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1. Introduction

The Atiyah-Singer index theorem is one of the most significant results in differential geometry,
uniting the Gauss-Bonnet-Chern Formula, the Hierzebruch-Riemann-Roch Theorem, and
the Signature Theorem into one formula and initiating the mathematical study of index
theory. Of several diverse proof methods, one popular analytic technique in the case for
Dirac operators uses a study of heat kernels (this often goes by the name of local index
theory).

A particularly nice approach to the heat equation proof of the Theorem, which we outline in
the next section, involves Ezra Getzler’s trick of Getzler rescaling, in which we introduce a
parameter λ to an asymptotic expansion of a heat kernel. Sending λ → 0 isolates the term
of interest in our expansion. Additionally, the rescaling is compatible with a Getzler symbol
calculus on differential operators which sends the generalized Laplacian of the heat kernel
to a harmonic oscillator which we can solve for exactly and complete the proof of the index
theorem.

To better understand the geometry of this rescaling, Nigel Higson and Zelin Yi introduced
a rescaled spinor bundle in [2] which is a vector bundle over the tangent groupoid that
naturally encorporates Getzler’s fibrewise-rescaling. We will further study this construction
and clarify it using the notions of weightings on manifolds, linearly weighted vector bundles,
and weighted deformation spaces as studied by Yiannis Loizides, Eckhard Meinrenken, and
Dan Hudson (see [4]).

The use of weightings can also extend to studying other symbol calculi, including one devel-
oped by Pavol Ševera [9] of a similar form to the construction of Higson and Yi. We show
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that the Ševera construction also takes the form of a weighted deformation space and explore
the compatibility of its algebraic structures with weightings.

Since the initial time of writing, some of these ideas have been refined and further studied
by Dan Hudson in [3].
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to express my sincere gratitude to Eckhard for suggesting this project and his dedicated and
enthusiastic supervision throughout the summer. I also would like to thank Yiannis Loizides
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2. Clifford Modules and Dirac Operators

To begin we outline some of the necessary algebraic and geometric preliminaries underlying
the index theorem. The definitions and results of this section are all standard and can be
found in [5].

2.1. Clifford Algebras. Consider a vector space with a symmetric bilinear form (V, ⟨·, ·⟩).
Its corresponding Clifford algebra Cl(V ) is defined as the quotient of the tensor algebra of V
by the ideal generated by elements of the form,

vw + wv − 2⟨v, w⟩1.
One defines the symbol map σ : Cl(V ) →

∧
V so that for e1, . . . ek orthogonal, σ(e1 · · · ek) =

e1 ∧ · · · ∧ ek. One can check this is a well defined vector-space isomorphism. Cl(V ) has a
filtered algebra structure given by

Clk(V ) = {v1 · · · vk|vi ∈ V, ∀i ∈ {1, . . . , k}}.
Note

∧
V is naturally a graded algebra and Cl(V ) inherits a graded vector space structure via

Clk(V ) = σ(
∧k V ). In fact,

∧
V is canonically isomorphic to the associated graded algebra

of Cl(V ) as given by the symbol map. If Cl(V ) acts by endomorphisms on a vector space
W , then W has a module structure over Cl(V ). In particular, if V is even-dimensional,
Cl(V ) has a unique (up to isomorphism) irreducible representation on a vector space S called
the space of spinors and one has the relation End(S) ∼= Cl(V ) = Cl(V ) ⊗ C. For a general
module W , we have End(W ) ∼= Cl(V )⊗EndCl(W ), where EndCl refers to Clifford-commuting
endomorphisms.

Example 2.1. As an important case of a module, consider
∧
V . For v ∈ V , let v act on

∧
V

by,

c(v) = ε(v)− ι(v) ∈ End
(∧

V
)
,

where ε is exterior multiplication and ι is interior multiplication by the dual vector as deter-
mined canonically by the metric. On w ∈ V ⊂

∧
V , we have,

c(v)w = v ∧ w − ⟨v, w⟩.
This naturally extends to a module action of the tensor algebra on

∧
V ; one finds,

c(v ⊗ w) + c(w ⊗ v) = c(v)c(w) + c(w)c(v)

= ε(v)ε(w) + ε(w)ε(w) + ι(v)ι(w) + ι(w)ι(v)

− ε(v)ι(w)− ι(v)ε(w)− ε(w)ι(v)− ι(w)ε(v)

= −2⟨v, w⟩
2



and so the tensor algebra module descends to a Clifford algebra module.

We also need to construct an important Lie group contained in Cl(V ). For V with its Clifford
algebra Cl(V ), we define the Pin group as a Lie group,

Pin(V ) = {vi1 · · · vik ∈ Cl(V )|∀ 1 ≤ j ≤ k : vij ∈ V and ∥vij∥2 = 1}.
Now, one constructs the Spin group as the Lie subgroup

Spin(V ) = Pin(V ) ∩

 n⊕
i=0, i even

Cli(V )

.

If we take V = Rn with the usual inner product we write Spin(n) for Spin(Rn). In turns out
that Spin(n) is a double cover of SO(n), in particular spin(n) ∼= so(n).

2.2. Clifford Bundles. Now consider a Riemannian manifold (M, g); since its tangent
spaces define smoothly varying inner product spaces, we can define the Clifford bundle
Cl(TM) over M as the union of Clifford algebras, Cl(TpM), with its natural smooth struc-
ture. A vector bundle E is a Clifford module if Γ(Cl(TM)) acts on it by sections of End(E).
Such a Clifford bundle whose fibres are irreducible representations of Cl(TpM) is called a
spinor bundle; only some manifolds can carry a spinor bundle, in which case we call them a
spin manifold. For a spinor bundle S , End(S ) ∼= Cl(TM). Given a n-dimensional manifold,
one can consider a GL(n,R)-principal bundle FGL(n), called the frame bundle, whose fibre
over p ∈ M consists of the automorphisms of TpM . The tangent bundle can be described as
an associated bundle TM = FGL(n) ×GL(n) Rn. A G-structure on the frame bundle for G a
Lie subgroup of GL(n) is a reduction of FGL(n) to a principal G-bundle FG such that we may
write TM = FG ×G Rn. For example, an orientation is determined by an SL(n)-structure
FSL(n) and a Riemannian structure is determined by an O(n)-structure FO(n). Given an ori-
entable Riemannian manifold with a SO(n)-structure FSO(n), if this bundle admits a lift to a
Spin(n)-principal bundle FSpin(n), we obtain a spin structure and an identification,

TM = FSpin(n) ×Spin(n) Rn.

If M has a spin structure, then it carries a spinor bundle which we may describe as,

S = FSpin(n) ×Spin(n) S

for S the n-dimensional spinors.

Remark 2.2. A manifold carrying a spinor bundle is equivalent to the existence of a more gen-
eral structure called a spinc-structure. Necessary and sufficient conditions for spin structures
and spinc-structures to exist on a manifold M can be described in terms of characteristic
classes.

From now on we assume our manifold has even dimension n and that our Clifford modules
are Z2-graded bundles (also called super vector bundles) with a compatible Z2 grading of
the Clifford action. A complex Clifford module over an oriented manifold is given a natural
grading by splitting into ± subspaces on which the chirality operator Γ = in/2e1 · · · en acts
by ±1 for any local oriented orthonormal frame e1, . . . , en. Given a Clifford module E with a
connection ∇E , we say the connection is a Clifford connection if,

[∇E
X , c(a)] = c(∇LC

X a)
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for all a ∈ Γ(Cl(TM)) and X ∈ Γ(TM). Here, c : Γ(Cl(TM)) → Γ(End(E)) is the smoothly
varying family of Cl(TpM)-representations on module fibres and ∇LC is the Levi-Civita con-
nection on TM extended to its Clifford algebra. From this, we can define a first order operator
D in the following manner:

D : Γ(E) ∇E
−−→ Γ(E ⊗ T ∗M)

g♯−→ Γ(E ⊗ TM)
c−→ Γ(E)

or locally,

D =
∑
i

c(g♯(dxi))∇E
∂i
.

This will be odd with respect to our Z2-grading and D2 will be a generalized Laplacian in
the sense that, locally,

D2 =
∑
ij

gij∂i∂j + lower order terms .

We call D the Dirac operator associated to a Clifford module with Clifford connection.

3. The Index Theorem

Now we will apply the concepts discussed above to sketch the proof of the index theorem
using the heat kernel method and the trick of Getzler rescaling. Explanations of some of the
important results contained in the index theorem are also given. Again, these results are all
standard and exposition of them can be found in chapters 1-4 of [1] or [7].

3.1. The Heat Kernel. Given a Dirac operatorD, one can exponentiate its square to obtain

a bounded operator e−tD2
. The action of this operator on s ∈ Γ(E) is given by its heat kernel

kt(x, y) ∈ Γ(E ⊠ E∗,M2), i.e.

(e−tD2
s)(x) =

∫
y∈M

kt(x, y)s(y).

Here and in all subsequent discussions we make implicit the presence of half-densities in
sections which we integrate as they don’t impact on subsequent calculations. This heat
kernel has several properties: first it is suitably differentiable in all of its entries, second it
satisfies the generalized heat equation,

(∂t +D2)kt(x, y) = 0,

and third it has the boundary condition limt→0 e
−tD2

= id.

One shows that such a heat kernel exists and has asymptotic expansion,

(3.1) kt(x, y) =
e−∥x∥2/4t

(4πt)n/2

∞∑
i=0

tiϕi(x, y).

Since we are working with a super bundle E = E+⊕E−, if we expand an operator T in terms
of our grading as

T =

(
T00 T01

T10 T11

)
, then Str(T ) = Tr(T00)− Tr(T11)

is the supertrace of T . We have the relationship, for P an operator with smoothing kernel
p,

Str(P ) =

∫
m∈M

Str(p(m,m)).
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If we consider p as locally taking values in End(Eq) ≃ Cl(TqM)⊗EndCl(Eq), then the super-

trace can be evaluated on Cl(TqM) under the symbol map as (2/i)n/2 times the coefficient

on e1 ∧ · · · ∧ en for e1 . . . , en any oriented orthonormal basis of TqM . If we write Str for
the supertrace on the Clifford-commuting portion and note that integrating a form over M
implicitly only integrates the n-form part we may write,

(3.2) Str(P ) = (−2i)n/2
∫
m∈M

σ ⊗ Str(p(m,m)).

Since our Dirac operator is odd, we write D =

(
0 D−

D+ 0

)
and define the index of D

as,
ind(D) = dim(ker(D+))− dim(ker(D−)).

One can think of this as a Z2-graded or super dimension of the kernel of D. Alternatively,
one can show it is equal to the regular Fredholm index of D+. We now can state an important
partial result towards the index theorem, the central theorem of local index theory.

Theorem 3.1 (McKean-Singer Formula). For D a Dirac operator associated to a Clifford
Module, and kt its heat kernel,

(3.3) ind(D) = Str(e−tD2
) =

∫
m∈M

Str(kt(m,m)).

Since the left hand side of (3.3) is time independent, we may expand the right side using
(3.1) and retain only the time independent term to obtain,

ind(D) =
1

(4π)n/2

∫
m∈M

Str(ϕn/2(m,m)).

In light of (3.2), this becomes,

(3.4) ind(D) =
1

(2πi)n/2

∫
m∈M

σ ⊗ Str(kt(m,m)) =
1

(2πi)n/2

∫
m∈M

σ ⊗ Str(ϕn/2(m,m)).

3.2. Getzler Rescaling and the Index Theorem. To obtain the index theorem, we need
only obtain an explicit value for Str(ϕn/2(m,m)). This is a priori not easy to compute, so
we introduce our Getzler rescaling to isolate for the desired term in the power series. Fix
q ∈ M and consider kt(x, q) where x is given in normal coordinates for M centred on q.
In small enough coordinates we can trivialize our bundle so that our kernel takes values in
End(Eq) ∼= Cl(TqM) ⊗ EndCl(Eq). We introduce a parameter λ and a map δλ on operators
which sends x 7→ λx, t 7→ λ2t, and c ∈ Clj(TpM) 7→ λ−jc. That is,

(3.5) δλk(x, q, t) =

n∑
i=0

λ−ik(λx, q, λ2t)[i]

for k[i] ∈ Cli(TM). Consider rλ(x, t) = λnδλkt(x, q); note that the term ϕn/2 is not changed
by this transformation. Additionally one proves that when λ → 0, the rescaled kernel rλ
has a well defined limit which under the symbol map can be thought of as a local section of
TM ×

∧
C TqM ⊗ EndCl(Eq) → TM whose sole term with a component in

∧n comes from
ϕn/2. (Actually we will define things in terms of the dual bundle

∧
C T ∗

q M instead, but it is
immaterial since we can identify them using the metric). We see that r0 satisfies the rescaled
equation,

(∂t + λ2δλD
2δ−1

λ )r0 = 0.
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We can compute this rescaled operator λ2δλD
2δ−1

λ in the limit λ → 0 and we will obtain a

type of harmonic oscillator on TM which given an orthonormal basis {xi}i of TpM has the
form,

(3.6) L = −
∑
i

∂xi +
1

4

∑
j

Rijx
j

2

+ F.

Here R is the Riemann curvature as a matrix of 2-forms and F is the “twisted curvature,”
which is the portion of the connection’s curvature commuting with the Clifford action. This
kernel associated with (3.6) can be computed explicitly with Mehler’s formula to obtain,

(3.7) r0(x, q, t) = (4πt)−n/2det1/2
(

tR/2
sinh(tR/2)

)
exp
(
− 1

4t

〈
tR
2 coth

(
tR
2

)
x,x

〉)
exp(−tF ).

Evaluating this at x = 0, t = 1, we obtain,

r0(0, q, 1) = (4π)−n/2det1/2
(

R/2

sinh(R/2)

)
exp(−F ).

Note by what we’ve found, the supertrace of this must be equal to that of k1(q, q) and so this
can be plugged into (3.4). We have,

(3.8) ind(D) = (2πi)−n/2

∫
M

det1/2
(

R/2

sinh(R/2)

)
Str(exp(−F )).

Characteristic classes are certain cohomology classes of a vector bundle’s base space that
describe “twisting” of the bundle and help determine certain classification questions and the
existence of compatible G-structures. We will look at a couple such classes defined by a
differential form given in terms of the curvature of a connection; the de Rham cohomology
of these forms turns out to be an invariant of the choice of connection and so defines a
characteristic class. For a vector bundle E → M with connection∇ and curvature F∇(X,Y ) =
[∇X ,∇y]−∇[X,Y ], the two characteristic classes of interest to us are the Chern character and
the A-hat genus defined by,

ch(E) = Str
(
e−F∇

)
and Â(E) = det1/2

(
F∇/2

sinh(F∇/2)

)
.

Note that in (3.8), we can see the formula for the Â-genus appear where we take the connection
to be the Levi-Civita on the tangent bundle. The formula for the Chern character also appears
but where we use the twisted curvature F ; we refer to the characteristic class this gives as
the twisted Chern character and denote it ch(E/S ), in reference to the fact it comes from
“factoring out” the spinor bundle and its curvature from the class computation. Repackaging
(3.8) with our new found notation, we obtain the central theorem.

Theorem 3.2 (Atiyah-Singer Index Theorem). Let M be an n-dimensional oriented Rie-
mannian compact manifold, for n even. For D a Dirac operator associated to a Clifford
module E → M ,

(3.9) ind(D) = (2πi)−n/2

∫
M

Â(TM)ch(E/S ).

An alternate equivalent approach to obtain the final result, as exposited in [7], is by setting a
symbol calculus on the differential operators of E , i.e. fixing a certain filtration and studying
the associated graded space. We define the Getzler filtration by demanding for any vector field
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X, ∇X and c(X) have degree one and elements of EndCl(E) have degree zero; these elements
generate the space of differential operators and so fully determine our filtration. One can
check both D and D2 have degree two in this filtration. Corresponding to this filtration is an
associated graded algebra which is isomorphic to sections of the bundle P(TM)⊗

∧
TM ⊗

EndCl(E) → TM , here P(TM) is the space of polynomial coefficient differential operators
on TM . We have a symbol map σ· taking differential operators to the corresponding element
in the associated graded space. One finds that σ2(D

2) is precisely given by (3.6). Indeed, the
rescaling applied to any differential operator will give its symbol. Thus the Getzler rescaling
provides a way to obtain a certain useful symbol of differential operators while preserving
relevant aspects of our kernel. This relationship will be explored further below.

3.3. Some Examples. To understand the broad generality of the index theorem, it will be
insightful to see a few of the important theorems which appear as special cases of the result.
The computations of indices and characteristic classes associated with the various choices of
Dirac operator are given in [1].

Let M be a Riemannian manifold and consider the bundle
∧

C TM → M . d : Ω•(M) →
Ω•+1(M) is a differential operator on this space which has a formal adjoint d∗ : Ω•+1(M) →
Ω•(M) defined by the relation,∫

M
g(dα, β)ω =

∫
M

g(α,d∗β)ω

for all α, β ∈ Ω(M) and ω the Riemannian volume form. The Hodge de Rham operator is
the Dirac operator D = d+d∗. If the Z2-grading of

∧
C TM is given by even and odd degree

forms then the index of D can be shown to be the Euler characteristic of M , χ(M), which is
the alternating sum of its Betti numbers. We obtain the following.

Theorem 3.3 (Chern-Gauss-Bonnet Theorem). Let M be an oriented compact Riemannian
manifold with even dimension n and curvature R. Then,

χ(M) =
1

2π

∫
M

det1/2(−R).

If n = 2, then det1/2(−R) is half the scalar curvature κ and we obtain the classical Gauss-
Bonnet Theorem,

χ(M) =
1

4π

∫
M

κ.

Consider
∧

C TM again equipped with the Hodge de Rham operator D = d + d∗, however
this time define its Z2-grading based on the ±1 eigenspaces of the action c(Γ) = ε(Γ)− ι(Γ)

of the chirality operator Γ = in/2e1 · · · en. Consider a quadratic form Q on a vector space
which in a basis x1, . . . , xn is given by Q(x) = x21 + . . . + x2p − x2p+1 − . . . − x2p+q. Then the

signature of Q is the integer p−q. If M has dimension n divisible by 4 then the n/2 de Rham
cohomology class of M inherits a symmetric bilinear form,

(α, β) =

∫
M

α ∧ β.

The signature of the corresponding quadratic form is called the signature of M and is denoted
σ(M). It turns out that with our given grading on

∧
C TM , if the dimension of M divides

four, then the index of D will be σ(M). We obtain the following.
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Theorem 3.4 (Hirzebruch Signature Theorem). Let M be an n-dimensional oriented com-
pact Riemannian manifold with curvature R, where n divides four. Then,

σ(M) = (πi)−n/2

∫
M

det1/2
(

R/2

tanhR/2

)
.

Let M be a Kähler manifold, i.e. a symplectic, complex, Riemannian manifold whose three
structures are mutually compatible. One obtains a decomposition of the complexified cotan-
gent bundle, T ∗

CM = (T ∗
CM)1,0⊕(T ∗

CM)0,1 where sections of the two components are spanned
by the differentials of holomorphic and anti-holomorphic sections respectively. The exterior
derivative d on

∧
(T ∗

CM)1,0 ⊕
∧
(T ∗

CM)0,1 can be decomposed as d = ∂ + ∂ where ∂ raises the

degree on
∧
(T ∗

CM)0,1 by one and ∂ does the same on the other factor. These operators square
to zero and anti-commute. One finds that complex manifolds always have a spin structure
and the spinor bundle is given by S =

∧
(T ∗

CM)0,1. Thus, every complex Clifford module
over M splits as E =

∧
(T ∗

CM)0,1 ⊗ W for some Hermitian holomorphic vector bundle W.

One finds that W inherits a unique holomorphic connection ∇W , i.e. a connection whose
splitting ∇ = ∇1,0 +∇0,1 satisfies ∇0,1 = ∂. This is called the Chern connection of W. The
Clifford action on E =

∧
(T ∗

CM)0,1 ⊗W for ω = ω1,0 + ω0,1 ∈ Γ(
∧1 T ∗

CM) is given by,

c(ω) =
√
2(ε(ω1,0)− ι(ω0,1)).

Further, E has a canonical Clifford connection given by the tensor of the Levi-Civita con-
nection extended to

∧
(T ∗

CM)0,1 and the Chern connection on W. Corresponding to this is a

Dirac operator D =
√
2(∂ + ∂

∗
).

Associated to the holomorphic bundle W is a certain set of cohomology groups H i(M,W)
called the Dolbeault cohomology. Similar to the definition of the Euler characteristic, one
defines the Euler number of W, Eul(W), as the alternating sum of the dimensions of the
Dolbeault cohomology groups. One finds that the index of D is given by Eul(W). An im-
portant characteristic class is the Todd genus, Td(M), which is given for a complex manifold
by,

Td(M) = det

(
R1,0

eR1,0 − 1

)
.

Here R1,0 is the curvature restricted to TM1,0. One obtains the following theorem.

Theorem 3.5 (Hirzebruch-Riemann-Roch Theorem). Let M be an n-dimensional compact
Kähler manifold with holomorphic vector bundle W. Then,

Eul(W) = (2πi)−n/2

∫
M

Td(M)ch(W).

If M is a Riemann surface and L is a holomorphic complex line bundle with curvature F
then one finds (from Taylor expansion),

Td(M) = 1− R1,0

2
and ch(L) = 1− F.

So the theorem above reduces to,

dimH0(M,L)− dimH1(M,L) = − 1

4πi

∫
M

R1,0 + 2F.
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One defines the degree of L to be the integer,

deg(L) = − 1

2πi

∫
M

F.

While we note from the theorem applied to the zero bundle,

dimH0(M)− dimH1(M) = − 1

4πi

∫
M

R1,0.

The dimension of the zeroth cohomology group is always one, since the space is connected,
while the dimension of the first is the genus g of M , i.e. the number of holes in the surface.
Hence we obtain,

Eul(L) = 1− g + deg(L)
which is the classical Riemann-Roch Theorem.

4. The Higson and Yi Approach to Getzler Rescaling

Nigel Higson and Zhelin Yi have recently studied Getzler rescaling by incorporating it into
a vector bundle which they call the rescaled spinor bundle [2]. We briefly summarize the
geometry of this space and how the index theorem follows from it.

4.1. Deformation Spaces and the Tangent Groupoid. The construction of the bundle
begins by considering the tangent groupoid TM . The tangent groupoid is a special case of the
more general deformation to the normal cone construction initially from algebraic geometry.
Consider a manifold M with submanifold N . Note the normal bundle ν(M,N) is a vector
bundle N of dimension equal to that of M . We construct the deformation space δ(M,N)
as a manifold of dimension dim(M) + 1 with a submersion π : δ(M,N) → R whose fibres
are,

δ(M,N)|π−1(λ) =

{
M t ̸= 0

ν(M,N) t = 0.

This has a natural smooth structure: given submanifold coordinates x1, . . . , xn, y1, . . . , ym−n

for N ⊂ M , we take coordinates on δ(M,N) to be x̃1, . . . , x̃n, ỹ1, . . . , ỹm−n, λ. Here λ is given
by projection under π and the other coordinates are given on π-fibres by,

x̃i = xi and ỹj = λ−1yj .

Example 4.1. A visualizable example to keep in mind is the following. Let p be a point on the
circle. Then we can consider δ(S1, {p}) as an embedded submanifold of R3. Take a coordinate
axis L in R3 parameterized by λ ∈ R. For each λ ̸= 0, embed a scaled copy of S1 with {p}
intersecting L at λ, lying in the plane normal to L at λ, and with radius 1/|λ|. Taking the
union of these circles, we get on either side of λ = 0 smooth funnels which shrink to a point
as |λ| → ∞ and expand to arbitrarily large size as |λ| → 0. This structure smoothly extends
to a connected manifold by taking the closure as a subspace of R3; it’s clear that this closure
is obtained by inserting a line through λ = 0 which is parallel to the tangent spaces TpS

1 for
all the embedded copies of the circle. Noting that as manifolds U(1) ∼= S1, u(1) ∼= R, we can
also see this example as a specific case of the construction for Lie groups; the space δ(G, {e})
determines a smooth deformation of a Lie group G to its Lie algebra g.

Of central importance to us is the tangent groupoid TM , as initiated and applied to index
theory by Alain Connes. For any manifold M , TM is defined as the deformation space
ν(M2,M∆) (here M∆ is the diagonally embedded copy of M inside M2). This is a Lie
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groupoid which is given as a family of subgroupoids over the submersion π: it is the Pair
groupoid Pair(M) over λ ̸= 0 and the additive groupoid TM over λ = 0. The groupoid
structure is not terribly important to us, but it underlies the K-theory approach to the index
theorem and appears in the work of Higson-Yi and Ševera; as such, sometimes we will prefer
the notation Pair(M) to M2.

Example 4.2. In line with our construction of δ(S1, {p}), one can almost visualize an example
of the tangent groupoid construction. Consider again our circle deformation space, but replace
each circle with a torus (whose thickness is contained in some fourth dimension). These tori
(projected down to R3) are like hollow annuli of increasing radius as |λ| → 0. At λ = 0, these
family of tori flatten out to become a cylinder. As such, one obtains TS1 = δ(T 2, S1) as an
embedded submanifold of R5.

4.2. The Rescaled Spinor Bundle. Assume M is a spin manifold of even dimension n
with a spinor bundle S → M . Higson and Yi define their rescaled spinor bundle ϖ : S → TM
by its fibres over π ◦ϖ,

S|ϖ−1(π−1(λ)) =

{
S ⊠ S∗ → Pair(M) λ ̸= 0∧

TM → TM λ = 0.

Much of Higson and Yi’s paper concerns describing a smooth structure on this space in terms
of its sheaf of sections. Later we will explain how this same structure can be arrived at
through the concept of weighted deformation spaces.

Higson and Yi go on to show ([2, Theorem 3.28]) that for a differential operator T acting on
the first factor of S ⊠ S∗ of filtration degree k in the sense described at the end of the last
section, we get an operator on S ⊠ S∗,

T̃[k]|π−1(λ) =

{
λkT λ ̸= 0

σk(T ) λ = 0.

Here σ• is the symbol from the end of the last section. In particular, our generalized Laplacian

D2 on S (once we pick a connection) will be upgraded to D̃2
[2] which over the 0-fibre is the

familiar formula from (3.6).

Given an operator T̃[k] as above, and its associated family of kernels t̃[k] ∈ Γ(S,TM), obviously
the family of supertraces,

Strλ(T̃[k]) = Str(T̃[k]|π−1(λ))

is smooth for λ ̸= 0 and Higson and Yi show ([2, Theorem 5.6]) it smoothly extends to zero
by,

Str0(T̃[k]) = (−2i)n/2
∫
m∈M

t̃[k](0m, 0).

I.e. we integrate the top form part of the kernel along the zero section of TM .

In particular, applying this to e
−D̃2

[2] and using (3.3) we observe that, for λ ̸= 0,

Strλ(e
−D̃2

[2]) = Str(e−λ2D2
) = ind(D).

This is a constant valued function of λ which must extend to give,

ind(D) = (−2i)n/2
∫
m∈M

k̃[2](0m, 0).

10



But k̃[2](0m, 0) is precisely the kernel of (3.6) at m in the spin case evaluated at x = 0, t = 1.
So from this we immediately obtain the formula (3.8), and hence the index theorem (at least
for spin manifolds). The results easily extend to the full setting as we will outline with the
simpler picture of weightings.

5. Weighted Manifolds

We now outline Loizides and Meinrenken’s theory of weightings on manifolds. This is a
generalization of “order of vanishing” for functions in C∞(M) which allows us to assign
integer weights to different directions by which we multiply the vanishing order. The content
of the first subsection up until Lemma 5.1 is taken from [4].

5.1. Weightings, Weighted Normal Bundles, and Weighted Deformation Spaces.
A weighting on a manifold M is a filtration of the sheaf of sections,

C∞(M) = C∞(M)(0) ⊃ C∞(M)(1) ⊃ C∞(M)(2) ⊃ · · ·

satisfying the following local property: around any m ∈ M there should be a coordinate
patch U with local coordinates x1, . . . , xn and a weight sequence (w1, . . . , wn) ∈ Nn

0 such that
the restriction of C∞(M)(i) to U is the ideal generated by the set,

{xs11 · · ·xsnn |s1 · w1 + · · · sn · wn ≥ i}.

Given weighted manifolds M1,M2, a smooth map ϕ : M1 → M2 is weighted if it is compatible
with the filtrations, i.e. ϕ∗(C∞(M2)(i)) ⊂ C∞(M1)(i). We call our local coordinates from
the definition weighted coordinates and the maximum of the weights wi over all patches and
weighted coordinates is called the order of the weighting. It is simple to show that C∞(M)(1)
must be the vanishing ideal of a closed submanifold N ⊂ M ; in this setting we will sometimes
refer to the weighting of M along N .

As a most basic example, the only weighting of M over N of order 1 is given by letting
C∞(M)(i) = Ii

N which we call the trivial weighting along N . Higher order weightings can be
more complicated to characterize; refer to Loizides and Meinrenken for some more details.
Given weighted manifolds M1,M2 we can construct the product weighting on M1×M2 in the
obvious way: simply take as weighted coordinates the coordinates of the two factors, or in
terms of filtrations,

C∞(M1 ×M2)(i) is generated by

i∑
j=0

C∞(M1)(j) ⊗ C∞(M2)(i−j).

A filtration of M along N of order r also induces a filtration on the normal bundle,

ν(M,N) = F−r ⊃ F−r+1 ⊃ · · · ⊃ F0 = N,

given by,

Γ(ann(F−i+1)) = C∞(M)(i)/(C
∞(M)(i) ∩ I2

N ).

The normal bundle of N ⊂ M allows us to consider Taylor approximations of functions;
we are tempted to generalize this to the weighted context. The weighted normal bundle
νW(M,N) of a weighted manifold M along N is defined algebraically as,

νW(M,N) = Homalg(gr(C
∞(M)),R).

11



Here the associated graded algebra is the obvious one induced by the weighting filtration
of C∞(M). This is given a unique smooth structure by stipulating that the weighted-

homogeneous approximation f [i] of functions f ∈ C∞(M)(i) are smooth functions on νW(M,N)
for all i. In general, the weighted normal bundle is a graded bundle over N but need not
be a vector bundle. In the case of a trivial weighting, this reduces to the definition of the
usual normal bundle. Given a weighted morphism ϕ : M1 → M2, we obtain a corresponding
morphism νWϕ : νWM1 → νWM2 which in coordinates will just be the homogeneous approx-
imation of ϕ in our homogeneous coordinates. As such, we obtain a normal bundle functor
from weighted manifolds to graded manifolds.

In light of our interest in deformation spaces, we are interested again in a weighted ver-
sion. Given a weighting of M along N , the weighted deformation space δW(M,N) is defined
algebraically as,

δW(M,N) = Homalg(Rees(C
∞(M)),R)

where the Rees algebra of C∞(M) is,

Rees(C∞(M)) =

{∑
i∈Z

z−ifi

∣∣∣∣fi ∈ C∞(M)(i)

}
⊂ C∞(M)[z, z−1].

More concretely, there is a submersion π : δW(M) → R for which,

π−1(λ) =

{
M λ ̸= 0

νW(M,N) λ = 0.

This is made smooth in such a way that for any f ∈ C∞(M)(i), the real-valued function f̃ [i]

on the deformation space given by,

f̃ [i]
∣∣
π−1(λ)

=

{
λ−if λ ̸= 0

f [i] λ = 0

is smooth. In particular, weighted coordinates x1, . . . , xm of M define weighted coordinates

λ, x̃
[w1]
1 , . . . , x̃

[wm]
m for δM(M,N). There is a “zoom action” κu for u ∈ R∗ on δW(M,N). On

λ-fibres for λ ̸= 0, κu(π(x)) = π(x)/u and κu acts trivally within the fibre. For λ = 0, κu
scales along the ith degree component of the graded bundle structure by ui. The action is

such that κ∗u(f̃
[i]) = uif̃ [i]. Thus, we may say that a function f ∈ C∞(M)(i) is uniquely

extended to a function f̃ [i] on the deformation space which is homogeneous of degree i under
κ.

We will need one simple result about weightings later.

Lemma 5.1. For M a weighted manifold and any f ∈ C∞(M)(i) \ C∞(M)(i+1) there exists
a smooth weighted path γf : R → M for which γ∗f (f) ∈ C∞(R)(i) \ C∞(R)(i+1). Here R is
given the trivial weighting along 0.

Proof. It is enough to show this locally. Consider a coordinate patch U ⊂ M with weighted
coordinates x1, . . . , xn of weights w1, . . . , wn. Consider a smooth path which near zero has
the form γ(t) = (α1t

w1 , · · · , αnt
wn) in our weighted coordinates where the coefficients α are

arbitrary. Note that, for a multi-index I = (i1, . . . , iℓ) ∈ {1, . . . , n}ℓ,

γ∗(xI) = αi1 · · ·αiℓt
wi1

+···+wiℓ .
12



Expanding f ∈ C∞(M)(i) \ C∞(M)(i+1) in our coordinates, we see,

γ∗(f) = q(α1, . . . , αn)t
i +O(ti+1)

for some non-zero real polynomial q in n variables. Now define a specific γf by choosing
α1, . . . , αn for which q(α1, . . . , αn) ̸= 0. With this choice, γ∗f (f) vanishes to exactly degree i at

0 and hence γ∗f (f) ∈ C∞(R)(i) \C∞(R)(i+1) as desired. For a general function g ∈ C∞(M)(j)
we see by above that γ∗f (g) ∈ O(tj) hence γ∗f (g) ∈ C∞(R)(j) and so γf is weighted. □

Proposition 5.2. A smooth map ϕ : M1 → M2 between weighted manifolds is weighted if
and only if for all weighted paths γ : R → M1 the path ϕ ◦ γ : R → M2 is weighted.

Proof. The forward direction follows immediately from the definition of weighted maps. For
the backwards direction assume that a path γ being weighted implies ϕ ◦ γ is. Consider
g ∈ C∞(M2)(i). Let ϕ∗(g) ∈ C∞(M1)(j) \ C∞(M1)(j+1). By Lemma 5.1, we can find a
weighted smooth path γ : R → M1 for which,

(ϕ ◦ γ)∗(g) = γ∗ϕ∗(g) ∈ C∞(R)(j) \ C∞(R)(j+1).

By assumption, ϕ ◦ γ is weighted and so i ≤ j since otherwise (ϕ ◦ γ)∗(g) ∈ C∞(R)(i)
would violate the fact (ϕ ◦ γ)∗(g) /∈ C∞(R)(j+1). Thus, ϕ∗(g) ∈ C∞(M1)(j) means ϕ∗(g) ∈
C∞(M1)(i). This holds for general g meaning ϕ∗ preserves filtrations and thus ϕ is weighted.

□

5.2. Linear Weightings on Vector Bundles. Of interest to us is putting a weighting on
a vector bundle. Of course a vector bundle is a manifold and so we may put a weighting
on it like any other manifold. However, we may hope that the weighting is in some way
compatible with the linearity of a vector bundle. Additionally, it is more natural to think
about the space of sections of a vector bundle than about its smooth functions and we may
hope for an equivalent formulation of weightings in terms of a filtration of its sections.

Given a weighted manifoldM and a vector bundle E → M , we say that E is a linearly weighted
vector bundle over M if it is weighted as a manifold and if we may take x1, . . . , xn, ω1, . . . , ωn

as its weighted coordinates at a point where x1, . . . xn are the projection to the zero section
composed with weighted coordinates for M of the same weight and ω1, . . . , ωn are a local
frame of E∗. The maximum of the weights assigned to a local frame ωi over all sets of
weighted coordinates will be called the order of the weighting.

Note that the space of sections of E∗ is a subset of C∞(E) and hence it obtains a filtration
from our weighting. Automatically this filtration is compatible with module structure of the
space of sections,

C∞(M)(i)Γ(E∗)(j) ⊂ Γ(E∗)(i+j).

In local coordinates on U ⊂ M , if ω1, . . . , ωn ∈ Γ(E∗, U) have weights w1, . . . , wn then
Γ(E∗, U)(i) consists of section, ∑

j

fjωj

where each fj ∈ C∞(U)(i−wj). We can now obtain a filtration of the space of section of E in
such a way that the pairing,

(5.1) ⟨·, ·⟩ : Γ(E∗)× Γ(E) → C∞(M)
13



respects the filtration. I.e. η ∈ Γ(E)(j) if and only if ω ∈ Γ(E∗)(i) implies ⟨ω, η⟩ ∈ C∞(M)(i+j).
From now on we will refer to such maps that respect the filtration as filtered morphisms.
This filtration is different from what we’ve seen in that it starts in negative numbers; if the
weighting of E has order n, then the filtration of Γ(E) is,

Γ(E) = Γ(E)(−n) ⊃ · · · ⊃ Γ(E)(0) ⊃ · · · .
Again this is compatible with the module structure. In local coordinates on U ⊂ M , if
ω1, . . . , ωn ∈ Γ(E∗, U) are weighted coordinates with weights w1, . . . , wn and ξ1, . . . , ξn ∈
Γ(E , U) are the dual sections defined by ωi(ξj) = δij then,

(5.2) Γ(E , U)(p) =

{∑
k

fkξk|fk ∈ C∞(U)(p+wk)

}
.

Remark. This construction in terms of a dual basis is obviously non-canonical unless we have
a metric. Additionally, one must be careful as linearity does not ensure the characterization
in (5.2) works for general bases, only in our weighted frame. As an example, take a 2-
dimensional vector space V with basis {v1, v2} and dual basis {v1, v2}. Make this space a
weighted vector bundle over {0} by setting v1, v2 as weighted coordinates with weights 1 and
2. Using the above characterization, the induced filtration on sections (in this case they are
sections over {0}, so just vectors) is,

Γ(V )(−2) = V ⊃ Γ(V )(−1) = span(v1) ⊃ Γ(V )(0) = {0}.

If we had instead begun with coordinates v1 + v2, v1 − v2 both of weight 1, then naively
following (5.2) would tell us the dual basis vectors v1 + v2, v1 − v2 were sections of filtration
degree minus one when we know from above they both have filtration degree minus two.
The inconsistency obviously comes from the fact {v1 + v2, v1 − v2} are not a set of weighted
coordinates.

The construction of a filtration on sections from a weighted bundle also works in reverse.
Consider a weighted manifold and a filtration of Γ(E) which is compatible with the module
structure and such that in local coordinates of M the filtration is given by assigning non-
positive weights to local sections in a local frame. Asking that the map (5.1) again is a
filtered morphism, we get a non-negative filtration of the space of dual sections. The space
C∞(E) is generated as an algebra by C∞(M) and Γ(E∗) from which we get a filtration on
the total space of real valued functions that is compatible with the existing filtrations. By
considering these filtrations in local coordinates we see that we obtain a weighting and the
induced filtration on the space of sections is the one we started with.

Example 5.3. At this point it is helpful to keep in mind a fundamental example. Consider
a weighted manifold M and define a filtration on Γ(TM) so that the derivation operation of
vector fields on C∞(M) is a filtered morphism. Locally, if x1, . . . , xn are weighted coordinates
of M with weights w1, . . . , wn then ∂

∂x1
, . . . , ∂

∂xn
have filtration degrees −w1, . . . ,−wn. The

corresponding filtration on the dual bundle Ω1(M) is locally given by dx1, . . . , dxn having
filtration degrees w1, . . . , wn; equivalently this is the filtration for which the exterior derivative
is a filtered morphism which in turn extends our filtration to one on Ω(M). Similarly we can
extend this to filtrations on multi-vector fields and other tensor fields. With these filtrations
the usual operations on tensor fields like tensor products, contraction, and the Lie derivative
are all filtered morphisms.
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Remark 5.4. It is natural to consider filtrations of sections for which the assigned weights
are allowed to be positive. In this context, we won’t obtain a weighting but a more general
filtration of smooth functions that begins in the negative integers. Within this more general
setting, many of the constructions, like weighted normal bundles, should still work. And
we might conjecture that we obtain isomorphisms between these negative weighted spaces
and the true weighted space given by shifting the filtration indices to begin at 0. We don’t
address these “negative weightings” further as they don’t appear in our main settings of
interest, however they are relevant to other considerations such as considering the bundle of
(p, q)-tensors as weighted.

One other filtration we can induce is on the space of differential operators D(E) by asking
that the action of operators on sections,

(5.3) D(E)× Γ(E) → Γ(E)
forms a filtered morphism. By now one should see that the presence of a weighted vector
bundle induces a plethora of filtrations relevant to the structures of the bundle. There is
certainly more to be gained by further studying the relationships between these filtrations
beyond what has been described here. The interplay between these filtrations will be key to
the constructions in the following section.

Because of our linear structure, the resulting weighted normal bundles and weighted defor-
mation spaces will be particularly nice. We now prove some results to this effect.

Proposition 5.5. Given a linearly weighted vector bundle E over M weighted along N the
weighted normal bundle νW(E , N) is a vector bundle over νW(M,N) whose space of polyno-
mial sections is isomorphic to gr(Γ(E)). Furthermore, there is a natural inclusion of gr(D(E))
into the differential operators of νW(E , N).

Proof. First we show that νW(E , N) → νW(M,N) is a vector bundle. Consider local weighted
coordinates x1, . . . , xn with weights w1, . . . , wn for M and over it a local weighted frame
s1, . . . , sm with weights v1, . . . , vm for E . We also get a dual frame s1, . . . , sm for E∗. This

defines local coordinates x
[w1]
1 , . . . , x

[wn]
n , s1,[−v1], . . . , sm,[−vm] for νW(E , N).

There is a well defined submersion π : νW(E , N) → νW(M,N) that projects to the values in

the coordinates x
[w1]
1 , . . . , x

[wn]
n . Given x in our local coordinate neighbourhood of νW(E , N),

s1,[−v1](x), . . . , sm,[−vm](x) are the basis of a m-dimensional vector space. Dualizing this, en-
dows the fibre π−1(x) with the structure of an m-dimensional vector space as well. Dualizing

the fibre coordinates si,[−vi] using our vector space structures gives local “sections” over our

submersion s
[−v1]
1 , . . . , s

[−vm]
m . These clearly determine a local trivialization of the bundle

which is linear on the fibres. Hence we have a vector bundle.

Now from the fact that gr(C∞(E)) = C∞
pol(νW(E , N)), we obtain by restriction and compati-

bility of filtrations the same identification for sections of the dual bundle. Dualizing, which
again is compatible with filtrations, we obtain,

gr(Γ(E)) = Γpol(νW(E , N)).

Here by polynomial section, we mean sections whose coefficients lie in C∞
pol(νW(E , N)) when

expanded locally in terms of the frame s
[−v1]
1 , . . . , s

[−vm]
m . Because of compatibility, the space

of graded differential operators acts naturally on graded sections and under the isomorphism
15



above we get an identification of graded operators with certain operators on the normal
bundle that send polynomial sections to polynomial sections. □

Proposition 5.6. Given a linearly weighted vector bundle E over M weighted along N the
weighted deformation space δW(E , N) is a vector bundle over δW(M,N).

Proof. The submersion π : δW(E , N) → R determines a foliation of the weighted deformation
space into constant rank vector bundles by Proposition 5.5. To show this is a vector bundle,
we only need to show that the bundle is locally trivial transverse to the leaves of our foliation.
Given a local trivialization of E over U ⊂ M , we obtain a weighted frame s1, . . . , sn dual to
a frame of weighted coordinates s1, . . . , sn. These extend to smooth varying coordinates on
the fibres over U × R, s̃1,[v1], . . . , s̃n,[vn] that form a local frame when restricted to each leaf
of the foliation. Dualizing this frame on every fibre, we obtain a smoothly varying local

frame s̃
[v1]
1 , . . . , s̃

[vn]
n on the leaves of the foliation. But then these varying frames determine a

local linear trivialization of the deformation space over U ×R. Hence the deformation space
δW(E , N) is a vector bundle over δW(M,N). □

Note that if E is linearly weighted, then the zoom action κu acts by automorphisms on δW(E).
Furthermore, the action is compatible with the zoom action on the base in the sense that
κMu ◦ π = π ◦ κEu, where π is projection to the base. Thus the zoom action makes δW(E)
an R∗-equivariant bundle. Given such a G-equivariant bundle, we always obtain a G-action
on sections. In this context, we are interested in the pullback of the action which takes the
form,

(5.4) (κ∗us)(x) = κE1/u(s(κ
M
u (x)))

for s ∈ Γ(δW(E)) and x ∈ M . In turn, we obtain a pullback action on differential operators
in the following way,

(5.5) (κ∗uD)(s) = κ∗uD(κ∗1/us)

for s ∈ Γ(δW(E)) and D ∈ D(δW(E)).

The rescaled sections employed in Proposition 5.6 now have a familiar characterization in
terms of our zoom action. We can define for s ∈ Γ(E)(i) a corresponding rescaled section

on δW(E , N), s̃[i], as the unique smooth section which is homogeneous of degree i under the
R∗ action of κ∗u and which restricts to s on the λ = 1 fibre of the space’s submersion over
R. The compatibility of rescaling operations immediately tell us that given a local frame for
Γ(E), the rescaled dual frame is the same as the dual of the rescaled frame. Similarly, for

D ∈ D(E), we uniquely obtain a smooth differential operator D̃[i] on the deformation space
which is homogeneous of degree i under κ∗u and which agrees with D on λ = 1. We now have
the following,

Proposition 5.7. Let E be a linearly weighted vector bundle over M weighted along N . For
s ∈ Γ(E)(i) and D ∈ D(E)(j), the restriction to the λ = 0 fibre of the section s̃[i] and operator

D̃[j] on the deformation space will be the symbols σi(s) and σj(D) in the associated graded
spaces as given by Proposition 5.5.

Proof. Note that by compatibility of our filtrations and our scaling, s̃[i] will have as its

coefficients in local coordinates rescaled functions f̃ [k]. Thus, on the zero section, s̃[i] will lie
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in the polynomial sections of νW(E , N). Hence by Proposition 5.5, s̃[i] is given by an element
of the associated graded algebra relative to the section space filtration. We additionally see

by compatibility that an operator D̃[j] acts on these graded sections. Since our section and
operator are homogeneous of degree i and j respectively under our scaling maps κu, we see
that we may consider,

(⋆) s̃[i]|π−1(0) ∈ Γ(E)(i)/Γ(E)(i+1) and D̃[j]|π−1(0) ∈ D(E)(j)/D(E)(j+1).

Consider r, a coordinate in a weighted frame for Γ(E∗) of weight −i. Thinking of r as an

element of C∞(E)(i) determines a dual section r̃[−i] of the deformation space. We know, by

considerations from the usual weighted normal bundle theory, that r̃[−i]|π−1(0) considered as
an element of gr(C∞(E)) is the quotient of r by C∞(E)(−i+1). Since the filtrations of C

∞((E))

and Γ(E∗) are compatible, we conclude that r̃[−i]|π−1(0) is the −ith symbol of r relative to
our C∞(M)-module filtration.

Relative to a weighted coordinate frame r1, . . . , rn of weights −w1, . . . ,−wn we obtain a dual
frame s1, . . . , sn of local sections of E with filtration degrees w1, . . . , wn. We then obtain our

rescaled sections s
[wi]
i . Note the compatible scaling actions κu on sections and dual sections

determine s
[wi]
i and r

[−wi]
i on the fibre π−1(u) given their value on π−1(1). Since {ri}, {si}

are dual local frames, we conclude {r[−wi]
i , s

[wi]
i } are dual local frames on all fibres π−1(u)

where u ̸= 0. Since our sections are smooth, we conclude that the duality extends to 0. Thus,

since r̃i
[−w] |π−1(0) is the symbol of r and the symbol maps are compatible with the duality,

s̃[wi]|π−1(0) must be the symbol of s with our identification of (⋆). Since the symbol map is
linear and compatible with the C∞(M)-module structure, this identification extends from
the basis {si} to all local sections.

Consider D ∈ D(E)(j). By compatibility of filtrations, we should have for any section s ∈
Γ(E)(i),

D̃s
[i+j]

= D̃[j](s̃[i]).

In particular, under the identifications of (⋆),

(⋄) D̃
[j]
π−1(0)

(σi(s)) = D̃s
[i+j]

π−1(0)

for all i ∈ Z and s ∈ Γ(E)(i). Note that,

Γpol(νW(E , N)) =
⊕
i∈Z

σi(Γ(E)(i)).

In particular, by linearity, D̃
[j]
π−1(0)

is totally and uniquely determined by how it acts on the

images of the symbol maps, i.e. by the relation (⋄). But since our filtrations are by definition
compatible one has,

σj(D) · σi(s) = σi+j(Ds)

for all s ∈ Γ(E)(i). Thus σj(D) always satisfies the role of D̃
[j]
π−1(0)

in (⋄), from which we

conclude,

σj(D) = D̃
[j]
π−1(0)

for all j ∈ Z and D ∈ D(E)(j). □
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6. Weightings in the Index Theorem

We would like to apply our theory of weightings to the Getzler rescaling technique and the
apparatus of Higson and Yi. More precisely, we are looking for a vector bundle weighting on
S⊠S∗ for which the rescaled spinor bundle S of Higson and Yi is the corresponding weighted
deformation space.

6.1. The Getzler Weighting. Consider our usual setting of a bundle E → M with a Clifford
connection. Recall our Getzler filtration on the algebra of differential operators D(E) that
assigns order one to ∇X and c(X) for X ∈ Γ(TM) and order zero to elements of EndCl(E).
We will reverse the filtration so that an order i operator has filtration degree −i; this will
mean that our filtration, like the others we consider, is decreasing and fits with our usual
notion of an order i differential operator lowering a function’s order of vanishing by at least
i. This filtration extends indefinitely only in the negative direction,

· · · ⊃ D(E)(−i) ⊃ · · · ⊃ D(E)(−1) ⊃ D(E)(0) = EndCl(E).

We are also have a sensible decreasing algebra filtration on Γ(Cl(TM)),

Γ(Cl(TM)) = Γ(Cl(TM))(−n) ⊃ Γ(Cl(TM))(1−n) ⊃ · · · ⊃ Γ(Cl(TM))(0)

where we set,

s ∈ Γ(Cl(TM))(i) ⇐⇒ s ∈ Γ(Cl−i(TM)).

This defines a weighted vector bundle if we give M the zero weighting (i.e. M is given
the trivial weighting along itself where C∞(M)(1) = {0}); but, this structure is not really
significant. Note given the bundle E , locally over small enough U ⊂ M we may trivialize
sections:

Γ(End(E)|U , U) ∼= Γ(Cl(TU)⊗ EndCl(E|U )) ∼= Γ(Cl(TU))⊗ Γ(EndCl(E|U )).

We can define a filtration of these trivialized sections as tensor product filtration given by
the filtration of Γ(Cl(TU)) defined above and the 0 filtration on our second factor. Patching
these together, we get a filtration of the total sheaf Γ(End(E)),

Γ(End(E))(−n) ⊃ · · · ⊃ Γ(End(E))(0).

Note that D(E) acts on Γ(E ⊠ E∗) by operating on the first factor of E ⊠ E∗. Also, from the
inclusion ι : M∆ → M2, we obtain a pullback on sections of E ⊠ E∗ to sections of End(E).
Now we are ready for our filtration of Γ(E ⊠ E∗).

Definition 6.1. Given the filtrations on D(E) and Γ(End(E)), we get a filtration of Γ(E⊠E∗)
so that σ defined by the diagram,

(6.1)

D(E)× Γ(E ⊠ E∗) Γ(E ⊠ E∗)

Γ(End(E),M∆)

σ
ι∗

is a filtered morphism. We say that a section in Γ(E ⊠ E∗)(i) has scaling order i. This is the
same as the notion of scaling order in [2, Definition 3.6].

A simple but important consequence of this as proved in [2, Lemmas 3.9 and 3.10] is the
following.
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Proposition 6.2. Let C∞(M2) be filtered by the trivial weighting of M2 along M∆ and let
D(E) and Γ(E⊠E∗) be given the Getzler order and scaling order filtrations respectively. Then,
the module operations of function multiplication and differential action in the first factor,

C∞(M2)× Γ(E ⊠ E∗) → Γ(E ⊠ E∗)

D(E)× Γ(E ⊠ E∗) → Γ(E ⊠ E∗)

are both filtered morphisms.

Additionally, [8, Proposition 4.3.1] proves an equivalent description of this filtration in local
coordinates. If {e1, . . . , en} is a local orthonormal frame of TM , it determines a local or-
thonormal frame {eI} of Cl(TM). This becomes a local frame {eI ⊗fj} of End(E), extending
by any local frame {fj} of the Clifford-commuting portion of the bundle. We can identify
a neighbourhood of M∆ with a neighbourhood of M by projecting to the second factor of
M2 and we can extend to a neighbourhood of M2 be extending along the first factor in
normal coordinates at each point of the diagonal. We can thus uniquely extend {eI ⊗ fj}
to a local frame of E ⊠ E∗ in a neighbourhood of M∆ ⊂ M2 by parallel transporting along
radial geodesics in the first factor at every point of the diagonal. We then have that locally
a section,

(6.2)
∑
I,j

ηI,jeI ⊗ fj

is in Γ(E ⊠ E∗)(i) if and only if ηI,j ∈ C∞(M2) vanishes to order |I| + i along the diagonal
for each multi-index I and index j. Thus, our filtration is defined locally by assigning local
sections {eI ⊗ fj} weights −|I|. This proves the following:

Proposition 6.3. The scaling order filtration of Γ(E ⊠ E∗) as defined by (6.1) determines a
linear weighting of order n on E ⊠ E∗ over M2 weighted trivally along M∆.

We will refer to this linear weighting of E ⊠ E∗ as the Getzler weighting.

6.2. Sections as Taylor Expansions. If we consider our local characterization of scaling
order in (6.2) and Taylor expand the terms, we obtain an alternate characterization which
will be useful. If we consider x1, . . . , xn as our normal coordinates off of the diagonal of M2,
then we can consider a local Taylor expansion of a section η,

(6.3) η =
∑
I

xIsI

where sI are local sections of End(E) that are uniquely extended to local sections of E ⊠ E∗

by parallel transport along radial geodesics. We will have that η locally has scaling order
i if and only if each section sI lies in Cl|I|−i(TM) ⊗ EndCl(E). So, we may locally identify
sections E ⊠ E∗ with sections of C[[TM ]] ⊗ End(E); taking the tensor product filtration of
the usual filtration of C[[TM ]] and the filtration we have defined of End(E), we recover our
scaling order filtration.

Given this filtered algebra, we should have an associated graded algebra. It will locally be
the tensor product of C[[TM ]] and EndCl(E), which are already graded, with the associated
graded algebra

∧
C TM of Cl(TM). So, we have a symbol map,

(6.4) σ• : Γ(E ⊗ E) → Γ(C[[TM ]]⊗ gr(End(E)), TM).
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The differential operators also have a filtration and a symbol map to the associated graded
space. This associated graded space will be the one naturally acting on the space of sections
obtained above. We obtain a symbol map,

(6.5) σ• : D(E) → Γ(P(TM)⊗ gr(End(E)), TM)

where we remember P(TM) as the space of polynomial coefficient differential operators,
graded in the obvious way. There is an action,

Γ(P(TM)⊗gr(End(E)), TM)×Γ(C[[TM ]]⊗gr(End(E)), TM) → Γ(C[[TM ]]⊗gr(End(E)), TM)

where we let P(TM) act on power series and compose the endomorphisms. As a consequence
of Proposition 6.2 this action is “homorphism-like compatible” with the symbols in the sense
that σa(D)σb(s) = σa+b(Ds).

Consider a section η as in equation (6.3) which has scaling order p. In analogy with the
Taylor expansion from multivariable calculus, we can explicitly determine the value of the
sections sI at m ∈ M∆ as,

sI(m) =
1

I!
∇I(s)(m,m)

where we define multi-index factorials and derivatives in the usual way and let ∇a = ∇∂a . If
we are interested in evaluating the image of s under the symbol map, i.e. quotienting it by
sections of scaling order p−1, we should select for the component of Clifford degree |I|−p in
each Taylor series term sI . This can be done by taking the (|I| − p)-th symbol of the Taylor
term. Summing over these top degree parts of the Taylor series terms, we obtain our symbol
in coordinates,

(6.6) σp(s)(Xm) =
∞∑
i=0

1

i!
σi−p(∇i

Xm
(s)(m,m))

where σ on the right side is our Clifford symbol. In light of Proposition 5.7 we upgrade
s ∈ Γ(E ⊠ E∗) to a smooth section,

s̃[p] ∈ Γ(δ(E ⊠ E∗,M∆)) where s̃[p](γ) =

{
λ−ps(x, y) γ = (x, y, λ) ∈ M2 × R∗

σp(s)(Xm) γ = (Xm, 0) ∈ TM × {0}

which will be homogeneous of degree p under the induced R∗ scaling map κ on sections.

6.3. Scaling and Symbols. We now do some work to build up the framework of the actual
Getzler rescaling by comparing coordinate expressions of rescaled functions with those in
terms of our zoom action κ. Consider a general weighted manifold M and a linearly weighted
bundle E → M . Locally, we have weighted coordinates x1, . . . , xn of weights w1, . . . , wn for
M . This determines extensions to coordinates z1, . . . , zn, λ for δW(M,N) where zi agrees
with zi at λ = 1 and is homogeneous of degree i under κ. Given f ∈ C∞(M)(i), we have our
usual homogeneous extension to the deformation space which we now may write as,

f̃ [i](z1, . . . , zn, λ) =

{
λ−if(λw1z1, . . . , λ

wnzn) λ ̸= 0

f [i](z1, . . . , zn) λ = 0.

This serves as a sort of proof of the smooth structure of our deformation space, as these
functions are clearly smooth in coordinates. Equivalently, given a function f ∈ C∞(M)(i),
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which we may consider as the restriction to the λ = 1 fibre of a smooth function, we may
describe its homogeneous extension away from λ = 0 as,

f̃ [i]|π−1(λ) = λiκ∗1/λf.

Now, consider our vector bundle and pick a weighted local frame of E , {ωi}, with weights
−vi. These extend to a local frame ω̃i on the deformation space, again homogeneous under
κ. We have for s ∈ Γ(E)(i) with s =

∑
fjωj and fj ∈ C∞(M)(wj) ,

(6.7) s̃[i](z1, . . . , zn, λ) =

{
λ−i

∑
λ−vjf(λw1z1, . . . , λ

wnzn)ωj λ ̸= 0

s[i](z1, . . . , zn) λ = 0.

Analogously to above we can describe this extension away from λ = 0 in terms of the pullback
action of κ on sections in (5.4). Thinking of s ∈ Γ(E)(i) as the λ = 1 fibre of a deformation
space section,

s̃[i]|π−1(λ) = λiκ∗1/λs.

Since κ and our sections are smooth and by Proposition 5.7,

(6.8) lim
λ→0

λiκ∗1/λs = σi(s).

Now, our natural next step is to apply this to differential operators. Based on the compati-
bility given in (5.3), we know that for D ∈ D(E)(−q) and η ∈ Γ(E)(p),

(̃D(η))
[p−q]

= D̃(η̃[p])[−q].

In terms of κ, extended to operators by (5.5), if D ∈ D(E)(−q) is considered as an operator
on the deformation space restricted to λ = 1,

D̃[−q]|π−1(λ) = λqκ∗1/λD

away from λ = 0. Again using smoothness and Proposition 5.7,

(6.9) lim
λ→0

λqκ∗1/λD = σ−q(D).

6.4. The Getzler Symbol. We now transition back to the specific case of our Getzler
weighting. We already have an explicit formulation of the symbols of our sections as given in
(6.6). The results of the last subsection allow us to do the same for operators. For example,
consider the differential operator of Clifford multiplication c(X). We know, that our space of
endomorphisms is locally in isomorphism with

∧
TM⊗EndCl(E) on which the Clifford action

is c(X) = ε(X)− ι(X), i.e. exterior multiplication by X minus interior multiplication by its
dual. We know that exterior multiplication raises the graded degree by one, while interior
multiplication lowers it. Hence, under the local isomorphism to

∧
TM ⊗ EndCl(E),

λκ∗1/λc(X) = λκ∗1/λ ◦ c(X) ◦ κ∗λ
= λ(λ−1ε(X)− λι(X))

Taking λ to zero, we conclude from (6.9) that σ−1(c(X)) = ε(X). We could similarly derive,
using [1, Lemma 4.15], that,

σ−1(∇ei) =
∂

∂ei
+

1

2
ε(γ ◦R(·, ei))
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where γ is the isomorphism,

γ : so(TM)
∼=−→
∧2

TM such that in a basis {ei}, γ(A) =
1

4

∑
i

A(ei) ∧ ei

and R is the curvature endomorphism as a skew symmetric matrix valued two-form. Since
these two forms of operators along with Clifford-commuting endomorphisms (which are pre-
served by the symbol) generate D(E), this is enough to determine the symbol map on any
differential operator. It is already presented in [1, Proposition 4.20], but we show how we
can deduce from this the symbol of our generalized Laplacian D2.

First we use the Lichnerowicz formula, proved in [1, Theorem 3.52], to write D2 in terms of
the Bochner Laplacian, the twisted curvature F given as an element of Cl2(TM), and the
scalar curvature,

D2 = ∆E + σ−1
Cl (F ) +

κ

4

In a local orthonormal {e1, . . . , en},

= −
∑
i

(∇E
ei∇

E
ei −∇E

∇LC
ei

ei
) +

∑
i<j

F (ei, ej)c(ei)c(ej) +
κ

4
.

Now we take the symbol by only keeping the terms of Getzler order two and taking their
symbol,

σ2(D
2) = −

∑
i

σ1(∇E
ei)σ1(∇

E
ei) +

∑
i<j

F (ei, ej)σ1(c(ei))σ1(c(ej)).(†)

Now we look at the connection’s symbol in coordinates. For ω ∈ Γ(
∧
TqM, ) ⊗ EndCl(TM)

and η a tangent vector we know,

σ1(∇E
ei)ω(η) =

∂

∂ei
+

1

2
γ ◦R(η, ei) ∧ ω

=
∂

∂ei
ω(η) +

1

8

∑
ℓ

R(η, ei)eℓ ∧ eℓ ∧ ω(η)

=
∂

∂ei
ω(η) +

1

8

∑
ℓk

⟨R(η, ei)eℓ, eℓ⟩ek ∧ eℓ ∧ ω(η).

Writing η =
∑

j x
jej for xj = ⟨η, ejl⟩ and using the Riemannian curvature 4-tensor,

=
∂

∂ei
ω(η) +

1

8

∑
jℓk

Rjiℓkx
jek ∧ eℓ ∧ ω(η).

By skew symmetry,

=

 ∂

∂ei
+

1

4

∑
j,k<ℓ

Rijkℓx
jεkεℓ

ω(η).

Applying this result to (†) gives,

σ2(D
2) = −

∑
i

 ∂

∂ei
+

1

4

∑
j,k<ℓ

Rijkℓx
jεkεℓ

2

+
∑
i<j

F (ei, ej)ε
iεj

which is precisely the same as the formula from (3.6).
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Remark 6.4. In the above computation we derive the symbol from the equality,

σ−2(D) = lim
λ→0

λ2κ∗1/λD
2

= lim
λ→0

λ2κ∗1/λ ◦D2 ◦ κ∗λ.

Meanwhile, in the Getzler Rescaling approach of section 3.2 we derived the symbol from,

σ−2(D) = lim
λ→0

λ2δλ ◦D2 ◦ δ1/λ.

We immediately, notice a striking similarity. Indeed, when acting on time-independent sec-
tions s ∈ Γ(E), we have an equality of scalings

δλs = κ∗1/λs|π−1(λ)

This can be checked by the coordinate description in (6.7). The problem of dealing with time-
dependent sections and scaling, as with our heat kernel, is addressed in the next subsection.

6.5. Getzler Rescaling and Time-Dependent Sections. Now we are interested in time-
dependent sections, i.e. we consider a section smoothly dependent on a parameter t ∈ R+.
More specifically, we are interested in these in the context of our generalized heat equation.

Recall that associated to the heat equation ∂t + D2, we have a smoothing operator e−tD2
.

On the deformation space under the Getzler weighting, we can extend this to a heat equation

∂t+D̃2
[2]

which has a smoothing operator e−tD̃2
[2]

. Evaluating this at time t = 1 gives,

(6.10) e−D̃2
[2]

= e
−λ2κ∗

1/λ
D2

.

As λ → 0, this equality admits two interpretations of the result: either as the smoothing
kernel of σ−2(D

2) evaluated at t = 1, or as the smoothing kernel of the rescaled D2 at t = λ2.

If kt is the associated smoothing kernel to e−tD2
given in (3.1), the second interpretation tells

us we should study the rescaled kernel κ∗1/λkλ2 whose time we let vary with the fibre over R
in the deformation space.

Like any section, k1 ∈ Γ(E)(−n) and there is no reason why it need have scaling order any
greater than −n. Hence, we may obtain a rescaling of the time-dependent section,

k̃λ2

[−n]
= λnκ∗1/λkλ2 .

We conclude from (6.10) and (6.8) that,

k̃λ2

[−n]
|π−1(0) = lim

λ→0
λnκ∗1/λkλ2

is the kernel associated to σ−2(D
2). Using, (6.7), we may describe,

k̃λ2

[−n]
= λn

n∑
i=0

λ−ik(λx, q, λ2t)[i].

One should notice this is precisely the Getzler rescaling of (3.5) and k̃λ2

[−n]
restricted to

π−1(λ) is exactly equal to the rescaled kernel r(x, 1) = λnδλk1 we gave in Section 3.2. The
computations of [1, Theorem 4.1] can be used to show that with our additional scaling of
t everything is still analytically well-defined. Once this is verified, the construction of our
deformation space guarantees the desired property that the limit of this rescaled kernel will

be the kernel associated to e−σ−2(D2). As we observed in Section 3.2, the rescaling has no
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effect on the top degree part of ϕn/2 (in our new formalism this amounts to the observation
that (ϕn/2)[n] has scaling order −n and is independent of time in the asymptotic expansion
of kt). Thus,

Str(k1) = Str(k̃λ2

[−n]
|π−1(λ)) = Str( lim

λ→0
λnκ∗1/λkλ2) = Str(e−σ−2(D2)).

Because σ−2(D
2) is given by (3.6) which has kernel given by (3.7), we once again arrive at a

complete proof of the index theorem.

7. The Symbol Calculus of Ševera

Now we move on to some study of a construction of Pavol Ševera given in an unpublished letter
written to Alan Weinstein [9, Letter 6]. First we review the structure of this construction
and then consider how it may be obtained as a weighted deformation space.

7.1. Clifford Algebroids. Ševera defines an associative algebroid to be a vector bundle A
over a Lie groupoid G with smoothly varying associative multiplication maps between fibres:
Ag ⊗ Ah → Agh (the same concept is considered by Higson and Yi under the name of a
multiplicative structure). Let A be a vector bundle with a metric and fibres of dimension n
over a manifold M . Consider the SO(n)-frame bundle of A, a SO(n)-principal bundle whose
points are the special orthogonal isomorphisms from Rn to a fibre of A, which we denote
FSO(n)(A). If this admits a lift to a Spin(n)-principal bundle, we obtain a bundle FSpin(n)(A).
We define the Clifford algebroid as the associated bundle over Pair(M),

Cℓ(A) = Pair(FSpin(n)(A))×Pair(Spin(n)) Cl(Rn)

(note this is slightly different from Ševera who uses Cl(Rn) instead). Here (g1, g2) ∈ acts on
Pair(FSpin(n)(A)) by standard right action in each fibre and acts on Cl(Rn) by a 7→ g1ag

−1
2 .

This becomes an associative algebroid over the pair groupoid with the multiplication on
Pair(FSpin(n)(A))× Cl(Rn),

(p1, p2, a) · (p2, p3, b) = (p1, p3, ab)

which descends to a well defined multiplication on Cℓ(A) under the quotient by Pair(Spin(n)).
Since the adjoint action of Spin(n) on Cl(Rn) preserves Clifford order, one can see that the
restriction of Cℓ(A) to M∆ is the bundle of Clifford algebras Cl(A). This algebroid reduces
to something familiar in the case A = TM . In this case, we are asking that M have a spin
structure and the bundle FSpin(n)(TM) is just the Spin(n)-frame bundle FSpin(n). Let S
be the spinor bundle of M which recall can be described FSpin(n) ×Spin(n) S. We obtain the
following equalities of associated bundles, which can be checked explicitly in terms of the
relevant group actions,

S ⊠ S ∗ = (FSpin(n) ×Spin(n) S)⊠ (FSpin(n) ×Spin(n) S)

= Pair(FSpin(n))×Pair(Spin(n)) S ⊗ S∗

= Pair(FSpin(n)(TM))×Pair(Spin(n)) Cl(Rn)

= Cℓ(TM).

We define a second algebroid over the groupoid TM which I call the graded algebroid of A as
an associated bundle given by,

Gr(A) = TFSpin(n)(A)×so(n)⋊Spin(n)

∧
C
Rn.
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Here Spin(n) acts on TFSpin(n) by its right action and so(n) acts by addition of vectors. Also,
Spin(n) acts on

∧
CRn as SO(n) under the double cover with its usual representation on Rn

extended to the exterior algebra and so(n) acts by exterior multiplication of its exponential
as a two-form. This odd action is explained in terms of weightings below. This is made a
algebroid through the multiplication on TFSpin(n)(A)×

∧
CRn, (v1, c1) ·(v2, c2) = (v1+v2, c1∧

c2) which again can be shown to descend to the associated bundle. In the case of A = TM ,
we again obtain something familiar. First recall we may write TM as a frame bundle,

TM = FSpin(n) ×Spin(n) Rn.

We can take the corresponding exterior algebra bundle and complexify,∧
C
TM = FSpin(n) ×Spin(n)

∧
C
Rn.

Applying the tangent bundle functor to both sides,∧
C
TM → TM = TFSpin(n)(TM)×TSpin(n)

∧
C
Rn

= Gr(TM).

We now can form an algebroid over the tangent groupoid TM given as a smooth family
of algebroids sitting over a submersion π onto R. We define the rescaled Clifford algebroid
τC ℓ(A) in terms of its π-fibres as,

τCℓ(A)|π−1(λ) =

{
Cℓ(A) → Pair(M) λ ̸= 0

Gr(A) → TM λ = 0.

This is given a smooth structure in such a way that the R∗ group action κt given by,

(7.1) κt(γ, λ) =

{
(γ, λ/t2) λ ̸= 0, γ ∈ Cℓ(A)

( ˜(p, λ · v), λ2Xm, 0) λ = 0, γ = ((̃p, v), λ2Xm) ∈ Gr(A)

where λ · v is the scalar multiplication on Rn extended to
∧
Rn, acts by diffeomorphisms.

Note that by our above computation, τCℓ(TM) has the same fibres over its submersion onto
R as the rescaled spinor bundle S, however the way these fibres fit together is different. In
particular, we will see our rescaled Clifford algebroid corresponds to a differently weighted
deformation space.

The purpose of the construction of Ševera is for a certain symbol calculus. We can consider
a certain family of differential operators on the Clifford algebroid which we write D1(Cℓ(A)).
This will refer to differential operators on sections of Cℓ(A) which only act on the first factor,
in the sense that when pulled back under the quotient by the action of Pair(Spin(n)) to an
operator on Pair(FSpin(n)(A))×Pair(Spin(n))Cl(Rn), they act as the identity on the second copy
of FSpin(n)(A). In a local trivialization, centred on the diagonal and fixing a value of the second
coordinate, the Clifford algebroid just looks like a trivial bundle U×Cl(Rn). Locally, elements
of D1(Cℓ(A)) look like usual differential operators on U with coefficients in Cl(Rn) that act
by multiplication. We can define locally a filtration on D1(Cℓ(A)) as the tensor product
of the usual Clifford filtration on Cl(Rn) and the doubled standard filtration on differential
operators on U , i.e. a first order derivative has filtration degree −2. Gluing together local
trivializations so that the transition functions on the bundle fibres are given by elements of
Spin(n), we get a well defined filtration on D1(Cℓ(A)) which we call the Ševera filtration.
This filtration has the property that the associated graded algebra is graded commutative.
Ševera explains that the assocoated graded algebra of operators under this filtration can be
considered as Gr(A). Furthermore, P ∈ D1(Cℓ(A)) is extended to an operator on τCℓ(A)

25



which is equivariant under κ and whose restriction to the zero fibre is the symbol of P . This
talk of rescaling and symbols should all sound very familiar and we discuss the details in
the next subsection. Some discussion of this filtration, including a coordinate independent
definition and its applications to Dirac operators and Courant algebroids is given in a paper
of Ševera and Fridrich Valach [10, Section 6].

7.2. Ševera’s Construction as a Weighted Deformation Space. Note as usual, for
any manifold M , Pair(M) has a standard trivial weighting along M∆ which gives TM as
the (weighted) normal bundle. In reference to the symbol calculus of Ševera, we will now
be interested in the Pair(M) but with the doubled weighting, so that a function vanishing
to order i along the diagonal has filtration degree 2i. The resulting weighted normal bundle
will still be isomorphic to TM , but when we consider the product weighting, we will get
something different. From now on in this section when we write Pair(M) for any manifold
M we assume it has this doubled weighting. We can also put a weighting on the vector space
Cl(Rn) considered as a manifold in the standard way. We take the standard basis e1, . . . , en
for Rn and by multi-indexing extend to a basis eI for Cl(Rn) with canonical dual basis eI ; if
we give eI the weight |I| then we get globally defined weighted coordinates. This extends to a
weighting on Cl(Rn) by tensoring with the zero-weighting on C. The corresponding weighted
normal bundle is clearly

∧
CRn.

Now we can give Pair(FSpin(n)(A)) × Cl(Rn) the product weighting and obtain by applying
the weighted normal bundle functor,

Pair(FSpin(n)(A))× Cl(Rn)
νW−−→ TFSpin(n)(A)×

∧
C
Rn.

Additionally, one has the product weighting on Pair(FSpin(n)(A))×Pair(Spin(n)(A))×Cl(Rn).
The group action α should take this space into Pair(FSpin(n)(A)) × Cl(Rn). We can hope
to apply the weighted normal bundle functor to this morphism and obtain the following
commutative diagram,

(7.2)

Pair(FSpin(n)(A))× Pair(Spin(n))× Cl(Rn) Pair(FSpin(n)(A))× Cl(Rn)

TFSpin(n)(A)× TSpin(n)×
∧

CRn TFSpin(n)(A)×
∧

CRn.

νW

α

νW

β

To check that this actually commutes, we need to show that α is a weighted morphism and
that the corresponding action β of TSpin(n) is the same as what Ševera claimed. First, we
need a lemma. Recall we have vector space isomorphisms γ : so(n) →

∧
Rn and q = σ−1 :∧

Rn → Cl2(Rn); let their composition be the map λ. The following result is proved in [5,
Proposition 3.2]

Lemma 7.1. The following diagram commutes,

Spin(n) Cl(Rn)

so(n) Cl2(Rn).

exp

λ

exp

Here exp on the left is the Lie group exponential under the identification so(n) ∼= spin(n) and
exp on the right consists of applying the usual exponential Taylor series to Cl2(Rn).
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Proposition 7.2. The group action α is a weighted morphism.

Proof. A full proof can be found in [3] Appendix A. One applies Proposition 5.2. A weighted
path R → Pair(FSpin(n)(A))×Pair(Spin(n))×Cl(Rn) will be one which is tangent to (FSpin(n))∆
and Spin(n)∆ to second order and which is tangent to Cli(Rn) to ith order. As such, we may
locally near t = 0 write an arbitrary weighted path into our space as,

γ(t) =

(
x+ t2x1(t), x+ t2x2(t), g exp

(
ξt+ η1(t)t

2
)
, g exp

(
ξt+ η2(t)t

2
)
,

∞∑
i=1

tic[i]

)
where x is a local coordinate in FSpin(n)(A), x1(t), x2(t) are local paths in FSpin(n)(A), g ∈
Spin(n), ξ ∈ spin(n), η(t) is a path in spin(n), and c[i] has Clifford order at most i. One then
applies the action and show this plays nicely with the filtrations involved. □

Now we compute the corresponding normal bundle map β. We will do it by looking at the
action on each factor, first on Pair(FSpin(n)(A)). Given the action of (g1, g2) ∈ Pair(Spin(n))
we may take g2 = g, g1 = exp(ξ)g for some ξ ∈ spin(n). We have,

(p1, p2) · (exp(ξ)g, g) = (p1 · exp(ξ)g, p2 · g).
To understand the corresponding weighted normal bundle action, we can introduce a pa-
rameter t, which we then take to zero, that represents the infinitesimal directions (with
appropriate weighted degrees) that are magnified by the transition to the normal bundle.
Consider (p, p) ∈ Pair(FSpin(n)(A)). If we locally trivialize our frame bundle of A, we can
identify fibres with copies of Spin(n) and the right action above will just be right multipli-
cation. Under this identification of the fibres surrounding p ∈ FSpin(n)(A), we can consider

(p exp
(
ηt2
)
, p) ∈ Pair(FSpin(n)(A)) and (g exp

(
ξt2
)
, g) ∈ Pair(Spin(n)) and consider the re-

sulting term which is second order in t. Multiplying,

(p exp
(
ηt2
)
, p)·(g exp

(
ξt2
)
, g) = (p(1+ηt2+· · · )g(1+ξt2+· · · ), pg) = (pg(1+(η+ξ)t2+O(t4)), pg).

We conclude that the resulting action of TSpin(n) on TFSpin(n)(A) will be,

(p, η) · (g, ξ) = (pg, η + ξ).

Here the addition of tangent vectors makes sense under the identification of the space tangent
to a fibre of FSpin(n)(A) with an affine copy of spin(n).

Now we study the action on Cl(Rn). Note that (exp(ξ)g, g) ∈ Pair(Spin(n)) acts on Cl(Rn)
first by adg and then by left multiplication by exp(ξ); we study the resulting weighted normal
bundle actions of each. Expanding c ∈ Cl(Rn) in terms of products of an orthonormal basis
e1, . . . , e2n , it’s enough to consider the adjoint action on a multi-index eI = ei1 · · · eik . We
also need to recall the simple algebraic fact that g ∈ Spin(n) acts on v ∈ Rn using Clifford
multiplication,

τ(g)v = adg(v) = gvg−1.

This is a representation and τ(g) always acts as by special orthogonal transformations. In
fact,

τ : Spin(n) → SO(n)

is a double cover. We now compute,

adg(eI) = gei1 · · · eikg
−1

= gei1g
−1gei2g

−1 · · · geikg
−1.

27



Here we are considering g as lying in the diagonal of Pair(Spin(n)) and so it will be unaffected
by our normal bundle functor. On the other hand, Cl(Rn) is filtered in the usual way and
so the normal bundle functor will take it to its associated graded space via the symbol map.
As such we obtain,

νW(adg)(eI) = σ ◦ adg ◦ σ−1(eI).

Because {ei} is orthonormal, eI as a k-fold Clifford product is sent to eI as a k-form by the
symbol map,

= σ(gei1g
−1gei2g

−1 · · · eikg
−1).

As stated above, τ(g) = adg ∈ SO(n) and so {geig−1}i are still an orthonormal basis for Rn.
Hence,

= gei1g
−1 ∧ · · · ∧ geikg

−1

= τ(g) · eI

where the last line represents extending the SO(n) group action on Rn to
∧
Rn in the usual

way.

Second, we consider the action of left multiplication by exp(ξ). In analogy with what we did
earlier, we add a parameter t and expand exp

(
ξt2
)
to consider terms of appropriate order.

We should also expand our Clifford element as a series c =
∑

tici for ci ∈ Cli(Rn). We
get,

exp
(
t2ξ
)∑

i

tici =
∑
ij

1

j!
ti+2jξjci.

To consider the resulting normal approximation we should take i+ 2jth symbol of the i, jth
term of the series to effectively quotient by higher order parts,

νW(exp(ξ) · c) =
∑
ij

1

j!
σi+2j(ξ

jci)

=
∑
ij

1

j!
σ2(ξ)

j ∧ σi(ci).

Here we have first identified ξ ∈ spin(n) with an element of Cl2(Rn) and then taken its
symbol. One can check the composition just gives our isomorphism γ of so(n) and 2-forms.
We have,

= exp(γ(ξ)) ∧ σ(c).

So we see that the tangent functor applied to left multiplication by exp(ξ) gives us exterior
multiplication by the exponential of ξ as a two form. In total, we conclude our action β is
given by,

β(p, x, g, ξ, ω) = (p · g, x+ ξ, exp(γ(ξ)) ∧ τ(g) · ω)
For p ∈ FSpin(n)(A), x ∈ TpFSpin(n)(A), g ∈ Spin(n), ξ ∈ spin(n), ω ∈

∧
CRn. After some

parsing, one concludes this is precisely what Ševera suggests.

So, we now have that the diagram in (7.2) is commutative and the construction of Ševera
is compatible with our weightings. We can now define the Ševera weighting on Cℓ(A) in
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the obvious way. Let π : Pair(FSpin(n)(A)) × Cl(Rn) → Cℓ(A) be the quotient by our group
action. Then, let a smooth function f on the Clifford algebroid satisfy,

f ∈ C∞(Cℓ(A))(i) ⇐⇒ π∗f ∈ C∞(Pair(FSpin(n)(A))× Cl(Rn))(i).

One can check compatibility with the module structure and the form in trivialized local
coordinates to conclude that this defines a weighted vector bundle structure of the Clifford
algebroid over Pair(M) with the doubled weighting along M∆.

Note in the case of A = TM , this is clearly different from our Getzler weighting as the
weighting on the base Pair(M) is different. Additionally, this weighting was defined without
a choice of connection on A which was essential to the Getzler construction. We now have
the following result.

Proposition 7.3. Given the Ševera weighting on Cℓ(A), the corresponding weighted normal
bundle is Gr(A) and the weighted deformation space is τCℓ(A).

Proof. The fact that νW(Cℓ(A)) = Gr(A) is immediate from the diagram (7.2) and the functo-
riality of the weighted normal bundle. Thus, δW(Cℓ(A)) and τCℓ(A) share the same fibre-wise
construction over their submersions onto R. It only remains to show that the smooth struc-
ture of the deformation space is the same as the one described by Ševera for the rescaled
Clifford algebroid.

Recall from (7.1) that Ševera describes the smooth structure of τCℓ(A) in terms of a scaling
action κλ for λ ∈ R∗. If π is the submersion from the rescaled algebroid to R, the action
sends the π-fibre t to the fibre t/λ2. Additionally the action does not affect the geometry of
the fibres π−1(t), except at t = 0 where it scales along the tangent spaces of TM by λ2 and
scales the algebroid A by λ.

Unpacking definitions, one concludes that κλ, is the smooth “zoom action” κλ we defined for
any weighted deformation space composed with the diffeomorphism t 7→

√
t that acts on our

coordinate t given by the submersion π onto R. In particular, κλ describes a smooth action
of R∗ on δW(Cℓ(A)). We conclude that δW(Cℓ(A)) ∼= τCℓ(A). □

Now from Propositions 5.5, 5.6, and 5.7, we obtain a filtration on differential operators and
an extension to the deformation space which internalizes its symbol calculus. This should
restrict to the desired Ševera filtration of D1(Cℓ(A)). Indeed, given our filtration of functions,
Clifford multiplication by a vector field should have filtration degree −1 while a derivative
in a coordinate transverse to the diagonal should have filtration degree −2, which locally
generates precisely the filtration Ševera describes. We don’t outline it in detail, but just
as we did in the Higson-Yi picture, D ∈ D1(Cℓ(A))(i) is promoted to an operator on the
rescaled algebroid whose zero section is the desired symbol σi(D) in the associated graded
(and graded commutative) algebra. This rescaling can be defined through the zoom action
as Ševera claims.

8. Concluding Thoughts

We review some ideas and constructions beyond what we’ve done above. This suggests
interesting extensions and related concepts within our framework, which we present roughly
in order from least to most speculative.
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8.1. General Rescaling Techniques in Index Theory. The index theorem admits many
other generalizations to various exotic bundles, many of which can be found in the later
chapters of [1]. Some of these results admit proofs which naturally generalize our Getzler
rescaling argument for the original theorem. We quickly review two examples given in [1,
Chapters 8, 10].

Given a compact Lie group G, consider a G-manifold M with a G-equivariant Clifford module
E . Assume we have a Dirac operator D on E which is G-equivariant in the obvious sense.
Then G must preserve the kernel of D and we can define an equivariant index for g ∈ G
as,

indG(g,D) = Str(g, ker(D)) = Tr(g, kerD+)− Tr(g, kerD+).

For X ∈ g sufficiently small, one obtains an integral formula, called the Kirillov formula, for
indG(exp(−X), D) almost like that for the usual index of D but using equivariant versions
of the characteristic classes. In [1, Section 8.3], Berline, Getzler, and Vergne give a proof
of this formula by rescaling the heat kernel of a certain generalized Laplacian using a novel
equivariant Clifford filtration. The proof follows the structure of the original Getzler heat
kernel proof.

Another result is the Bismut local family index theorem which is for a smoothly varying
family of Dirac operators DM on a bundle of manifolds M → B. Given a super vector
bundle E , an odd parity first order differential operator A acting on E valued differential
forms which satisfies the Leibniz rule,

A(α ∧ β) = dα ∧ β + (−1)kα ∧ A(β)

for α ∈ Γ(
∧k T ∗M) and β ∈ Γ(E⊗

∧
T ∗M) is called a superconnection. Consider a supercon-

nection A whose action on Γ(E ⊗
∧

T ∗M) composed with the projection Γ(E ⊗
∧
T ∗M) →

Γ(E) is given by a Dirac operator; a particularly nice example of such a superconnection on
a bundle over M → B is the Bismut superconnection. There is a certain rescaling of the
Bismut superconnection A by a parameter t to give a family of superconnections At. The
local family index theorem then asserts that limt→0 ch(At) exists and is given by an expres-

sion similar to the usual Atiyah-Singer integrand but with a twisted version of the Â-class
and integrated over the quotient M/B. Berline, Getzler, and Vergne present a proof of the
result in [1, Section 10.4] which proceeds by performing a Getzler-type rescaling of the heart
kernel associated to the curvature A2. The proof is again similar to the Getzler heat kernel
proof although slightly complicated by dealing with superconnections. In [1, Section 10.7], it
is also shown that in a particular principal bundle setting the local family index theorem is
equivalent to the Kirillov formula.

A third application of rescaling techniques appears from a result of Bismut that gives formulae
in different contexts for the supertrace of a heat kernel of the Bismut hypoelliptic Laplacian
shifted by a group action. Bismut develops this theory using concepts from Getzler’s rescaling
argument [11, Section 1.5]. In his PhD thesis, Zelin Yi outlines how his Higson-Yi rescaled
bundle can be modified to a certain vector bundle over a new deformation space which he
calls the relative tangent groupoid ; as with the index theorem, the geometry of this bundle
naturally incorporates the results of Bismut [11, Chapter 5].

In each of these cases, and likely more, Getzler rescaling provides a useful framework for prov-
ing index type results. In each such case, we should expect that there is linearly weighted
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vector bundle structure whose weighted deformation space naturally incorporates the rescal-
ing through a zoom action. In specific cases we may also expect additional compatibilities
with the structures of our bundle, for example notions of a weighted equivariant bundle, a
weighted family of bundles, or a weighted Lie group.

8.2. Atiyah-Patodi-Singer Index Theorem. Consider a vector bundle E on a manifold
M with boundary. We can study the index of a Dirac operator D on this bundle which we
may expect depends on the usual Atiyah-Singer integrand for D as well as some boundary
consideration. The Atiyah-Patodi-Singer index theorem gives one situation in which such a
result holds; we give a brief exposition following [7, Chapter 13].

One way of working with a manifold with boundary is to extend the boundary off to infinity.
We define a manifold with a cylindrical end N to be a manifold M which is the union of
a compact manifold M0 with boundary N and N × [0,∞) glued together along ∂M0 and
N × {0}. Associated to a Dirac operator D, we can define a function called the eta function
given by,

η(s) =
∑
λj ̸=0

sgn(λj)|λj |−s

where λj are the eigenvalues of D. It can be shown that η, at least on manifolds of positive
scalar curvature, analytically extends to a meromorphic function on C with a finite value for
η(0) which we call the eta-invariant. We obtain the following,

Theorem 8.1 (Atiyah-Patodi-Singer Index Theorem). Let M be an even n-dimensional
spin manifold with a cylindrical end N of positive scalar curvature and an associated Dirac
operator D. Then,

ind(D) = (2πi)−n/2

∫
M

Â(TM)− 1

2
ηN (0)

where ηN is the eta-function of D restricted to N .

This result can be proved with techniques similar to the Getzler rescaling for the original
index theorem, as done in Richard Melrose’s book [6]. In fact Melrose’s framing of the
proof is quite similar to ours and centres around the idea of rescaled bundles and compatible
filtrations, see [6, Chapter 8]. As such, it should be reasonable to fit the “APS” theorem
into the framework of the Getzler weighting which we developed above. More generally one
might be interested in asking about weightings in the context of b-geometry, as developed in
[6, Chapter 2].

8.3. Linear Weightings on Associated Bundles. In the case of the Ševera Clifford al-
gebroid we had a nice description as a weighted bundle by thinking of it as an associated
bundle. We may wonder how general this kind of description is.

Recall any rank n vector bundle E with fibres isomorphic to E can be viewed as an associated
bundle,

E = FGL(n)(E)×GL(n) E.

One can ask: when does a linearly weighted vector bundle E admit a “trivialization” of its
weighting, i.e. when is the weighting induced from the product of a vector space weighting on
E and a bundle weighting on FGL(n)(E) (or some other subbundle for a given G-structure).
Here by bundle weighting we just mean a weighting of a frame bundle which determines a
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weighting on the base under pullback by the submersion to the base. More generally, one could
investigate the connection between weightings on frame bundles and principal bundles.

8.4. Deformation Quantization. Given a manifold M , the space C∞(M)[[ℏ]] is called a
deformation quantization if it is has an algebra structure ∗ that for f, g ∈ C∞(M) is given
by,

f ∗ g = fg + ℏF1(f, g) + ℏ2F2(f, g) + · · ·
for Fi bi-differential operators.

One can naturally view the Clifford algebra as a certain quantization of the exterior algebra
by taking,

vw + wv = 2ℏ⟨v, w⟩.
One recovers the exterior algebra under the “classical” limit ℏ → 0, which is precisely the
action of the symbol map.

Analogously, one can quantize the symmetric algebra Sym(V ) and consider the quotient of
the tensor algebra by the ideal generated by,

vw − wv − 2ℏ⟨v, w⟩
for v, w ∈ V . The resulting space will be the Weyl algebra W (V ), which is isomorphic as a
vector space to Sym(V ) and hence infinite dimensional.

We’ve already implicitly seen how weighted deformation spaces can encapsulate some of this
quantization process in the Clifford case. We can consider the submersion over R in our
deformation space as parameterizing our variable ℏ. As we go to the zero section of the
deformation space, we recover the classical picture. The Weyl algebra should be similarly
described, potentially with some technicalities because of the infinite dimensionality.

One may look to find a more formal relationship between weighted deformation spaces and
quantization. For example, describing Poisson manifolds in terms of this weighted deforma-
tion picture.
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