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Equivalence Relations

Equivalence Relations

Definition: Given a set X, we define an equivalence relation on X to be a
binary relation ∼ satisfying:
(i) Reflexivity: for all x ∈ X, x ∼ x.
(ii) Symmetry: x ∼ y =⇒ y ∼ x.
(iii) Transitivity: x ∼ y and y ∼ z =⇒ x ∼ z.

Examples of Equivalence Relations

1. Equality “=” is an equivalence relation on any set.

2. Let S be the set of undergraduate students enrolled at UofT. We say two students
are “peers” if they have been enrolled in university for the same number of years.
This is an equivalence relation on S.

3. For any n ∈ N, congruence modulo n is an equivalence relation on Z.

4. We can define an equivalence relation on R which I’ll call a “quotient by Q”. For
x, y ∈ R let, x ∼ y exactly when x− y ∈ Q.

Partitions

Definition: A partition of a set X, is a collection of subsets of X which are
disjoint and union to give all of X. I.e. it is any way to split up X into pieces.

Fundamental Theorem of Equivalence Relations

Proposition: Every equivalence relation ∼ on X defines a partition of X into
equivalence classes [m] = {x ∈ X : x ∼ m}. Conversely, every partition of X
into subsets Xi arises from an equivalence relation x ∼ y if and only if x, y ∈ Xi

for some i.

Examples of Corresponding Partitions

1. For equality (=) the equivalence classes are just each individual element.

2. For the peers relation, the equivalence classes are the set of freshmen, sophomores,
juniors, etc..
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3. For modular congruence, the equivalence classes are what we have called the con-
gruence classes of integers mod n. E.g. for the equivalence relation ≡ (mod 4),
there are four equivalence classes [0], [1], [2], [3]. Recall we showed in class we can
still “do math” on these equivalence classes, i.e. add and multiply congruency
classes together; this is because the equivalence classes form a quotient group
and quotient ring. More general examples of these kind of arithmetic features are
studied in abstract algebra.

4. For our quotient by Q, the equivalence classes are copies of Q translated by
irrational numbers; for example one class would be [π] = {π+ p : p ∈ Q}. Define
a set V by picking exactly one element lying in [0, 1] from each equivalence class.
This is an example of a Vitali Set, and it is a set for which there is no reasonable
way to define its length1!

5. To consider an example going the other way, recall that scientists commonly
partition the set of living things on Earth into 6 kingdoms: bacteria, archaea,
protists, plants, animals, and fungi. This induces an equivalence relation on the
set of all living organisms. Under this equivalence relation:

Alicia Keys ∼ Koala Bear but Sea Sponge ≁ Shiitake Mushroom ≁ Seaweed.

1By “reasonable way to define length”, I mean some function µ which takes in a subset of R and
returns its (possibly infinite) length. Any such µ which assigns the usual length b−a to intervals [a, b],
which is invariant under shifting a set left or right, and which is additive so the length of disjoint sets
together is the sum of their lengths individually, cannot be defined on V to give an answer consistent
with the fact µ([0, 1]) = 1. That is, not every subset of R has a length in the ordinary sense.
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Problems on the Euler Totient Function

Some of the following are taken from the quite good book Elementary Number Theory
by Gareth and J. Mary Jones.

1. For any ε > 0, can you find n so that ϕ(n)
n

> 1− ε?

2. Show that ϕ(mn) ≥ ϕ(n)ϕ(m) with equality only if m and n are coprime.

3. * Use the above question to show that for any integer m there are only
finitely many n such that ϕ(n) = m [Hint: for every prime p, show
ϕ(pk) > m for some k]. (In fact, ϕ(n) ≥

󰁳
n/2 for all n; you can look up

the proof online).

4. * Show that the value of ϕ(n)/n is uniquely determined by the set of prime
numbers which divide n [Hint: use contradiction and the explicit formula
for ϕ(n)].
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Problems on the Euclidean Algorithm

1. (The Chicken Nugget Theorem) Let n,m be coprime and positive. Show
that any number N can be written as N = xn + ym for x, y non-negative
as long as,

N > mn−m− n.

(Hint: For a given N , find the smallest non-negative y that satisfies the
given linear Diophantine equation and see what happens if x is negative).

To see the role of chicken nuggets, consider this everyday scenario.
An avant-garde fast food restaurant McEuclid’s has just opened up
and sells only boxes of 13 and 19 nuggets. In an attempt to carve
a niche in the number-theorist demographic, McEuclid’s will fail to
deliver my order if I request a number that can’t be made from boxes
of 13 and/or 19 nuggets (but they’ll still charge me for the food!).
After a long day of proof writing, my friend Gauss is desperate for
in excess of 200 nuggets and asks me to pick a large amount. Gauss
may also add a few extra nuggets to the total if they are in the mood
for more food, but I’m definitely not in the mood to perform more
extended Euclidean algorithm computations. At least how many nuggets
should I order so that, even if Gauss adds some more, we will never be
requesting an impossible amount of nuggets and hence surely get our food?

2. (The Euclidean Algorithm for Polynomials) The Euclidean algorithm can
be applied on more general algebraic structures called Euclidean domains.
An example of a Euclidean domain you have seen before is the set of poly-
nomials with real coefficients. We can apply the Euclidean algorithm to
polynomials just like we do to integers, replacing integer division with re-
mainders by polynomial division with remainders. Perform the Euclidean
algorithm to find the gcd of:

x3 − 9x2 + 23x− 15 and x3 − x2 + 4x− 4.

What do you think gcd means in this context? Factor the two polynomials
to check your intuition.
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Problems on the Rational Numbers

1. We know there are infinitely many rational numbers between any two
rational numbers. The same is true for reals; between any two real
numbers there are infinitely many rationals. This property is called the
density of the rationals in the reals. Prove that Q is dense in R.

2. A dyadic rational is a rational number whose denominator is a power of
two. Show that these dyadics are closed under addition and multiplication.
Use this to show that dyadic rationals are precisely the numbers with finite
binary expansions. For this reason the dyadic rationals are important in
computer science. They also appear in music theory, where time signatures
and note lengths are usually given as dyadic rationals.

3. Remember in a previous tutorial we defined equivalence relations. Find an
equivalence relation on pairs of integers (a, b) for b ∕= 0 that defines a set
equivalent to the rationals. Because of this construction, Q can be called
the field of fractions of Z.
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More Problems on the Rational Numbers

1. For p ≥ 2, xp−1 has a rational root x = 1. Use it to factor the polynomial.
When p odd, how can you factor further? What does the factorization
look like when we allow for complex roots?

2. A number is algebraic if it is the root of some polynomial with integer
coefficients. Show that

√
p +

√
q is algebraic for all p, q ∈ Q. Numbers

which are not algebraic are called transcendental. Providing any example
(with proof) that a number is transcendental is very difficult, (look up
Liouville’s constant), but we will find a non-constructive proof of the exis-
tence of infinitely many transcendental numbers once we discuss set theory.

3. An infinitely nested radical is an expression of the form,

󰁶

n+

󰁵

n+

󰁴
n+

√
n+ · · ·

With some algebraic manipulation, evaluate this expression and show that
sometimes it may have rational solutions for n ∈ N. What if you replace the
square roots with higher order radicals, can you find any rational solutions
then? Show that, for k, n ∈ N, that if

k

󰁶

n+
k

󰁵

n+
k

󰁴
n+ k

√
n+ · · · ∈ Q

then the expression is in N.
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Problems on the Complex Numbers

1. Consider a function on the complex plane,

ω(z) =
az + b

cz + d
such that a, b, c, d ∈ C and ad− bc ∕= 0.

This is called a fractional linear transformation. These functions have the
special property that they always send circles and lines to circles and lines
(i.e. a circle may map to a circle or a line but never an ellipse or a squiggly
curve). What is the unit disk {|z| ≤ 1} mapped to under the following
fractional linear transformations?

(i) ω(z) =
i

4
z +

√
2eiπ/4 (ii) ω(z) =

1

z

(iii) ω(z) =
z + 1

iz − i
(iv) ω(z) =

z − i

iz + 1

2. In class, we are proving the Fundamental Theorem of Algebra. A more tra-
ditional proof of the theorem uses the following powerful result in complex
and harmonic analysis:
Theorem 1 (Liouville’s Theorem). Every complex differentiable function
on all of C which is bounded, i.e. |f(z)| < M for all z ∈ C and some
M > 0, is constant.
You don’t need to know what complex differentiable means to solve this
problem, just know it includes polynomials, the exponential function,
sine, cosine etc. and well-defined algebraic manipulations of these (sums,
products, non-singular reciprocals). Use Liouville’s Theorem to prove the
Fundamental Theorem of Algebra. (Hint: Assume a polynomial P (z) has
no complex roots and consider 1/P (z)).

3. Use DeMoivre’s Theorem, Euler’s Formula, and the Pythagorean identity
to expand cos(4θ) and sin(4θ) in terms of cos θ as the real and imaginary
parts of ei4θ. Use the double angle formulas to write out sin4 θ, cos4 θ in
terms of cos(4θ) and cos(2θ). Use this result to find the indefinite integrals,

󰁝
sin4 θ dθ and

󰁝
cos4 θ dθ .
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Some Exercises on Quaternions

1. The complex numbers can be viewed as a subset of the quaternions,
H = {a+ bi+ cj+ dk : a, b, c, d ∈ R}. These are like the complex numbers
but with two other imaginary units j and k. Addition is defined compo-
nent by component and we can multiply quaternion using associativity,
distributivity and the following relations,

i2 = j2 = k2 = −1 ij = −ji = k jk = −kj = i ki = −ik = j.

Unlike other numbers you are used to, the quaternions are not in general
commutative. Only the real coefficients commute with all of H.

(a) Use associativity, distributivity and the above relations to write ex-
plicitly the product,

(a+ bi+ cj+ dk)(α + βi+ γj+ δk).

(b) We can represent a quaternion a + bi + cj + dk as a 2 × 2 complex
matrix, 󰀕

a+ bi c+ di
−c+ di a− bi

󰀖
.

Show that quaternion addition and multiplication act just like
addition and multiplication of these matrices.

(c) Find the multiplicative inverse of any quaternion, (a+ bi+ cj+dk)−1.

(d) Consider quaternions with no scalar part, i.e. of the form xi+yj+zk.
Show that multiplication of these quaternions behaves just like the
cross product of vectors xx̂+ yŷ + zẑ in R3.

(e) (Hard) We say x = a + bi + cj + dk is a unit quaternion if
a2 + b2 + c2 + d2 = 1. As in the previous part, identify a vector
v = (v1, v2, v3) ∈ R3 with the quaternion v1i + v2j + v3k. Show that
for any unit quaternion x, xvx−1 has no scalar part and amounts
to a rotation of v. As an extra challenge, show that any arbitrary
rotation is uniquely determined by some unit quaternion x up to a
sign (x,−x give the same rotation).

The last problem gives one common use for quaternions in computer graph-
ics: to succinctly represent rotations of vectors in R3.
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Exercises on Cardinality

1. Find the cardinalities of the following sets.
(a) The set of isosceles triangles up to scaling (i.e. we consider similar

triangles as the same).
(b) The set of algebraic numbers, i.e. the set of all possible real roots of

polynomials with rational coefficients.
(c) The set of open subsets of R. (A subset U is open if every point of

U has an open interval around it contained in U). [Hint: use the
density of the rationals to show that two open sets with the same
rational elements are the same].

2. Consider an arbitrary function f : R → R. Define a family of functions
fτ (x) = f(x) + τ . Show that for every f , there is some τ ∈ R such that
the graph of fτ , {(x, fτ (x)) : x ∈ R} ⊂ R2, contains no points in Q2 ⊂ R2.

3. You are a point which lives on the grid [0, 1] × [0, 1]. At every element of
Q2 in the grid, there is a booby trap which will suck you off the grid (oh
no! by the density of the rationals these traps are everywhere!!). Find a
continuous path given by two line segments that connects (0, 0) to (1, 1)
which passes through no booby traps. In fact, explain why almost every
random path of this form you could choose does not pass through a trap.

4. Take the set of all algebraic numbers, add to that set any mathematical
constant you can think of (e.g. π, e, sin(1), log(2), the Euler-Mascheroni
constant, etc.). Now assemble a panel of expert mathematicians and give
them a billion years to list out, one by one, any function they can think
of which takes in some finite number of real numbers and outputs a single
real number (e.g. x + y, xy, x!, sin(x), xy,

󰁕 x

1
log(z) arctan(z) dz, etc.).

Argue (non-rigourously) that there is some real number which can not be
computed by applying any of these functions to any of the constants we
could think of.
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More Exercises on Cardinality

1. Show that a continuous function f : R → R is completely determined by
its values on Q. (I.e. if we know f(x) for all x ∈ Q, then we know it for
all x ∈ R). As a consequence, find the cardinality of the set of continuous
functions R → R. What is the cardinality of differentiable functions?
Smooth functions? Analytic functions?

2. The purpose of this problem is to show the cardinality of Riemann inte-
grable functions is 2c using an important counter-example in math called
the Cantor Set.
(a) The Cantor Set C can be defined as the set of all real numbers in [0, 1]

which contain no 1s in their expansion in base three. I.e.,

0.202020202020... ∈ C but 0.202202001020... /∈ C.

Explain why C is uncountable.

(b) Show that R \ C is open, i.e. that every real number not in the
Cantor set has an open interval containing it which is disjoint from
the Cantor Set.

(c) A set A ⊂ R has measure zero if for any ε > 0, there is a collection of
closed intervals of combined length less than ε whose union contains
A. Let Cn be the subset of [0, 1] of numbers, when expressed as a
decimal in base three, have their first n digits not containing a 1.
Look up a picture of the Cantor set and use this as a heuristic to
explain why the intervals making up Cn have combined length (2/3)n.
Conclude that C has measure zero.
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2. (d) Consider any subset A ⊂ C. Define a function, χA : R → R by,

χA(x) =

󰀫
0 x /∈ A

1 x ∈ A
.

Use (b) to show A is continuous for at least all x ∈ R \ C.

(e) Note the following theorem, which you may have seen a version of in
multivariable calculus:
Theorem 2. If f : [a, b] → R is bounded, then it is Riemann inte-
grable if and only if its set of discontinuities is measure zero.
Use this along with the previous parts to conclude χA is Riemann
integrable on [0, 1].

(f) Conclude that the cardinality of Riemann integrable functions
[0, 1] → R is greater than or equal to 2c. Show this is an equality.

(g) Explain how one can replicate what was done above to show the car-
dinality of the Riemann integrable functions [a, b] → R is 2c for any
a < b.
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