their methods
of construction here (a pedagogical account is given in chapter three of [9] for the interested
reader). The result is proved by a mixture of algebraic geometry and linear algebra. In an
earlier work, Atiyah, Hitchin, and Singer show that instanons correspond to real algebraic
bundles on CP 3.2 The ADHM construction essentially re-expresses this algebro-geometric
data in terms of a pair of complex Hermitian vector spaces, and certain chosen linear maps
[2]. The ’t Hooft N -instanton solutions above are one output of this more general classifica-
tion.

A certain interesting related result is due to Taubes, who shows that instantons exist on a
wide class of four-manifolds.

Theorem 6.4 (Taubes, 1982, [19]). Let X be a compact oriented manifold and G be a compact
semi-simple Lie group. Suppose that X has no non-trivial self dual closed (harmonic) two
form. Then there is a principal G-bundle P → M for which M admits an anti-self dual
connection.

The proof of this result is an interesting mix of the techniques and ideas we have encountered
so far. Taubes uses the ADHM construction of instantons we have just seen and essen-
tially pastes the localized region of high-curvature into a neighbourhood of the manifold. To
show this can be smoothed into a proper instanton requires various results involving elliptic
operators and Sobolev theory of the kind we considered in section 5.2.

6.4. Existence and Uniqueness Theory in R1,3. The perpetual quest of PDE theory
is proving existence and uniqueness for equations of interest. We would be remiss without
mentioning at least one result in this direction. The Yang-Mills equations consist of a wide
range of equations and so the general question of existence and uniqueness is not settled.
However, in Minkwoski space R1,3 with a general compact structure group G, well-posedness
has been demonstrated by Klainerman and Machedon [16].

We need a few preliminaries; everything here is done for a trivial G-bundle over R1,3. Asso-
ciated to the curvature of a Yang-Mills connection is the energy-momentum tensor,

Tµν =
1

2
(⟨Fµα, Fνα⟩+ ⟨⋆Fµα, ⋆Fνα⟩).

2This work is in part a consequence of Penrose’s twistor theory; see [4].
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We consider the following definitions with respect to some point x0 ∈ R3 which we keep
implicit in our notation. We define a past causal domain as a set,

T T,L = {(x, t) ∈ R1,3 : 0 ≤ t ≤ T, |x− x0|+ t ≤ L}.
We also denote the balls {x : |x− x0| ≤ L− t} at a given t by Bt,L. We can define the local
energy at x0 by,

E(t, Bt,L) =
∫
Bt,L

T 00(t, x) dx .

An initial condition is determined by a pair of g-valued 1-forms in R3: (Â, Ê) so that divÊ+

[Â, Ê] = 0. The corresponding Yang-Mills connection A = (A0, A) should satisfy A = Â and

∂tAi − ∂iA− 0+ [A0, Ai] = Êi when restricted to t = 0. The existence and uniqueness result
is the following lengthy theorem.

Theorem 6.5 (Klainerman and Machedon, [16]). Let (Â, Ê) be an initial data set in R3

which has finite energy E(0,R3) = E0 < ∞ and which is locally in L2
2. Then there exists

a unique global solution A(t, x) in [0,∞) × R3 to the Yang-Mills equations satisfying the
following properties.

(1) Given a past causal domain T T,L with L ≥ 1, there is a constant C1 dependent on
E0, ∥A(0, ·)∥L3(B0,L+1), and L so that,

∥A(t, ·)∥L2
1(Bt,L)

+ ∥∂tA(t, ·)∥L2(Bt,L) ≤ C1

(
∥A(0, ·)∥L2

1(B0,L+1)
+ ∥∂tA(0, ·)∥L2(B0,L+1)

)
and E(t, Bt,L) ≤ E(0, B0,L).

(2) Given initial conditions (Â, Ê) and (Â′, Ê′) meeting the conditions above, there is a
constant C2 depending on T, L, and the L2

1(B0,L+1)-norms of the initial conditions so
that,

∥(A−A′)(t, ·)∥L2
1(Bt,L)

+∥∂t(A−A′)(t, ·)∥L2(Bt,L)

≤ C2

(
∥(A−A′)(0, ·)∥L2

1(B0,L+1)
+ ∥∂t(A−A′)(0, ·)∥L2(B0,L+1)

)
.

(3) The solution obtained from the initial condition (Â, Ê) satisfies for some constant C3,

∥A(t, ·)∥L2
2(Bt,L)

+ ∥∂tA(t, ·)∥L2
1(Bt,L)

+ ∥∂2tA(t, ·)∥L2(Bt,L) ≤ C3∥(Â, Ê)∥L2
2(B0,L+1)

.

The result requires 70 pages of hard analysis, including elliptic estimates and Sobolev theory
like that considered in section 5.2. Central to the proof is an application of various versions
of Uhlenbeck’s lemma. The authors then prove sophisticated estimates in the Coulomb gauge
before transferring the results to the temporal gauge (A0 = 0).

7. Conclusion

In this review, we have met and studied the Yang-Mills equations. Despite their quite tech-
nical definition, these equations are critical to the foundations of modern physics and have
been wielded to great effect in differential geometry. We have investigated the PDE-theoretic
aspects of the theory and stated some well known results in the subject. Additionally, we
have discussed the role of solitons in the theory and constructed some explicitly known so-
lutions in four dimensions. Of course there is much more to discuss in Yang-Mills theory

14



and many remaining open questions in the field. We hope that this summary has provided a
compelling introduction to this important equation for the reader.
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