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In this expository essay we will provide a path to understanding the basics of canonical quan-
tum gravity and the Wheeler-DeWitt equation. This theory was among the first attempts to
combine general relativity with quantum field theory, and while it was largely unsuccessful, it
is the basis for some of the major modern candidates for a theory of quantum gravity.

In order to cover substanial ground, we only quickly summarize relevant details of basic
Hamiltonian mechanics, canonical quantization, and Riemannian submanifolds that we need;
good sources to read about these things are [7], [10], and [8, Chapter 8] respectively. We
will begin with some advanced details of Hamiltonian dynamics with constraints, followed by
a study of the ADM formalism of general relativity. We will then attempt to quantize the
equations of this theory, leading to the Wheeler-DeWitt equation, and also explain some its
issues.

1. Constraints in Hamiltonian Mechanics

Let us review the standard procedure of Hamiltonian mechanics. We begin with a system de-

scribed by spacial coordinates q1, . . . , qn. We are given some Lagrangian L(q1, . . . , qn, q̇1, . . . , q̇n).
The Euler-Lagrange equation gives n-equations of motion,

d

dt

∂L
∂q̇i

=
∂L
∂qi

i = 1, . . . , n.

To obtain the Hamiltonian formulism, we Legendre transform; we define conjugate mo-
menta,

pi :=
∂L
∂q̇i

.

Then, we describe our system in terms of a 2n dimensional phase space with coordinates
q1, . . . , qn, p1, . . . , pn and we define the Hamiltonian as,

H := piq̇
i − L.
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The equations of motion are then given by Hamilton’s equations,

q̇i = {H, pi} and ṗi = {H, qi}

where {f, g} = ∂f
∂qi

∂g
∂pi

− ∂f
∂pi

∂g
∂qi

is the Poisson bracket.

To discuss constraints we follow the approach of [5, 1.1]. The Lagrangian and Hamiltonian
formalisms should be equivalent; however, there may be issues stopping the inversion of
our Legendre transform. If the Hessian matrix (∂2L/∂q̇i∂q̇j) is singular, then the momenta
will not be invertible functions of the coordinate derivatives. In particular, we will have
constraints,

φk(q
i, pi) = 0,

i.e. functions φk that must vanish for our system. This means that only a particular subman-
ifold of the phase space will be physically allowable. Such functions φk which immediately
are seen to vanish from the choice of momenta are called primary constraints and we use
the notation of weak equality, φk ≈ 0, to denote that this equality holds only for physically
allowable events in a constrained phase-space rather than in the whole 2n dimensional space
defined by the coordinates.

As such, our Hamiltonian formalism is incomplete without additional constraint information.
To rectify this, we can modify our Hamiltonian by using Lagrange multipliers: consider new
variables λk associated to our constraints φk and let,

H̃ = H+
∑
k

λkφk.

Note that H and H̃ are weakly equal. From this Hamiltonian, the Euler-Lagrange equation
in the variable λk will give the equation of motion φk = 0 and so the constraint is now a
property of the dynamics. The modified Hamiltonian also gives new Hamilton’s equations
for arbitrary f(qi, pi):

df

dt
= {H, f}+ λk{φk, f}

and we may now invert the transform to yield,

q̇i =
∂H
∂pi

+ λj
∂φj

∂pk
.

In return for fixing invertibility, we may need to pay for it with additional constraints. Since
φk vanishes, we must have,

(1.1) 0 ≈ φ̇k = {H, φk}+ λℓ{φℓ, φk}.

In most cases this imposes a restriction on the multipliers λℓ, but if the right hand side
happens to be independent of the λℓ’s and non-trivial, we obtain a new constraint on the
original coordinates: ψ(p, q) ≈ 0. So we may obtain a family of constraints ψk from some of
the φk. We can thus add new Lagrange multipliers to the Hamiltonian and and then impose
(1.1) for constraints ψ to obtain even more constraints, and so on for each new constraint
derived. This yields potentially a whole collection of secondary constraints ψk ≈ 0. These
are secondary constraints because they are constraints derived from Hamilton’s equations for
other constraints rather than purely from the algebra of our coordinates. For us, primary
versus secondary constraints will be a distinction without a difference as whether constraints
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Figure 1
A certain spacetime which is foliated by spacelike slices Στ , each with a Riemannian metric.

are primary or secondary is determined by our description of the system rather than the
system itself.1

2. The ADM Formalism

The ADM formalism for general relativity, as developed by Arnowitt, Deser, and Misner in
[1], begins from a familiar and relatively classical perspective on spacetime.

Foliating Spacetime. Assume that we can foliate our Lorentzian spacetimeM by spacelike
3-manifolds.2 Thus we have a diffeomorphism φ : M → R × Σ. The preimage of each
τ , φ−1({τ} × Σ), will be a hypersurface Στ which we think of as a 3-dimensonal spacial
universe at a fixed moment in time, see Figure 1. Since each Στ is spacelike, it is naturally
a Riemannian manifold with metric h(τ). Along each slice Σ, we will have a unit normal
vector field n ∈ Γ(TM |Σ) with g(n, n) = 1 and g(n,X) = 0 for X ∈ Γ(TΣ) which is oriented
in the positive τ direction. We write NΣ for the normal bundle to Σ so that n is a unit norm
section of NΣ.

We will work to translate Einstein’s equations into equivalent statements in this formalism.
We will find that four of the ten equations correspond to constraints on the intrinsic and
extrinsic curvature of each slice while the remaining six describe the evolution of these slices
in time.

We briefly review the construction of Riemannian submanifolds in our relevant context. Given

vector fields X,Y on Σ, extend them smoothly to vector fields X̃, Ỹ on M . Now we may

1A more canonical and mathematically interesting division exists between first class and second class con-
straints as derived by Dirac. This will not be neccessary for us and so we invite the reader to read further in
[5] on their own.

2If we accept our spacetime is globally hyperbolic, so that the metric everywhere can be inferred from its value
and the extrinsic curvature on a particular hypersurface, then this assumption is automatic [3, pp 104].
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Figure 2
The lapse and shift vectors as components of the time directed unit normal.

take a covariant derivative in M and consider the component normal to Σ: ∇
X̃
Ỹ ⊥. This is

independent of our extension of X,Y [8, Prop. 8.1] and we refer to the resulting vector field
as K(X,Y ). This defines a bilinear map,

K : Γ(TΣ)× Γ(TΣ) → Γ(NΣ), s.t. K(X,Y ) = (M)∇
X̃
Ỹ − (3)∇XY

which is called the second fundamental form. While h measures the intrinsic curvature
measured by someone restricted to move on Σ, K measures the extrinsic curvature. For
example, while a cylinder is locally isometric to flat space, when we embed it in R3, we can
see how it curves within the larger space; this is what K measures.

Note we have a canonical choice of time-directed vector field ∂τ = φ−1
∗ (∂τ ), where ∂τ is the

standard coordinate vector field on R. We can decompose this vector field into its direction
parallel to Σ and perpendicular to it,

∂τ = −g(∂τ , n)n+ (∂τ + g(∂τ , n)n) =: Nn+ N⃗ .

We define the shift vector to be N⃗ and the lapse vector to be Nn as given above, see Figure
2. An intuitive fact important for us later is that may write the Jacobian factor in terms of
our 3-metric and lapse vector:

√
−g = N

√
h; see [3, 4.2] for the derivation.

A first result one proves in studying extrinsic curvature is the Gauss-Codazzi Equations.
Henceforth, R will refer to the curvature tensor on M , while 3R will be the curvature tensor
on Στ for arbitrary τ .

Theorem 2.1 (Gauss-Codazzi [8, Theorems 8.5, 8.9]). The Gauss Equation says that,

(2.1) Rm
ijk = 3Rm

ijk +KjkK
m
i −KikK

m
j .

Define a connection ∇̃ acting on the bundle with sections given by bilinear maps Γ(TΣ)2 →
Γ(NΣ) as follows,

(∇̃XF )(Y,Z) = ∇XF (Y, Z)
⊥ − F (∇XY,Z)− F (Y,∇XZ).
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Then the Codazzi Equation says that,

(R(W,X)Y )⊥ = (∇̃WK)(X,Y )− (∇̃XK)(W,Y ).

Here R(·, ·) is the curvature thought of as an End(TM) valued 2-form which has been con-
tracted as a two form with two vector fields to give a map Γ(TM) → Γ(TM).

It is a straightforward computation given in [2, pp. 422-424] to see how these equations allow
us to write components of the Einstein tensor in terms the properties of Σ. One computes,
combining with Einstein’s equations,{

8πT 0
0 = G0

0 = −1
2(

3R+ (K i
i )

2 −KijK
ij)

8πT 0
i = G0

i =
3
∇̃jK

j
i −

3
∇̃iK

j
j i = 1, 2, 3.

The first equation imposes constraints on the scalar curvature of Σ in terms of its extrinsic
curvature, while the other three restrict the extrinsic curvature. The other six Einstein
equations will become second order differential equations that describe the time evolution of
our 3-metric [2, pp 424].

A Hamiltonian Theory. From now on we assume that we work in the vacuum.3 In classical
field theory, one studies a Lagrangian density whose coordinate functions are (scalar, vector,
tensor etc.) fields permeating space-time (the usual Lagrangian is the integral of the density
over all of space). When we solve the equations of motion, they will describe the physical
field configuration our theory predicts. The most familiar example is electromagnetism in
which the Lagrangian density,

LEM = −1

4
FµνFµν where Fµν = ∂νAµ − ∂µAν

reproduces the vacuum Maxwell’s equations and predicts the electric and magnetic field
propogate as waves [3, 3.4].

The natural choice of field in our theory of gravity is just the tensor field gab and the derivation
is given in [11, Appendix 1] that the solution of the Einstein vacuum equations extremizes
the Einstein-Hilbert Action,

S =

∫
LGd

4x where LG =
1

16π

√
−gR

is the Lagrangian density of our system (the Lagrangian is its integral over Σ). We will want
the time variable to be explicit when we consider the Hamiltonian picture, so we use the
foliation of our space and the corresponding curvature variables. Recalling

√
−g = N

√
h and

using the Gauss equation (2.1) to solve for the curvature, we may rewrite the Lagrangian
density as,

LADM =
1

16π
N
√
h(3R+KijK

ij −K2) =
1

16π
N
√
h(3R+ (hirhjs − hijhrs)KijKrs).

We choose the fields of our field theory to be the 3-metric components hij and our lapse and
shift vectors N , and N i. For every fixed time τ , this defines ten independent scalar field
components just as for our original 4-metric g. Note that K is independent of derivatives of

3Once we include matter and energy in the quantized theory, the gravitational field will have to interact with
regular quantum field theories of matter. For us, the quantized gravitation is enough of a problem on its
own!
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lapse and shifts, so we have that the conjugate momenta associated to N and each N i are
constrained to vanish:

Π :=
∂LADM

∂(∂τN)
≈ 0 and Πk :=

∂LADM

∂(∂τNk)
≈ 0.

These are primary constraints in our system. The other conjugate momenta associated to
components of h are,

Πij :=
∂LADM

∂(∂τhij)
.

In [3, 4.2.1], the useful relation,

Kij =
1

2N
(∂τhij − 3∇iNj − 3∇jNi)

is derived. From this it easily follows that,

Πij =
1

16π

√
h(Kij −Khij) =

1

16π

√
h(hirhjs − hijhrs)Krs.

If we define the tensor G∗
ijrs := hirhjs− 1

2hijhrs, then we may rewrite the Lagrangian density
as,

LADM =
1

16π
N
√
h 3R+

16πN√
h
G∗

ijrsΠ
rsΠij .

Let the Einstein Wheeler metric Gijrs be the symmetrization ofG∗
ijrs divided by

√
h, i.e.,

Gijrs =
1

2
√
h
(hirhjs + hishjr − hijhrs).

By the standard procedure (remembering our constraints and the Lagrange multipliers), we
obtain the Hamiltonian density,

(2.2) HADM = λΠ+ λiΠi +NkHk +NH+ 2 3∇i(Π
ijNkkkj).

where,

H := 16πGijrsΠ
rsΠij − 1

16π

√
h 3R and Hk := −2hkj

3∇iΠ
ij

are called the super-Hamiltonian and super-momenta respectively [3, pp 112]. We can ignore
the last term of (2.2) since it is a total derivative and so when we integrate it in the action it
vanishes on any compact interval by Stoke’s theorem (this is standard practice in constructing
physical theories) [3, pp 147]. On the other hand, we require from imposing secondary
constraints that,

(2.3) 0 ≈ {Π, HADM} = −H and 0 ≈ {Πk, HADM} = −Hk.

We conclude that the Hamiltonian density of (2.2) is a sum of quantities which weakly vanish
and so we deduce that it weakly vanishes as well,

HADM ≈ 0.

By definition of the Poisson bracket, our coordinates and momenta satisfy the following:

{N(x0, x),Π(x0, y)} = δ(3)(x− y)

{N i(x0, x),Πk(x
0, y)} = δikδ

(3)(x− y)

{hij(x0, x),Πrs(y, x0)} = δ
(r
iδ

s)
jδ

(3)(x− y),

with the brackets of any other pair of fields or momenta vanishing.
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3. Wheeler-DeWitt Equation

We are ready to quantize, following the standard procedure of quantum field theory, as
described in [9, Chapter 2]. The result will be the Wheeler-DeWitt Equation first given by
Bryce DeWitt in 1967 [4, Eqn. 5.5] and our description will largely follow the exposition
given in [3, Chapter 6].

To quantize, we promote the coordinates and momenta to operators on a space of states.
What space should this be? In quantum mechanics, the state space is the Hilbert space of
L2 functions on the configuration space. The same is true in quantum field theory, except
the configuration space is infinite dimensional, corresponding to the value of the field at
every point in spacetime. When we quantize, the Hilbert space is Fock space, complex valued
functionals on the space of all field configurations.

For us, the configuration space is all possible spacetime metrics h and values for the lapse
and shift vectors. The quantized space of states should be the space of L2 functionals on
this space [2, pp 434]. One can informally think of this like traditional quantum mechanics
which describe particles by wavefunctions that represent a probability distribution on possible
positions of the particle; instead of the universe being composed of a single space time metric,
it is a delocalized combination of many different metrics. This is an informal description of
the idea of “quantum foam,” in which the local structure of space is not fixed but a bubbling
quantum superposition Ψ. This is schematically shown in Figure 3.

Ψ

Figure 3
An artistic depiction of quantum foam—this is the conjectural local model for spacetime.

The procedure for giving our space of metrics and Lebesgue measure and hence a proper L2

Hilbert space structure on states is not currently known [3, pp 155]. Nevertheless, we persist,
treating the states and operators as purely formal expressions.

As in quantum field theory, we will make our fields of interest and their conjugate momenta
into operators on our Hilbert space, denoted with a hat over the relevant classical quantity,
and ask that the operators obey equal time commutation relations derived from the Poisson
bracket relations above:

[ĥij(x
0, x), Π̂kℓ(x0, y)] =

i

2
(δ k

i δ
ℓ

j + δ ℓ
i δ

k
j )δ(3)(x− y)

[N̂(x0, x), Π̂(x0, y)] = iδ(3)(x− y)

[N̂ i(x0, x), Π̂j(x
0, y)] = iδijδ

(3)(x− y),
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with other commutators vanishing. In analogy with quantum mechanics, in a coordinate
basis, we may consider our coordinate operators as multiplication operators and our momenta
operators as functional derivatives acting on functionals Ψ[hij , N

i, N ]:

ĥij(x)(Ψ) = hij(x)Ψ Π̂ij(x)Ψ = −i ∂Ψ

∂hij(x)

N̂(x)(Ψ) = N(x)Ψ Π̂(x)Ψ = −i ∂Ψ

∂N(x)

N̂ i(x)(Ψ) = N i(x)Ψ Π̂i(x)Ψ = −i ∂Ψ

∂N i(x)
.

Given our total space of states, the constraints we found in the ADM theory will tell us that
only certain states are physically allowable. This will restrict us to some subspace on which
constraint equations are satisfied.

Recall we had primary constraints Π ≈ Πk ≈ 0 and so for arbitrary physical state ψ we must
have that,

−i ∂Ψ
∂N

= −i ∂Ψ
∂Nk

= 0.

In particular, Ψ = Ψ[hij ] must be a functional of the 3-metrics alone, independent of lapse
and shift vectors. We also found that the whole Hamiltonian was constrained to vanish via
our supermomentum and super-Hamiltonian. Imposing the vanishing of the components of
the supermomentum from (2.3) gives,

ĤiΨ = −2hik
3∇j

(
∂Ψ

∂hjk(x)

)
= 0.

One can show this equation corresponds roughly to the fact our system should be dependent
only on the geometry of the slices Σ and not the coordinates we used [4, pp 1122]. According
to DeWitt, one way to interpret this is to make Ψ a function whose infinite variables are the
family of scalar invariants,∫ √

hdx ,

∫ √
h 3R dx ,

∫ √
h 3R2 dx , etc.,

which depend only on the metric and its derivatives.

Just as with the super-momenta, the super-Hamiltonian constraint of (2.3) gives the intimi-
dating equation,

(3.1) ĤΨ = −
[
: 16πĜijkℓ(x)

∂2

∂hij(x)∂hkℓ(x)
: +

1

16π

√
h

3
R̂(x)

]
Ψ[hij ] = 0.

This, at last, is the Wheeler-DeWitt equation. The colons here refer to a proper re-
ordering of the operators (a standard procedure in quantum field theory to avoid nonphysical
results).4 The equation gives a final dynamical constraint on what states Ψ we may have in
our quantum theory of gravity.

4Actually executing this proper ordering poses major issues itself; this is the operator ordering problem [2, pp
434].
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4. Theoretical Problems and Extensions

While we may naively hope that our canonical quantization has worked just like in the usual
field theory case, unfortunately issues abound. A lengthy discussion of the many problems
with our theory of quantum gravity is presented in [6], with a good summary of the major
points in Chapter 2.4. We discuss in simple terms a few of the complications.

The Hilbert Space. As a first issue, we note as above that the space of states is not a
Hilbert space in a well understood sense. I.e. it is unclear what scalar product we should
expect. Understanding the measure-theoretic underpinnings of usual quantum field theory is
difficult enough where Fock space is perfectly well understood, so this will also pose further
difficulties.

The Problem of Time. There are a plethora of issues with considering time in our theory of
quantum gravity. These centre around the fact that time should play the role of an internal
parameter. For example, the Schrödinger equation essentially asserts (in the Heisenberg

picture) that for a system with Hamiltonian operator Ĥ and an observable A, in analogy
with Hamilton’s equations,

dA

dt
= −i[A,H].

Equivalently, (in the Schrödinger Picture) the time evolution of states in the system is de-

termined by acting on them with the unitary operator exp
(
−iτĤ

)
. But our Hamiltonian is

always constrained to vanish and so we should expect no dynamics in the universe whatso-
ever, either in the observables or states! What this really represents is that our system should
be relativistically invariant, with no external time dependence in its states. But this “frozen
formalism” raises a number of issues, for example, finding what time invariant observables
can be used to characterize the system. In fact, its not even agreed upon precisely what we
mean by an observable in this theory [6, Chapter 5.1]. Given the special role time plays in
our Hamiltonian construction, it is also unclear the correspondence between the quantized
systems for two different choices of spacelike foliations and two different time variables.

There are many other similar variations to quantizing gravity, the main distinction being
between whether we impose constraints before or after we quantize. While the different
approaches have various pros and cons, technical issues surrounding interpreting time persist
in all of them. It is also unknown if all of these quantization procedures are equivalent. Again,
see [6] for a comprehensive summary for the various theories and their mutual issues.

Finding Solutions. Even if we discount the interpretation issues above, no one has been
able to find anything more than a purely formal solution to the Wheeler-DeWitt equation as
written in (3.1) [2, pp 435]. Of course a proper theory of gravity with testable predictions
would also include studying the interaction between gravity and matter fields, which the
theory as we have developed it is inadequate to handle.

Where Do We Go From Here? In the 1980’s, Abhay Ashketar discovered a new collection
of variables to describe the theory. In these “Ashketar variables,” the constraints become
much simpler and one can use Chern-Simons theory, a technique of gauge theory, to formally
produce a solution (at least for non-zero cosmological constant) [2, Chapter 5]. Later, Lee
Smolin and Carlo Rovelli built on these connections to gauge theory, and in particular the
loop representation of Yang-Mills theory, to develop a framework that associates states in
our quantum theory to systems of links (entangled knots) called “spin networks.” This is the
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basis for the modern theory of loop quantum gravity which is a highly active area of research
in trying to quantize gravity. One can find a rigorous introduction to the subject in the last
chapter of [3].

Loop quantum gravity is likely only the second most popular modern approach to a “theory
of everything,” the most (in)famous being string theory. The basic premise of string theory
is to replace point particles with one dimensional vibrating strings. The theory is very
technical, an active area of math research, and of a very different flavour to what we have
considered.
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