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CHAPTER 1

Algebraic Topology

1. Basic Theory

We begin with some basic fundamental concepts. In particular we build fa-
miliarity with CW complexes, important types of spaces and maps between
them, and the basic notion of equivalence in algebraic topology.

1.1. CW Complexes, Elementary Spaces, and Operations. Most
of the spaces we deal with have the following description which allows for easier
calculations and implies nice properties.

Definition 1.1

A CW complex X is a space formed as the inductive limit of spaces
X0 ⊂ X1 ⊂ · · · , where Xn is obtained from Xn−1by,

Xn = Xn−1



α∈A,ϕα

eα,

where A is an indexing set, eα are homeomorphic to Dn and we glue eα
to Xn−1 by continuous maps ϕα : ∂eα → Xn−1, so that X satisfies:

Weak Topology: C ⊂ X is closed iff C ∩Xi is closed for all i.

We say Xn is the n-skeleton of X and a choice of decomposition {Xn}
of X is a cell structure. A Hausdorff space is a CW complex iff it can be
partitioned into cells eα homeomorphic to disks so that it satisfies the
weak topology axiom and:

Closure Finiteness: The boundary of any cell is in the closure of a
finite collection of lower dimensional cells.

Now we recall a number of fundamental spaces and describe their CW structure
where applicable.
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Important Spaces

Euclidean space: We have the basic spaces R,C,H and their Cartesian
products Rn,Cn,Hn. In the direct limit under inclusion, we
obtain R∞,C∞,H∞. These are homeomorphic but are each
interesting for their distinct algebraic structures.

Spheres: One has the sphere Sn which can be formed as a CW complex
from an n-cell glued by its whole boundary to a 0-cell. Alterna-
tively, Sn can be formed inductively by gluing two n-cells by the
identity to Sn−1. This second structure allows us to define S∞

as a direct limit, and a simple lemma proves S∞ is contractible.

Projective Spaces: The space of real (resp. complex or quaternionic
lines) in Rn+1 (resp. Cn+1 or Hn+1) defines the projective space
RP n (resp. CP n or HP n). These spaces can also be formed
from Sn (resp. S2n+1 or S4n+3) by quotienting by Z2 (resp. S

1 or
S3) acting by unit scalar multiplication. We can form projective
space as a CW structure inductively forming P n from P n−1 by
gluing on an n-cell (resp. 2n or 4n-cell) via the quotient map
just described. We obtain RP∞,CP∞,HP∞ as a direct limit.

Grassmannians: One has the Grassmannians G(n, k) defined as the
space of k-dimensional subspaces of Rn (note G(n + 1, 1) =
RP n). Analogously we may define complex and quaternionic
Grassmannians CG(n, k), HG(n, k) and oriented Grassmanni-
ans G+(n, k).

There is a CW structure on G(n, k), the Schubert decomposi-
tion, whose cells are in bijection with Young diagrams that fit
in a k × (n− k) rectangle (we won’t describe the gluing). The
dimension of each cell is the number of squares in the diagram.
We can do the same for CG(n, k) and HG(n, k) doubling (resp.
quadrupling) the cells dimensions, and for G+(n, k) doubling
the number of cells. In the direct limit one obtains G(∞, k)
and taking another limit, G(∞,∞) (analogously for the other
versions).

Stiefel Manifolds: The Stiefel manifolds V (n, k) (resp.
CV (n, k), HV (n, k) are the spaces of orthonormal (resp.
unitary, symplectic) k-frames in Rn (resp. Cn, Hn). These
have Bruhat cell partitions which we won’t describe.
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Lie Groups: Groups which have the structure of a smooth manifold
with smooth group operations are called Lie groups. Impor-
tant examples include O(n) and U(n) the orthogonal and uni-
tary groups of n × n orthogonal and unitary matrices. These
are compact analogues of the general linear groups GL(n,R)
and GL(n,C), the space of invertible real and complex matri-
ces. These groups have “special” subgroups where we restrict
the determinant to be one, namely SO(n), SU(n), SL(n,R), and
SL(n,C) respectively. There is also the group GL+(n,R) of pos-
itive determinant real matrices. One can also define the sym-
plectic groups Sp(2n,R), Sp(2n;C) of real and complex matri-
ces preserving the standard symplectic form. The quaternionic
unitary group can be described as,

Sp(n) := Sp(2n;C) ∩ U(2n).

It’s useful to remember the dimension of some of these as man-
ifolds:

dim(O(n)) = dim(SO(n)) =
n(n− 1)

2
dim(U(n)) = n2

dim(SU(n)) = n2 − 1

dim(Sp(2n;R)) = dim(Sp(n)) = n(2n+ 1)

dim(Sp(2n;C)) = 2n(2n+ 1).

The tangent space to the identity of a Lie group defines its Lie
algebra, there are several of these worth remembering:

gl(n) = {n× n matrices}
sl(n) = {traceless matrices}

o(n) = so(n) = {skew-symmetric matrices}
u(n) = {skew-adjoint matrices}
su(n) = {traceless skew-adjoint matrices}
sp(n) = {A : JA+ A∗J = 0}.

There are several “accidental isomorphisms” that occur in low
dimensions.

S1 ∼= SO(2) ∼= U(1), S3 ∼= SU(2) ∼= Sp(1) and Sp(1,C) ∼= SL(2,C).
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One also has SO(4) ∼= SO(3) × SU(2) but only as manifolds,
not as groups. There are also some more general topological
descriptions one can obtain. For example, SU(3) is an S3 fibre
bundle over S5.

Homogeneous Spaces: Many of the spaces we have just seen can be
described as homogeneous spaces, i.e. quotients of compact Lie
groups by Lie subgroups. We have,

Sn−1 = O(n)/O(n− 1) = SO(n)/SO(n− 1)

S2n−1 = U(n)/U(n− 1) = SU(n)/SU(n− 1)

S4n−1 = Sp(n)/Sp(n− 1)

G(n, k) = O(n)/O(k)×O(n− k)

V (n, k) = O(n)/O(n− k)
if n>k
= SO(n)/SO(n− k).

And similar can be inferred for oriented, complex, or quater-
nionic analogues.

With many spaces at our disposal, we now consider some basic operations to
be performed on spaces.

Operations

Products: We can take the Cartesian product of two spaces X × Y .
For infinite products, we use the weak topology.

Cylinders, Cones and Suspensions: Given X, the cylinder over X
is X × I. The cone over X is CX = X × I/X × {1}. The
suspension over X is ΣX formed as two copies of CX glued
along X × {0}. Note ΣSn = Sn+1. If X is a pointed space,
we instead consider the reduced suspension also denoted ΣX,
which is the suspension quotient the line {x0} × I. For nice
spaces this is homotopy equivalent to the usual suspension.

Attachings: Given f : X → Y , the mapping cylinder of f is,

Mf = X × I


(x,1)∼f(x)

Y.

The mapping cone of f is,

Cf = CX


(x,0)∼f(x)

Y.
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If X = Y , the mapping torus of f is,

Tf = X × S1/(x, 1) ∼ (f(x), 0).

Joins: The join of X and Y is given by,

X ∗ Y = X × Y × I/(x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1).

Mapping Spaces: Given X, Y the space C(X, Y ) of continuous maps
X → Y can be equipped with the compact-open topology, i.e.
it has a basis B = {B(K,U)} indexed by compacts sets K ⊂ X
and open sets U ⊂ Y so that B(K,U) consists of all continuous
maps mapping K inside U . In particular, we have the path
space C(I,X) = PX and the loop space C(S1, X) = ΛX. We
often restrict to paths or loops with fixed endpoints to obtain
EX and ΩX respectively.

Wedge Sum: Given pointed spaces X, Y we can glue their base points
together to get a wedge sum X ∨ Y .

Smash Product: Given pointed spaces, we have the smash product,

X ∧ Y = X × Y/X ∨ Y.

One has X ∧ Sk = ΣkX.

1.2. Homotopy. We discuss now the central equivalence notion for the
study of algebraic topology.

Definition 1.2

Two maps f, g : X → Y are homotopic if there is a map F : X × I → Y
so that if Ft := F (·, t) then F0 = f, F1 = g. This is an equivalence
relation on C(X, Y ). We denote the set of homotopy equivalence class
as [X, Y ]. We can similarly define homotopy relative to a subset A ⊂ X
by demanding Ft|A is independent of A. For the particular case of a
point, we have the set of pointed homotopy classes [(X, x0), (Y, y0)].
When X and Y are pointed we will write [X, Y ] to mean the homotopy
classes relative to the basepoints.

Two spaces X and Y are homotopy equivalent if there are maps f : X →
Y , g : Y → X called homotopy equivalences so that g ◦ f and f ◦ g are
homotopic to idX and idY respectively.

A space is contractible if it is homotopy equivalent to a point.

Proposition 1.3. The following are equivalent:
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(i) X and Y are homotopy equivalent.

(ii) For any Z, there is a natural bijection [X,Z] → [Y, Z].

(iii) For any Z, there is a natural bijection [Z,X] → [Z, Y ].

Proof. (i) =⇒ (iii) : Suppose f : X → Y and g : Y → X provide
a homotopy equivalence. Then f∗ gives a natural map [Z,X] → [Z, Y ] with
inverse g∗.

(iii) =⇒ (i) : Take Z = X, giving a bijection [X,X] → [X, Y ]. Let f be
the image of the identity. Taking Z = Y , gives bijection [Y,X] → [Y, Y ]. Let
g be the inverse image of the identity. Naturality implies f ◦ g and g ◦ f are
homotopic to the identities.

A similar argument gives (i) ⇐⇒ (ii). □

Definition 1.4

We say X and Y are weak homotopy equivalent if the conditions (ii) or
(iii) in the above proposition hold just for any CW complex Z.

Remark 1.5. In the special case where a map f : X → Y induces the natural
bijection, we will later see this is the same, and more commonly defined, as
saying f induces an isomorphism in homotopy or homology. △

1.3. Cofibrations and Fibrations. There are two special types of maps
in topology that generalize the ideas of embeddings and submersions/fibre
bundles from topology.

Definition 1.6

A map i : A → X is a cofibration if for every homotopy F : A× I → Y
so that F0 extends to a map X → Y , the entire homotopy extends.
Equivalently any commutative square of the following form admits the
following lift

A PY

X Y.

i

F

π0

If A → X is a fibration, X/i(A) is called the homotopy cofibre of i.

A map π : E → B is a Hurewicz or a strong Serre fibration if for any
homotopy F : X × I → B so that F0 lifts to a map X → E, the entire
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homotopy lifts. Equivalently any commutative square of the following
form admits the following lift

X E

X × I B.

i0 π

F

A map π : E → B is a Serre fibration if the above is known to hold
only for X a CW complex (or equivalently a disk). If π : E → B is a
fibration with path connected base, and b ∈ B, then π−1(b) is called the
homotopy fibre of π.

To show these generalize geometric notions, we have the following pair of
results.

Theorem 1.7: Borsuk’s Theorem

For every CW pair A ⊂ X, i.e. a CW complex X and subcomplex A,
the inclusion i : A ↩→ X is a cofibration.

Proof. Let F : A × I → Y so that F0 extends to f : X → Y . We wish
to extend F to X × I. We can work inductively on the dimension of cells in
X \ A. On the 0 skeleton, we just define F to constantly agree with f . Now
suppose F has been extended to the n skeleton of X. On a given n + 1 cell
en+1, we wish to define F on the cylinder en+1 × I given that we know it on
the “vase” ∂en+1 × I ∪ en+1 × {0}. Note that there is an obvious deformation
retraction map from the cylinder to the vase and we can extend F on the
cylinder by composing this retraction with F defined on the vase. Doing this
for all n+ 1 cells gives a continuous extension of F to Xn+1 × I. We conclude
by induction. □

Theorem 1.8

Every fibre bundle π : E → B is a Serre fibration. If B is paracompact,
π is a Hurewicz fibration.

Proof. We only deal with the Serre case. If the fibre bundle is trivial,
this follows from Borsuk’s theorem. For a non-trivial bundle E consider the
case where we have a relative homotopy from the disk (Dn, ∂Dn) we wish to
extend. Then we can pullback the bundle and it will be trivial by Feldbau’s
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lemma below. Hence we may apply the above result. For homotopies from
general CW complexes, we may just glue relative homotopies on each cell. □

A couple more important results about fibrations.

Theorem 1.9: Feldbau’s Lemma

Every Hurewicz fibration π : E → B with contractible CW base B and
homotopy fibre F is homotopy equivalent to the projection B×F → B.
If π is only Serre, there is still a weak homotopy equivalence.

Proof. We prove only for a fibre bundle. By naturality of bundles, if
f : B → ∗ and g : ∗ → B so that g ◦ f ∼ idB we have that E = (g ◦ f)∗E =
f ∗g∗E. But g∗E is a bundle over a point and hence trivial, so its pullback by
f is too. □

The following justifies the definition of homotopy fibre.

Theorem 1.10

The fibres of a Hurewicz fibration over a path connected base are ho-
motopy equivalent. The fibres of Serre fibration over a path connected
base are weak homotopy equivalent.

Proof. Consider a path γ between two points x0, x1 in the base with fibres
F0, F1. Given a map Z → F0, we can use γ and the definition of a fibration
to obtain a map G : Z × I → E so that G0 lands in F0 and G1 lands in F1.
This gives a map from [Z, F0] to [Z, F1]. We may compose paths to compose
maps and homotopic paths induce homotopic maps. Taking the inverse path
we conclude our map is a bijection and it is easily seen to be natural in Z.
Thus by Proposition 1.3, F0, F1 are homotopy equivalent. If we only have a
Serre fibration, we are restricted to Z a CW complex from which we conclude
we have a weak homotopy equivalence. □

A final interesting result is as follows.

Theorem 1.11

Every map f : X → Y is homotopic (by which we mean equivalent in
the homotopy category) to a fibration and to a cofibration.
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Proof. Y is homotopic to the mapping cylinder Mf and so our map is
equivalent in the homotopy category to the embedding X ↩→ Mf , which is a
cofibration. The homotopy cofibre of this map is the mapping cone Cf

For the fibration case, first by above, we may assume f : X → Y is an
embedding. Now consider the space PXY of continuous paths in Y that begin
in f(X). Truncating the paths gives a homotopy equivalence with X. Hence
our map is equivalent in the homotopy category to the map PXY → Y sending
a path to its endpoint. This is naturally a fibration with homotopy fibre EXY ,
the space of paths in Y beginning in X and ending at y0. □
Remark 1.12. Let f : X → Y be a map which we homotope by above to be a
cofibration and inclusion. We can extend to a coexact sequence of cofibrations,

X
f−→ Y → Cf → ΣX → ΣY → ΣCf → Σ2X → · · · .

We can see what’s going on here with a simple picture seen in Figure 1 (noting if
we take X ⊂ Y , then we can identify Cf with gluing to Y a cone over X ⊂ Y ).

Y

X

Cf

,! ,! ,!
⌃X ⌃Y

Figure 1. Puppe sequence

Similarly, there is an exact sequence associated to a fibration,

· · · → Ω2Y → Ω(EXY ) → ΩX → ΩY → EXY → X → Y.

These are both called the Puppe sequence. △

1.4. Cellular Approximation. We say a map X → Y of CW complexes
is cellular if Xn maps into Yn for each n.

Theorem 1.13: Cellular Approximation Theorem [FF, pp. 52]

A continuous map f : X → Y of CW complexes is homotopic to a
cellular map. More generally, if A ⊂ X is a subcomplex and f |A is
cellular, than f is homotopic relative to A to a cellular map.
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Proof. (Sketch) We work by induction. Suppose f : X → Y is cellular
on Xn−1 ∪ A and let en be an n-cell of X \ A. f maps the closure of en to a
compact set of Y . Thus it can only meet finitely many cells of Y . Let ε be
one of these cells of Y of maximal dimension m.

There is a technical lemma that we skip which implies, for m > n, f |A∪Xn∪en

is homotopic to a map f ′, cellular on A ∪ Xn, so f ′(en) intersects the same
cells as f(en) and is not surjective onto ε. By Borsuk’s theorem f ′ extends
to X. On en, we may define a homotopy of f ′ pushing its image off of ε by
radial projection away from a point not in f ′(en). By Borsuk’s theorem, this
homotopy can be extended to X. Inductively, we can ensure f(en) lands in
no cells of dimension greater than n. Doing this for every cell, we obtain our
result inductively. □

2. The Fundamental Group and Coverings

We keep this section short and sweet. Results about fundamental groups can
usually be reproved as exercises with just a little creativity.

2.1. Fundamental Group. We give a very abbreviated treatment.

Definition 2.1

The fundamental group π1(X, x0) of a space is the set [(S1, ∗), (X, x0)]
endowed with the operation of loop composition. Equivalently, it is the
path components of ΩX.
Up to isomorphism, the fundamental group only depends on the path
component of x0 and so we often abbreviate to π1(X).
If X is connected and π1(X) is trivial, we say X is simply connected.

A continuous map f : X → Y induces a group homomorphism f∗ : π1(X) →
π1(Y ) by post-composition with a loop. This is natural with respect to com-
position of maps and depends only on the homotopy class of our maps.

Corollary 2.2. Homotopy equivalent spaces have the same fundamental group.

2.2. Covering Spaces. We again only sketch the basics.

Definition 2.3

A covering map p : T → X is a fibre bundle with discrete fibre; we call
T a covering space of X. Equivalently, X is covered by neighbourhoods
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Vi whose preimage under p is a disjoint collection of open sets Uij so
that p : Uij → Vi is a homeomorphism for each i and j.

Theorem 2.4: Map Lifting

Let p : T → X be a covering and Z path connected and locally path
connected. A map f : Z → X lifts to F : Z → T if and only if
f∗π1(Z, z0) ⊂ p∗π1(T, t0). If we specify, F (z0) = t0 with p(t0) = f(z0),
the map is unique.

In particular, a path γ : I → X always lifts to γ : I → T and the lift
is unique if we specify γ(0). By a relative version of the map lifting, if

Ft : Z → X is a homotopy and F0 lifts to F0 : Z → T , then there is a

unique lift Ft : Z → T of Ft agreeing with F0 for t = 0.

Theorem 2.5: Classification of Covering Spaces

If X is path connected, locally path connected, and semi-locally simply
connected, then for every subgroup H ⊂ π1(X), there is a covering
space p : XH → X with p∗(π1(XH)) = H (and hence π1(XH) ∼= H).
Moreover there is a bijection between isomorphism classes of coverings
and conjugacy classes of subgroups of π1(X).

Proof. We only construct the universal cover X, which is the simply-

connected cover. Other covering spaces are realized as quotients of X in a

somewhat obvious way. Fix a basepoint x0 ∈ X. We define X as the homotopy
classes of paths inX with fixed endpoints that begin at x0. There is an obvious

map p : X → X by projecting to the end of a path which is clearly a covering.

Moreover, given a loop γ in X that lifts to a loop in X, we see that the
lifted loop [γt] represents the homotopy class of the loop γ truncated at time
t. But the fact it lifts to a loop means [γ] = [γ0] is null-homotopic. Hence,

p∗(π1( X)) = 0. But uniqueness in Theorem 2.4 implies that p∗ is injective,
and so π1(X) = 0.

To see the correspondence, note that by changing the base point we obtain
conjugate subgroups of π1(X) and isomorphic coverings. □
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Definition 2.6

Given a covering space p : T → X, an isomorphism f : T → T is called a
deck transformation if it commutes with p. Note a deck transformation
is fully determined by the image of one point.

Definition 2.7

A covering p : T → X is normal (or sometimes called regular) if p∗π1(T )
is a normal subgroup of π1(X).

Proposition 2.8. A covering p : T → X is normal if and only if the group
of deck transformations acts transitively on the set {p−1(x0)}, where x0 is a
point of X.

Proposition 2.9. The group of deck transformations D of a covering p : T →
X is isomorphic to the quotient of the normalizer,

D = π1(X)/Nπ1(X)(p∗π1(T )).

We can finally make some computations.

Corollary 2.10. π1(S
1) = Z.

Proof. Note R → S1 given by z → e2πiz is the universal covering of S1.
We know that a subgroup of the group of deck transformations isomorphic to
Z is given by translations by 2πin for n ∈ Z. But since these translations act
transitively on the preimages of the basepoint, this is in fact all of the deck
transformations. By Proposition 2.9, we conclude π1(S

1) = D = Z. □

Corollary 2.11. π1(RP n) = Z2 for n > 1.

Proof. We will prove momentarily that π1(S
n) = 0 for n > 1. Thus the

universal cover of RP n is Sn under the double cover quotient map identifying
antipodal points. The map p : Sn → Sn sending a point to its antipode
is a deck transformation which swaps the two preimages of the basepoint.
Hence the covering is normal, p is the only non-trivial deck transformation,
and π1(S

n) = D = Z2. □

Corollary 2.12. π1(T
2) = Z2.

Proof. The universal cover is R2 → T 2 given by the quotient map by the
integer lattice. There are deck transformations R2 → R2 given by translations
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by (n,m) for (n,m) ∈ Z2. These act transitively on the preimages of the base-
point and so the covering is normal. We have π1(T

2) = D = Z2. Alternatively,
we could use that π1(T

2) = π1(S
1 × S1) = π1(S

1)× π1(S
1) = Z2. □

2.3. Seifert–Van Kampen Theorem and π1 of CW Complexes.
The following is very useful in more advanced computations where there is
no clear candidate for universal cover (or we want to show the space itself is
simply connected).

Theorem 2.13: Seifert–Van Kampen

Let X = U1 ∪ U2 with U1, U2 open, path connected and
U1 ∩ U2 path connected. Then the maps on π1 induced by
inclusions of U1 ∩ U2, U1, U2 and X define a pushout square,
i.e. ϕ is an isomorphism in the following colimit diagram:

π1(U1)

π1(U1 ∩ U2) π1(U1) ∗π1(U1∩U2) π1(U2) π1(X).

π1(U2)

j1

i1

i2

ϕ

j2

Equivalently, if π1(U2 ∩ U2) has generator set G0, π1(U1) has presen-
tation 〈G1|R2〉, and π1(U2) has presentation 〈G2|R2〉, then π1(X) has
presentation, 

G1, G2

R1, R2, i1G0 = i2G0


.

Corollary 2.14. For n > 1, the sphere Sn is simply connected.

Proof. Let U1, U2 be open neighbourhoods of the two hemispheres of the
sphere. They are each simply connected and have connected intersection a
thickened n − 1 sphere. The pushout of the maps Z → 0,Z → 0 is clearly 0
and so by Theorem 2.13, π1(S

n) = 0. □

Note by Seifert–Van Kampen, if we have a nice space X and we attach a 2-cell
D to it via ϕ : ∂D → X, the effect on π1 will be to kill the element of π1(X)
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represented by ϕ(∂D). Furthermore, if we attach an n-cell to X for n > 2, it
will not change its fundamental group.

Now consider a one-dimensional path connected CW complex X. This is the
same thing as a graph. By contracting edges joining distinct vertices of X, one
sees that X is homotopy equivalent to a (possibly infinite) bouquet of circles.
We now find the fundamental group of X.

Proposition 2.15. If X, Y are pointed spaces with base point contractible
neighbourhoods, then π1(X ∨ Y ) = π1(X) ∗ π1(Y ).

Proof. This directly follows from Theorem 2.13 applied to the comple-
ments of these contractible neighbourhoods. □

Corollary 2.16. The fundamental group of a bouquet of circles is a free
group with generators corresponding to the circles.

Proof. For finite bouquets this follows inductively from the above propo-
sition. For infinite bouquets, note any loop lies in only finitely many circles
by compactness, and hence belongs in π1 to the free group generated by those
circles. □

Combining our findings, we can deduce the following theorem.

Theorem 2.17: The Fundamental Group of a CW Complex

Suppose X is a connected CW complex with a single zero cell. Then
π1(X) has a presentation whose generators correspond to the one cells
of X and whose relations impose that the loop class [∂e2 → X1] as a
product of generators is trivial for any two cell e2 of X.

Proof. The fundamental group of the one skeleton X1 is a free group
generated by the one-cells, since X1 is a bouquet of circles, one circle per one-
cell. Attaching a two-cell has the effect of killing its parameterized boundary
and hence imposing a relation of the form described above. Doing this for
all two cells inductively, we conclude π1(X2) is as described in the theorem
statement. Attaching a cell of dimension three or greater has no effect on π1

and hence π1(X) = π1(X2) is as claimed. □

Exercise 2.18. Our assumption X has a single zero cell is no restriction,
since a connected CW complex X is always homotopy equivalent to one with
a single zero cell. 

18



We can now easily find the fundamental groups of all our favourite spaces.

Some Fundamental Groups

• π1(Σg) = 〈a1, . . . , ag, b1, . . . , bg|[a1, b1] · · · [ag, bg] = e〉.
• π1((RP 2)#g) = 〈c1 . . . , cg|c21 · · · c2g〉.
• π1(RP n) = Z2 for 2 ≤ n ≤ ∞ with universal cover Sn.

• π1(G(n, k)) = Z2 for 1 ≤ k ≤ n − 1 and n > 2 with universal cover
G+(n, k).

• The complex and quaternionic projective spaces, Grassmannians, and
Stiefel manifolds are all simply connected.

• π1(SO(n)) = Z2 for n ≥ 3. Its double cover is called Spin(n), the Spin
group. There are exceptional isomorphisms,

Spin(2) ∼= S1, Spin(3) ∼= S3 ∼= SU(2),

Spin(4) ∼= SU(2)× SU(2), Spin(5) ∼= Sp(2), Spin(6) ∼= SU(4).

• π1(SU(n)) = π1(Sp(n)) = 0 and π1(U(n)) = Z. The universal cover
of U(n) is R× SU(n) given by (θ, A) → e2πiθA.

• π1(Sp(2n,R)) = Z and π1(Sp(2n,C)) = 0. The double cover of
Sp(2n,R) is themetaplectic group Mp(2n,R). It is not a matrix group.

3. Homology and Cohomology

We try to stick to the fundamentals, emphasizing a range of versions of ho-
mology, and focusing on algebraic tools and geometric intuition with minimal
actual examples.

3.1. Singular Homology and Its Many Imitators. We begin in total
generality. Take R to be a commutative ring (actually any abelian group would
be fine); we almost exclusively use Z,Z2, Q or R. If unspecified, R should be
taken to be Z.

Definition 3.1: Homology

A chain complex (Ai, ∂) is a collection of R-modules Ai indexed by Z
and boundary maps ∂ : Ai → Ai−1 so that ∂2 = 0. The failure of the
complex,

· · · ∂−→ Ai+1
∂−→ Ai

∂−→ Ai−1
∂−→ · · ·
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to be an exact sequence is measured by its homology groups,

Hi(A) := ker(∂ : Ai → Ai−1)/ im(∂ : Ai+1 → Ai).

We call elements in this kernel cycles and elements in this image bound-
aries, so homology is the group of cycles modulo the boundaries.

A morphism of chain complexes f : (A∗, ∂A) → (B∗, ∂B), or a chain
map, is a collection of module homomorphisms fi : Ai → Bi so that
fi−1 ◦ ∂A = ∂B ◦ fi. Equivalently, the following commutes,

· · · Ai+1 Ai Ai−1 · · ·

· · · Bi+1 Bi Bi−1 · · · .

∂A

fi+1 fi fi−1

∂B

A chain map f : Ai → Bi can be easily seen to induce a map on homology
f∗ : Hi(A) → Hi(B).

A chain homotopy between chain maps f, g : (A∗, ∂A) → (B∗, ∂B) is a
collection of maps hi : Ai → Bi+1 so that h ◦ ∂A + ∂B ◦ h = f − g.

If there is a chain map f : (A∗, ∂A) → (B∗, ∂B) and a chain map g in
the other direction so that f ◦ g and g ◦ f are chain homotopic to the
identities, then we say f is a quasi-isomorphism.

Proposition 3.2. If f, g : (A∗, ∂A) → (B∗, ∂B) are chain homotopic, then
they induce the same map on homology. If f : (A∗, ∂A) → (B∗, ∂B) is a quasi-
isomorphism, then (A∗, ∂A) and (B∗, ∂B) have isomorphic homology.

Proof. Let [x] ∈ Hi(A) be represented by x ∈ ker(∂A) ⊂ Ai. Then, as an
element of Hi(B),

[f(x)− g(x)] = [h ◦ ∂Ax] + [∂B ◦ h(x)].

Since x ∈ ker ∂A,

= [∂B ◦ h(x)].

Since we quotient by the image of ∂B,

= 0.

So [f(x)] = [g(x)] for any [x] ∈ Hi(A) and the induced maps on homology
thus agree. □
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Definition 3.3

A cochain complex (Ai, d) is like a chain complex but with coboundary
maps δ : Ai → Ai+1 so that δ2 = 0. We extract from the complex its
cohomology groups,

H i(A) := ker(δ : Ai → Ai+1)/ im(d : Ai−1 → Ai),

which is the group of cocycles modulo coboundaries. We define cochain
maps and cochain homotopies in the obvious way.

Singular Homology. Let X be a topology space and let Cn(X;R) be the
(gigantic) free R-module generated by continuous maps ∆n → X, for ∆n the
standard n-dimensional simplex. Elements of Cn(X;R) are called singular
n-chains.

We will orient our simplices in the sense that we keep track of an ordering
of their vertices. We will give the boundary strata of a simplex compatible
orientations induced from the ordering of their subcollection of vertices. Let
∆n

i be the face of∆n excluding the ith vertex of∆n. Given a map σ : ∆n → X,
we define its boundary,

∂σ =
n

i=0

(−1)iσ|∆n
i
.

This extends by linearity to a map Cn(X;R) → Cn−1(X;R). Clearly ∂2 = 0
and so we have a chain complex. We define the singular homology of X as the
homology of the singular chain complex,

Hn(X;R) := Hn(C∗(X;R)).

Given a continuous map f : X → Y , we obtain a pushforward map f∗ :
Cn(X;R) → Cn(Y ;R), given by post-composing a singular simplex ∆n → X
with f and extending linearly. It is almost obvious that f∗ is a chain map.

Theorem 3.4

If f, g : X → Y are homotopic, they induce the same same maps on ho-
mology f∗, g∗ : Hn(X;R) → Hn(Y ;R). Hence homology is an invariant
of the homotopy type of a topological space.

Proof. By our previous proposition, it suffices to exhibit a chain homo-
topy between f∗, g∗ : Cn(X;R) → Cn(Y ;R). Let F : X × I → Y be a
homotopy between f and g. Given a singular simplex σ : ∆n → X, we can
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define a map,

H(σ) : ∆n × I
σ×id−−−→ X × I

F−→ Y.

We may split ∆n × I along diagonals into n+ 1 copies of ∆n+1, and interpret
H(σ) as a sum of n+ 1 singular n+ 1 simplices in Y . Extending by linearity,
we thus obtain a map H : Cn(X;R) → Cn+1(X;R).

Note that ∂H(σ) consists of several faces. There are the bottom and top faces
coming from restricting H(σ) to ∆n×∂I which correspond to f∗(σ) and g∗(σ)
respectively. And there are the side faces coming from restricting H(σ) to
(∂∆n)× I, which correspond to H(∂σ). Analyzing orientations we conclude,

∂H(σ) +H(∂σ) = f∗(σ)− g∗(σ).

Hence, H is a chain homotopy of f∗ and g∗. □

Singular Cohomology. Define a singular cochain as an R-valued functional
on the space of singular chains. The R-module of singular cochains is the
dual group to the singular chains: Cn(X;R) = Hom(Cn(X), R). We define
δ : Cn(X;R) → Cn+1(X;R) dual to ∂, so that given ϕ ∈ Cn(X;R) and
σ ∈ Cn+1(X), δ(ϕ)(σ) = ϕ(∂σ). Clearly δ2 = 0 and so Cn(X;R) becomes a
cochain complex. We define the singular cohomology of X as the cohomology
of the singular cochain complex,

Hn(X;R) := Hn(C∗(X;R)).

Simplicial Homology. We say a space X has a simplicial structure, if it can
be decomposed into simplices in the following sense:

(1) There is a collection of maps σ : ∆n → X, where n may vary, so that
each map is injective on the interior of ∆n.

(2) Every point of X is in the image of one of the maps, and no point is
in the image of two of the maps restricted to the interior of ∆n for
the same n.

(3) Each map σ : ∆n → X when restricted to a face of ∆n agrees with
one of the maps σ′ : ∆n−1 → X.

Remark 3.5. This definition is not quite correct (every map should be uniquely
determined by its face maps) but any structure of the above form can be re-
fined (by twice applying barycentric subdivision) to obtain a true simplicial
structure. △

Let X have a simplicial structure, and let C∆
n (X;R) be the free R-module

generated by the structure maps ∆n → X. This is a much smaller subcom-
plex of Cn(X;R). By property (3), the boundary restricts to a map on this
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subcomplex. And we may thus define the simplicial homology of X as,

H∆
n (X;R) := Hn(C

∆
∗ (X;R)).

The advantage of this theory is we can actually compute this homology, and
moreover we may do it purely combinatorially. It turns out this homology
is independent of our triangulation and in fact H∆

n (X;R) = Hn(X;R) for
any simplicial complex; we will not prove this directly, but instead observe
simplicial homology as a special case of the following construction.

Cellular Homology. LetX be a CW complex with a specified cell structure.
We define Cn(X;R) as the free R-module generated by the n-cells of X. We
define a boundary map ∂ : Cn(X;R) → Cn−1(X;R) as follows. If e is an
n-cell,

∂e =


f⊂Xn−1

def · f,

where the sum is over (n−1)-cells f inX, and then we extend by linearity. Here
the coefficient def is the degree of the map Sn−1 → Sn−1 given by composing
the attaching map ∂Dn → Xn−1 of e with the quotient map Xn−1 → Sn−1

given by identifying the complement of f to a point. Recall the degree of
a map Sn−1 → Sn−1 can be computed as the image of the unit under the
induced map on Hn−1(Sn−1;Z). Alternatively, one can homotope the map to
be smooth and make an oriented count of a generic point’s preimage.

It’s not too hard to see ∂2 = 0 and hence conclude C∗(X;R) form a chain
complex. We define the cellular homology of X as the homology of the cellular
chain complex,

Hn(X;R) := Hn(C∗(X;R)).

It’s easy to check this coincides with simplicial homology for a simplicial com-
plex. We will give an alternate definition of cellular homology later that makes
it manifestly equal to singular homology.

De Rham Cohomology. Let X be a smooth manifold. It has a tangent
bundle TX and its dual the cotangent bundle T ∗X. Taking exterior powers
of this bundle gives the bundles

n T ∗X, whose fibres are wedge products of
covectors.

Sections of the bundle
n T ∗X are called differential n-forms ; the space of

n-forms is denoted Ωn(X). If x1, . . . , xm are local coordinates on X, then
TX has a local basis of sections ∂

∂x1 , . . . ,
∂

∂xm and we denote the dual sections
dx1 , . . . , dxm. We define the exterior derivative d : Ωn(X) → Ωn+1(X) to be
the unique R-linear map satisfying the following properties:

(1) df (V ) = V (f) for any f ∈ C∞(X) and V ∈ Γ(TX).
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(2) d satisfies a super-Leibniz rule,

d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ.

(3) d2 = 0.

Locally, d is specified on an n-form by,

d






|I|=n

fI dx
I



 =
m

i=1



|I|=n

∂fI
∂xi

dxi ∧ dxI .

The groups Ωn(X) thus define a cochain complex over R with differential the
exterior derivative d, called the de Rham complex. The deRham cohomology
of X is the cohomology of the de Rham complex,

Hn
dR(X) := Hn(Ω∗(X);R).

A consequence of the Whitney approximation theorem is that we if consider
not all singular chains, but only those that are regular enough to be integrated
over, we still obtain the same singular cohomology theory. One then has a
map,

F : Ωn(X;R) → Hom(Cn(X),R) = Cn(X;R) by ω → Fω(σ) =

ˆ

∆n

σ∗ω.

By computing locally and patching together with the Mayer-Vietoris theo-
rem (discussed later) one concludes that F is an isomorphism. Hence, for
any smooth manifold, the de Rham cohomology coincides with the singular
cohomology; this is de Rham’s theorem.

Morse Homology. One final (more esoteric but dear to my heart and re-
search) cousin of singular homology for compact manifolds is defined as follows.
Let f be aMorse function on a smooth closed manifold X. That is, the critical
points of f are non-degenerate, or equivalently the Hessian of f at its critical
points is non-singular. The index of a critical point x of f is the dimension of
the negative eigenspace of the Hessian of f at x.

If we pick a Riemannian metric g on X, it defines a gradient vector field ∇f by
the condition g(∇f, V ) = V (f) for any V ∈ Γ(TX). This defines a complete
gradient flow ϕt. We define the unstable and stable manifolds of a critical
point x respectively as,

W u(x; f, g) = {p ∈ X : lim
t→−∞

ϕt(p) = x}

W s(x; f, g) = {p ∈ X : lim
t→∞

ϕt(p) = x}.
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These are open disks of dimension ind(x) and dim(X) − ind(x) respectively
by the Hartman–Grobman theorem using the flow to provide an explicit dif-
feomorphism.

We say that the pair (f, g) is Morse–Smale if f is Morse and for any pair
of critical points, x, y the intersection of W u(x; f, g) and W s(y, f ; g) is trans-
verse (i.e. the tangent spaces of the submanifolds span TX at any point of
intersection); it is a consequence of the Sard–Smale theorem that generically
pairs (f, g) are Morse–Smale. In this case, the intersection is a manifold of
dimension ind(x) − ind(y). Note the intersection also has a free R-action
from the flow. Quotienting by this action, we obtain a manifold of dimension
ind(x)− ind(y)−1, which we denote, M(x, y). Moreover, M(x, y) has a natu-
ral compactification as a manifold with corners, whose kth boundary stratum
consists of k-times “broken flow lines” connecting x to y and stopping at k
intermediate critical points.

We now define the Morse complex for (f, g) a Morse–Smale pair, with chain
group CMn(X; f, g) the free Z2-module generated by the critical points of f
of index n. The set of such critical points is finite by the Morse condition. We
define a boundary operator ∂ : CMn(X) → CMn−1(X) by the linear extension
of,

∂x =


ind(y)=n−1

#M(x, y) · y.

Counting dimensions, M(x, y) is a zero dimensional compact manifold, i.e. a
finite set of points, and so we can count the set modulo 2. We can also define
this complex over Z using the observation that W u and W s are orientable,
and the R-action direction carries a natural orientation; we would then count
M(x, y) as an oriented set of points.

To see that ∂2 = 0, we note that the 〈∂2x, y〉 consists of broken flow lines
connecting x to y and stopping at one intermediate critical point. But by our
description of the compactification, this is precisely the boundary of the 1-
manifold M(x, y). A 1-manifold has no boundary points modulo 2 or counting
orientations, and so 〈∂2x, y〉 = 0 for any x and y.

Thus we obtain the Morse homology of X as the homology of the Morse
complex,

HMn(X; f, g) := Hn(CM∗(X; f, g);Z2).

This again agrees with singular homology, which we now show. We may define
a map F : CMn(X) → Cn(X;Z2) by sending a critical point x to the singular
map extending the inclusion of the descending manifold of X by compactifying
(strictly we should be dealing with some kind of current instead of singular
chains). This is a chain map because the boundary of the descending manifold
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consists of the descending manifolds of critical points of index one less (counted
mod 2 or with appropriate signs). We define G : Cn(X;Z2) → CMn(X) that
sends a generic singular n-simplex σ to a sum of index n critical points x with
coefficients counting mod 2 or with orientations the flow lines passing through
the image of σ at t = 0 and terminating at x. This is a chain map because the
space of flow lines from σ terminating at q of index n − 1 is a one-manifold
with boundary given by flow lines of ∂σ terminating at q (i.e. 〈G(∂σ), q〉) and
flow lines of σ terminating at some p of index n followed by flow lines from p
to q (i.e. 〈∂(Gσ), q〉).

To a singular n-simplex σ, we associated H(σ) which is the n + 1-simplex
given by compactifying the full forward gradient flow of σ. This extends to
a map H : Cn(X;Z2) → Cn+1(X;Z2). Note that ∂H(σ) consists of σ itself,
the forward gradient flow of ∂σ, and the descending manifolds of the critical
points σ flows to at infinity. That is, keeping track of signs,

∂H(σ) +H(∂σ) = F ◦G(σ)− σ,

hence F ◦ G is chain homotopic to the identity. On the other hand, G ◦ F is
verbatim the identity on chain groups. Hence F is a quasi-isomorphism and
so our chain complexes have the same homology.

It is possible to extend to the case of compact manifolds X with boundary. We
can set up a Morse–Smale pair as usual under the additional assumption that
∇f points inward along all of ∂X. We can define the Morse complex like usual
and obtain homologyHM∗(X) that again agrees with singular homology. If we
instead assume that ∇f points outward along ∂X, we will define again Morse
homology in the same way. However in this case the Morse homology computes
something called the relative homology H∗(X, ∂X) that we will shortly study
more.

For more details on our construction of Morse homology and many more as-
pects of the theory, one can read the lecture notes of Hutchings [Hutchings].

Remark 3.6. Note, by studying the unstable manifolds which are homeomor-
phic to open balls (i.e. cells) and how they glue (i.e. to lower dimensional
cells), we see that Morse homology endows every compact n-manifold with
a CW structure. We will use Morse theory for convenient proofs of many
fundamental results down the road. △

3.2. Geometric Constructions. We will proceed to consider a number
of extensions of the basic homology theory and a couple relevant theorems,
all based on some geometric ideas. Throughout we deal with singular ho-
mology over Z acknowledging that other theories and coefficients work identi-
cally.
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Reduced Homology. What isH0(X)? We know a singular 0-chain is a linear
combination of maps ∗ → X. This is always a cycle since ∂C0(X) = 0. A
0-chain is a boundary if there is a sum of maps I → X whose boundary is
our 0-chain. Equivalently, two maps ∗ → X, representing points x1, x2 ∈ X
(their image) are the same in homology if and only if x1 and x2 are joined by
a path.

We conclude H0(X) is a free Z-module generated by the path components of
X. This can be a little awkward since we might hope that Hn(X) = 0 for X
contractible; indeed this is true for n > 1 since Hn(X) = Hn(∗) = 0. But,
H0(∗) = Z. To deal with this, we will sometimes want to reduce the dimension

of the zeroth homology by one. Thus we define the reduced homology Hn(X)
of X as,

Hn(X) =


Hn(X) n ∕= 0

H0(X)/[


xi] n = 0,

where the xi are maps ∗ → X with image xi, having picked one point xi in
each path component of X. More formally, we could modify the chain complex
Cn(X) by setting C−1(X) = Z. And we could set ∂ : C0(X) → C−1(X) to
send any singular 0-simplex ∗ → X to 1 and extend linearly. The homology

of this extended complex will be exactly Hn(X).

Homology of a Pair. One has the following extension of the usual definition
of homology. Given a subspace A ⊂ X, let Cn(X,A) denote the quotient
Cn(X)/Cn(A). These are relative singular n-chains. This is a free Z-module
generated by simplices that don’t entirely land within A. The boundary map
clearly restricts to this subcomplex and the resulting homology Hn(X,A) is
called the relative homology of (X,A).

Exercise 3.7. Show Hn(X, ∗) = Hn(X). 

Theorem 3.8: Long Exact Sequence of a Pair and a Triple

Given a topological pair (X,A), its homology forms a long exact se-
quence,

· · · → Hn(A)
i∗−→ Hn(X)

j∗−→ Hn(X,A)
∂∗−→ Hn−1(A) → · · · .

The maps i∗, j∗ are induced by the inclusions A → X and (X,∅) →
(X,A) respectively. The map ∂∗ sends a relative n-cycle to its boundary,
which is an (n− 1)-cycle in A.
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More generally, for a triple B ⊂ A ⊂ X, there is a long exact sequence,

· · · → Hn(A,B)
i∗−→ Hn(X,B)

j∗−→ Hn(X,A)
∂∗−→ Hn−1(A,B) → · · · .

Proof. By definition of relative chains, there is a short exact sequence,

0 → Cn(A)
i∗−→ Cn(X)

j∗−→ Cn(X,A) → 0.

By the snake lemma, this becomes a long exact sequence in homology, with
the maps as described. The triple case is the same. □

To simplify the computation of homology of a pair, one can apply the following
result.

Theorem 3.9

Given a topological pair (X,A) so that the inclusion A → X has ho-

motopy cofibre B = X ∪A CA, then Hn(X,A) ∼= Hn(B). In par-
ticular, if A → X is a cofibration, for example a CW pair, then

Hn(X,A) = Hn(X/A).

Remark 3.10. The general proof is a little involved, using the concept of
transformators. Fortunately for the case of CW pairs, which is what we care
most about, this equality follows quite readily from the construction of cellular
homology. △

We use the following important lemma.

Lemma 3.11 (Refinement Lemma). Let X be a topological space with a col-
lection U of sets whose interiors cover X. Let CU

n (X) be the subcomplex of
Cn(X) generated by singular simplices which land inside sets of U . Then the
inclusion CU

n (X) → Cn(X) is a quasi-isomorphism. I.e. cycles in X are ho-
mologous to ones subordinate to U and homologous cycles subordinate U differ
by the boundary of a chain subordinate to U .

Proof. Given a singular simplex σ : ∆n → X, it can be decomposed
via multiple applications of barycentric subdivision into a sum of simplices
subordinate to U . It’s geometrically clear this subdivided chain is homologous
to σ. Moreover, its geometrically clear that if two cycles subordinate to U are
cohomologous, we can subdivide their difference to be the boundary of a chain
subordinate to U . □
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Proof. (of Thm. 3.9) Cover B by CA and X ∪ C ′A, the complement
of a neighbourhood of the cone point; call this two set open cover U . By the
refinement lemma, the homology can be computed subordinate to U . We have,

CU
n (B,CA) = CU

n (B)/CU
n (CA) = Cn(X∪C ′A)/Cn(C

′A) = Cn(X∪C ′A,C ′A).

We conclude the homology of (B,CA) is the same as that of (X ∪C ′A,C ′A),
which by homotopy invariance is also that of (X,A). Hence,

Hn(B) = Hn(B, pt) = Hn(B,CA) = Hn(X,A).

If (X,A) is a cofibrant pair, B ∼= X/A giving the second statement. □

Excision. This is a crucial result for many geometric arguments.

Theorem 3.12: The Excision Theorem

Let (X,A) be a topological pair. Suppose B ⊂ A is such that the closure
of B is contained in the interior of A. Then the inclusion map induces
an isomorphism in homology,

Hn(X \B,A \B) ∼= Hn(X,A).

Proof. Consider the collection U consisting of A and Bc. By our assump-
tion, the interiors of this collection cover X. We have,

CU
n (X,A) = CU

n (X)/CU
n (A) = Cn(X \B)/Cn(A \B).

By the refinement lemma, we obtain our result. □

Mayer–Vietoris. Homology possesses an analogue of the Seifert–Van Kam-
pen theorem that allows for ease of computations, by splitting a space into
simpler pieces.

Theorem 3.13: Mayer–Vietoris Theorem

Suppose X is the union of the interiors of subspaces A and B. Then
there is a long exact sequence,

· · · → Hn(A∩B)
i∗−→ Hn(A)⊕Hn(B)

j∗−→ Hn(X)
∂∗−→ Hn−1(A∩B) → · · · .

Here i∗ denotes the difference of the maps induced by the two inclusions,
and j∗ is the sum of the maps induced by the two inclusions. The map
∂∗ can described as follows. If σ ∈ Hn(X), it is homologous to a sum
x+ y of chains in A and B. We have ∂x = −∂y ∈ Hn−1(A ∩B). Then,
we have that ∂∗σ = ∂x.

29



Proof. Take U to be the collection A and B. Then we have the short
exact sequence,

0 → Cn(A ∩B) → Cn(A)⊕ Cn(B) → CU
n (X) → 0,

where the first map sends σ to (σ,−σ) and the second sends (x, y) to x + y.
By the refinement lemma, the homology of CU

n (X) is Hn(X). Thus by the
snake lemma, we obtain the desired sequence. We easily deduce the maps are
as described. □

A Rigourous Construction of Cellular Homology. First we need to actually
know some homology.

Proposition 3.14. The homology of the n-sphere is,

Hm(S
n) =


Z m = 0 or n

0 else.

Proof. We may cover the sphere by open neighbourhoods of the two
hemispheres. These are contractible and their intersection is homeomorphic
to the n − 1 sphere. We then proceed by induction. Since we know the
homology of a pair of points, we may apply Mayer–Vietoris to find Hm(S

1).
Inductively, the computation of Hm(S

n) determines from Mayer–Vietoris the
homology of Hm(S

n+1). □
Proposition 3.15.

Hm(D
n, Sn−1) =


Z m = n

0 else.

Proof. By Theorem 3.9,

Hm(D
n, Sn−1) = Hm(D

n/Sn−1) = Hm(S
n).

□
Proposition 3.16. The reduced homology of a bouquet of n-sphere is,

Hm




α∈A

Sn
α


=


α∈A Z m = n

0 else.

Proof. In fact, for any space Xα,

Hm




α∈A

Xα


=



α∈A

Hm(Xα).

30



To see this, the bouquet of spaces is the disjoint union quotiented by identifying
base points. Thus by Theorem 3.9, our homology is the homology of


α∈A Xα

relative to the union of base points. It is easy to see, the homology of the
disjoint union of the Xα is the direct sum of the homologies of the Xα. Thus
our result follows from the long exact sequence of a pair. □

Now given a CW complex X, note that Xn/Xn−1 is a bouquet of n spheres in-
dexed by the cells ofXn. Hence we know the relative homologyH∗(Xn, Xn−1).

Note also that Hk(Xn) = 0 for k > n. This follows from the fact Hk(X0) = 0
for k > 0 and applying the long exact sequence of a pair inductively. Lastly,
note that the map Hk(Xn) → Hk(X) is an isomorphism for k < n and an epi-
morphism for k = n. If X is finite dimensional, this follows directly from the
long exact sequence of a pair. For infinite dimensional spaces, note each sin-
gular simplex must lie in a finite subcomplex of X, from which the conclusion
again follows.

Now for the CW complex X, we can construct the following commutative dia-
gram, where the diagonal sequences are truncations of the long exact sequence
of a pair, and the horizontal maps are defined to make the diagram commute.

0

0 Hn(Xn+1) = Hn(X)

Hn(Xn)

· · · Hn+1(Xn+1, Xn) Hn(Xn, Xn−1) Hn−1(Xn−1, Xn−2) · · ·

Hn−1(Xn−1)

0 Hn−1(Xn) = Hn−1(X)

0

j∗

i∗

∂n+1

∂∗

∂n

∂∗ j∗

Note the composition ∂n ◦ ∂n+1 includes the segment ∂∗ ◦ j∗ of the short exact
sequence of a pair. And hence ∂2 = 0. Thus, the horizontal sequence forms a
chain complex. Note from our description of the relative homology groups that
Hn(Xn, Xn−1) ∼= Cn(X;Z). By following the arrows in the above diagram, it
can be seen that ∂ is given by the same description as our boundary in cellular
homology. Hence we have recovered the cellular chain complex and the cellular
homology. We can also show this description of cellular homology coincides
with singular homology.
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Theorem 3.17

If X is a CW complex, its cellular and singular homologies coincide.

Proof. We know from the diagram, Hn(X) is the quotient of Hn(Xn) by
the image of the boundary map ∂∗. Since j∗ is injective, im(∂∗) = im(∂n+1).
On the other hand,

Hn(Xn) = im(j∗) = ker(∂∗) = ker(j∗ ◦ ∂∗) = ker(∂n).

Thus,

Hn(X) = Hn(Xn)/ im(∂∗) = ker(∂n)/ im(∂n+1) = Hn(C∗(X);Z).

□

Eilenberg–Steenrod Axioms. There is an axiomatic approach to homology
which we now describe.

Definition 3.18: Eilenberg–Steenrod Axioms

A sequence of functors,

Hq(·, ·; π) : hTopPair → AbGp,

from the homotopy category of topological pairs to the category of
abelian groups together with natural transformations,

∂ : Hq(X,A; π) → Hq−1(A; π) := Hq−1(A,∅; π),

is called a homology theory if it satisfies the following axioms.

Dimension: If X is a point, H0(X; π) = π and Hq(X; π) = 0 for all
q ∕= 0.

Exactness: Inclusion maps A → X and (X,∅) → (X,A) induce a long
exact sequence,

· · · → Hq(A; π) → Hq(X; π) → Hq(X,A; π)
∂−→ Hq−1(A; π) → · · · .

Excision: IfX is the union of the interiors of A and B then the inclusion
(A,A ∩B) → (X,B) induces an isomorphism,

H∗(A,A ∩B; π) → H∗(X,B; π).
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Additivity: If (X,A) is the disjoint union of pairs (Xi, Ai), then the
inclusions (Xi, Ai) → (X,A) induce an isomorphism,



i

H∗(Xi, Ai; π) → H∗(X,A; π).

Weak Equivalence: If f : (X,A) → (Y,B) is a weak equivalence (see
Theorem 4.25) then it induces an isomorphism,

f∗ : H∗(X,A; π) → H∗(Y,B; π).

Theorem 3.19

The Eilenberg–Steenrod axioms characterize a unique homology theory.
Hence any sequence of functors satisfying these axioms agrees with the
singular homology.

Proof. We have showed that singular homology satisfies all of these prop-
erties, with the exception of Weak Equivalence which we prove in Proposition
4.33. We will prove later in Theorem 4.31 that every space X has a weak
equivalence f : XCW → X from a CW complex and so it suffices to prove
that any homology theory for CW complexes agrees with cellular and hence
singular homology.

One can deduce that all the geometric constructions of this section, like re-
duced homology and Mayer–Vietoris, can be obtained just from our axioms.
In particular, the homology of the sphere and the relative homology of the
disk to its boundary follow from the axioms. This allows us to construct the
cellular chain complex as a sequence of relative homology groups of successive
skeleta H∗(Xn, Xn−1) for any homology theory. The same arguments we ap-
plied before show the resulting cellular homology agrees with the underlying
homology theory and has the usual geometric interpretation of its differential.
Hence the cellular homology (and consequently the singular homology) of any
CW complex X is equal to its homology in our arbitrary homology theory. □

Of course totally analogous constructions hold for cohomology.

This argument gives us an alternate route to proving a certain homology theory
agrees with singular homology: we just need to verify these axioms. This is
a reasonable way to show that simplicial and Morse homology, and deRham
cohomology all reproduce singular (co)homology.
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If one wants to obtain something like homology that gives new algebraic homo-
topy invariants of space with similar geometric properties, we need to weaken
these axioms. What turns out to be the best way to do this may seem sur-
prising because it involves removing the most trivial of the axioms.

Definition 3.20

A generalized or extraordinary homology theory is a sequence of functors
Eq(·, ·) : hTopPair → AbGp that satisfy all of Eilenberg–Steenrod
axioms, except possibly the dimension axiom.

Much of modern algebraic topology is focused on studying these theories and
we will meet a few of the most important ones later.

3.3. Algebraic Constructions.

Algebraic Preliminaries: Tor and Ext. We will consider coefficients in the
category of Z-modules, i.e. abelian groups. Tensoring with a group B is a
right exact functor, meaning that if,

M → N → A → 0 is exact, then so is M ⊗ B → N ⊗ B → A⊗ B → 0.

However, this need not be true on the left. Conversely, the functor Hom(·, B)
is left exact, so that given an exact sequence, M → N → A → 0, the se-
quence,

Hom(M,B) ← Hom(N,B) ← Hom(A,B) ← 0

is also exact. The reverse statement need not be true. The Tor and Ext
functors measure this failure to be exact on the other sides.

Definition 3.21: Tor and Ext

Given an Z-module A, we may always find a free resolution of A, which
is a short exact sequence,

0 → F1 → F0 → A → 0,

for F1, F0 free abelian groups (just use a group presentation).

Given Z-modules A and B, the Tor functor Tor(A,B) is the unique
Z-module so that, for a given free resolution F1 → F0 → A of A,

0 → Tor(A,B) → F1 ⊗ B → F0 ⊗ B → A⊗ B → 0,

is exact.

The Ext functor Ext(A,B) is the unique Z-module so that,

0 → Hom(A,B) → Hom(F0, B) → Hom(F1, B) → Ext(A,B) → 0
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is exact. Both definitions are independent of the choice of free resolution.

Proposition 3.22. Tor is symmetric: Tor(A,B) = Tor(B,A).

Proof. We prove this with spectral sequences which we will define in a
few sections. Suppose we have free resolutions,

0 → F1 → F0 → A → 0 and 0 → G1 → G0 → B → 0.

Tensoring together the Fi and Gj gives a bicomplex. We may extract a spectral
sequence from each of the two gradings. In one direction, we have the following
first three pages (we use Tor(A,F ) = 0 when F is free, which we prove shortly).

E0 0 1

0

1

F0 ⊗G0

F1 ⊗G0

F0 ⊗G1

F1 ⊗G1

E1 0 1

0

1

A⊗G0

0

A⊗G1

0

E2 0 1

0

1

A⊗ B

0

Tor(B,A)

0

At which point the spectral sequence terminates. If we apply the spectral
sequence in the other direction, we have the following first three pages.

E0 0 1

0

1

F0 ⊗G0

F0 ⊗G1

F1 ⊗G0

F1 ⊗G1

E1 0 1

0

1

F0 ⊗ B

0

F1 ⊗ B

0

E2 0 1

0

1

A⊗ B

0

Tor(A,B)

0

At which point the spectral sequence terminates. In either case, the spectral
sequence computes the homology of the total bigraded complex. We conclude
that Tor(A,B) = Tor(B,A). □
Proposition 3.23. The following hold.

(1) Tor(A,F ) = 0 for F free.

(2) Tor(Zm,Zn) ∼= Z(m,n).

(3) For A,B finitely generated, Tor(A,B) ∼= Tor(A)⊗ Tor(B).
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(4) Tor(A,Q) = 0 for any A.

(5) Ext(F,B) = 0 for F free.

(6) Ext(Zm,Zn) = Z(m,n).

(7) Ext(Zm,Z) = Zm.

(8) Ext(A,Q) = 0 for any A.

Proof. (1) Given a free resolution 0 → F1 → F0 → A → 0, we get an
injective morphism of free abelian groups F1 → F0. But then the induced map
F1 ⊗ F → F0 ⊗ F is clearly injective too if F is free. Hence,

Tor(A,B) = ker(F1 ⊗ F → F0 ⊗ F ) = 0.

(2) Zm has the free resolution,

0 → Z ×m−−→ Z → Zm → 0.

Tensoring with Zn gives an exact sequence,

0 → Tor(Zm,Zn) → Zn
×m−−→ Zn → Zm ⊗ Zn → 0.

Thus,

Tor(Zm,Zn) = ker(Zn
×m−−→ Zn) = Z(m,n).

(3) This follows from (1) and (2), plus the fundamental theorem of finitely
generated abelian groups and the fact Tor distributes over direct sums.

(4) Given a free resolution 0 → F1 → F0 → A, F1 → F0 is injective. Tensoring
a free group F , i.e. no torsion, with Q has the consequence that f ⊗ (p/q) =
f ′ ⊗ (p′/q′) if and only if pq′f = p′qf ′. In particular, if f ⊗ (1/q) = e⊗ 0 then
f = 0 and hence F1 ⊗Q → F0 ⊗Q is also injective.

(5) We may take the free resolution 0 → 0 → F → F → 0, from which the
conclusion is obvious.

(6) Again take the free resolution 0 → Z ×m−−→ Z → Zm → 0. Applying
Hom(·,Zn) gives,

0 → Hom(Zm,Zn) → Hom(Z,Zn)
◦×m−−→ Hom(Z,Zn) → Ext(Zm,Zn) → 0.

Recall that Hom(Zm,Zn) ∼= Z(n,m) and Hom(Z,Zn) ∼= Zn, both being deter-
mined by where we send the unit. So the above becomes,

0 → Z(n,m) → Zn
×m−−→ Zn → Ext(Zm,Zn) → 0.

Thus,

Ext(Zm,Zn) = coker(Zn
×m−−→ Zn) = Zn/mZn

∼= Z(m,n).
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(7) Using the same free resolution and Applying Hom(·,Z) gives,

0 → Hom(Zm,Z) → Hom(Z,Z) ◦×m−−→ Hom(Z,Z) → Ext(Zm,Z) → 0.

We have Hom(Z,Z) = Z while Hom(Zm,Z) = 0. So this becomes,

0 → Z ×m−−→ Z → Ext(Zm,Z) → 0.

Hence Ext(Zm,Z) ∼= Zm as claimed.

(8) It is a classic fact that Q, and any divisible group, is an injective Z-module,
so that given an injective map F1 → F0, any element of Hom(F1,Q) lifts to an
element of Hom(F0,Q). Hence, Hom(·,Q) is right exact and Ext(A,Q) = 0
for any A. □

Universal Coefficient Theorem. Recall that for a group G, C∗(X;G) =
C∗(X;Z) ⊗ G and C∗(X;G) = Hom(C∗(X;Z);G). This need not be true on
the level of homology, since tensoring and Hom fail to be exact. However, it’s
not so surprising that we can relate the homology between different coefficients
as well as relate the homology and the cohomology using the Ext and Tor.

First, we have a simple way to relate homology with different coefficients.

Proposition 3.24 (Coefficient Long Exact Sequence). Suppose C∗(X) is a
chain complex of free abelian groups. Suppose there is an exact sequence of
abelian groups 0 → A → B → C → 0. Then there is a long exact sequence in
homology,

· · · → Hn(X;A) → Hn(X;B) → Hn(X;C)
β−→ Hn−1(X;A) → · · · .

And in cohomology,

· · · → Hn(X;A) → Hn(X;B) → Hn(X;C)
β−→ Hn+1(X;A) → · · · .

The maps β are called the Bockstein homomorphisms.

Proof. Since the chain complex is free, we have that Tor(G,Cn(X)) =
Ext(Cn(X), G) = 0. Hence · ⊗ Cn(X) and Hom(Cn(X), ·) are exact functors
and we obtain short exact sequences,

0 → Cn(X;A) → Cn(X;B) → Cn(X;C) → 0,

and,

0 → Cn(X;A) → Cn(X;B) → Cn(X;C) → 0.

The result follows from the snake lemma. □
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Theorem 3.25: Universal Coefficient Theorem

Suppose C∗(X) is a chain complex of free abelian groups. There are
short exact sequences for any n ∈ Z and any abelian group G,

0 → Hn(X)⊗G → Hn(X;G) → Tor(Hn−1(X), G) → 0,(i)

0 → Hn(X)⊗G → Hn(X;G) → Tor(Hn+1(X), G) → 0,(ii)

0 → Ext(Hn−1(X), G) → Hn(X;G) → Hom(Hn(X), G) → 0.(iii)

These sequences are canonical. They split non-canonically.

Proof. (i) Let 0 → F1 → F0 → G → 0 be a free resolution of G. Then
0 → F1 → F0 → 0 defines a complex and tensoring with C∗(X), we obtain a
bicomplex. We can look at the spectral sequence associated to each grading.
In one direction, we degenerate after the following three pages,

0

E0

1

F0 ⊗ C∗

↓

↓

↓

↓

F1 ⊗ C∗

0 1

E1

F0 ⊗H∗ F1 ⊗H∗

←

←

←

E2

0 1

H∗(X)⊗G Tor(H∗(X), G)

While in the direction, we degenerate after the following three pages,

0

E0

1

F0 ⊗ C∗(X)

↓ ↓ ↓

F1 ⊗ C∗(X)

0

E1

1

G⊗ C∗(X)←

←

←

←0

0

E2

1 0

G⊗H∗(X)

In both spectral sequences, the E∞ page should give the homology of the total
bicomplex. Thus we have,



p+q=n

E∞
p,q = (Hn(X)⊗G)⊕ Tor(Hn−1(X);G) = Hn(X;G).

(ii) This follows from the same argument applied to the bicomplex given by
tensoring with C∗(X).
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(iii) The full chain complex C∗(X) decomposes as a direct sum over n of short
complexes,

0 → Bn
∂n+1−−−→ Zn → 0,

of boundaries and cycles. This short sequence is a resolution for Hn(X).
Applying the Hom(·, G) functor gives,

0 → Hom(Hn(X), G) → Hom(Zn, G) → Hom(Bn, G) → Ext(Hn(X), G) → 0.

Thus the short co-complex,

0 → Hom(Zn, G)
δn+1−−→ Hom(Bn, G) → 0,

has (n+ 1)st homology Ext(Hn(X), G) and nth homology Hom(Hn(X), G).

The direct sum of the homologies of all these short co-complexes must be the
homology of H∗(X;G). Taking the relevant homology from the Zn, Bn and
Zn−1, Bn−1) complexes, we have,

Hn(X;G) = Hom(Hn(X), G)⊕ Ext(Hn−1, G).

□

The universal coefficient theorem has the following corollary which is simpler
to remember and is used all time.

Theorem 3.26

Suppose the homology groupsHn(X) of a space are all finitely generated.
Then,

Hn(X) = H free
n (X)⊕Htor

n−1(X),

where free and tor denote the free and torsion parts of the homology.

Proof. This is immediate from the universal coefficient theorem if we re-
member the simple description of torsion for finitely generated abelian groups.

□

Künneth Formula. What can we say about the homology of a product of
spaces? If we have two CW complexes X, Y , we can obtain a cell structure on
X × Y whose cells are products of pairs of cells from X and Y with attaching
maps given in the obvious way from attaching maps for X and Y .

This means that X × Y has a cellular complex which is the tensor product of
the complexes of X and Y with boundary operator the sum of the boundary
operators on X and Y . While this tensor product description doesn’t descend
to homology, it does after some correction from Tor groups. This relationship
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extends from CW complexes to all spaces by the technique of CW approxima-
tion.

Theorem 3.27: The Künneth Formula

Given two spaces X and Y , the homology of their product is,

Hn(X × Y ) ∼=


p+q=n

Hp(X)⊗Hq(X)
 

p+q=n−1

Tor(Hp(X), Hq(X)).

Proof. As we show later, every space X is weak homotopy equivalent
to a CW complex. As we show later, weak homotopy equivalent spaces have
isomorphic homology. Hence, without loss of generality X and Y are CW
complexes.

By our comments above, the cellular complexes satisfy C∗(X × Y ) = C∗(X)⊗
C∗(Y ).

Consider the short complexes 0 → Bp → Zp → 0 and 0 → Bq → Zq → 0. For
B,Z boundaries and cycles. The tensor product of these is a graded filtered
complex. The associated spectral sequence has the following three pages after
which it degenerates.

E0 p p+ 1

q

q + 1

Zp ⊗ Zq

Zp ⊗ Bq

Bp ⊗ Zq

Bp ⊗ Bq

E1 p p+ 1

q

q + 1

Zp ⊗Hq

0

Bp ⊗Hq

0

E2 p p+ 1

q

q + 1

Hp ⊗Hq

0

Tor(Hp, Hq)

0

Taking the direct sum over all pairs of complexes Bp → Zp, Bq → Zq gives
C∗(X×Y ). And the direct sum of these spectral sequences should compute the
cohomology of the product H∗(X × Y ). Checking the indexing of our entries
in the spectral sequence, we obtain the claimed formula. □

Multiplications. While the construction of cohomology may seem superflu-
ous given the universal coefficient theorem, cohomology has the benefit over
homology of having the structure of a ring. Throughout, suppose R is a com-
mutative ring.
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Definition 3.28: Cup Product

Let ϕ ∈ Cn(X;R) and ψ ∈ Cm(X;R). The cup product ϕ ⌣ ψ ∈
Cn+m(X;R) is defined so that for a singular simplex σ : ∆n+m → X,

(ϕ ⌣ ψ)(σ) = ϕ(σ|[0,...,n]) · ψ(σ|[n,...,m]).

Here, [0, . . . , n] denotes the face of ∆n+m containing the first n+ 1 ver-
tices and [n, . . . ,m] denotes the face of ∆n+m containing the last m+ 1
vertices. Extending by linearity, we obtain a module homomorphism,

⌣ : Cn(X;R)× Cm(X;R) → Cn+m(X;R).

Exercise 3.29. Show the cup product has the following properties:

(1) (α ⌣ β) ⌣ γ = α ⌣ (β ⌣ γ).

(2) δ(α ⌣ β) = δα ⌣ β + (−1)|α|α ⌣ δβ.

(3) Given f : X → Y , f ∗(α ⌣ β) = f ∗α ⌣ f ∗β.

(4) The cup product is super-commutative (i.e. commutative with a sign
(−1)|α|·|β|) up to some quasi-isomorphism permuting the vertices of
simplices. 

This implies the cup product descends to a multiplication on cohomology,

⌣ : Hn(X;R)⊗R Hm(X;R) → Hn+m(X;R),

which is associative, super-commutative, and natural with respect to pullback
by continuous maps. This makes the direct sum of the cohomology groups,
which we denote H∗(X;R), a graded ring.

There are two more operations on (co)homology which we sometimes use.

Definition 3.30

Suppose X1, X2 are two spaces, and let πi : X1 × X2 → Xi be the two
projections. Given α ∈ Hn(X1;R) and β ∈ Hm(X2;R), we can define
the cross product,

× : Hn(X1;R)×Hm(X2;R) → Hn+m(X1 ×X2;R),

by α× β = π∗
1α ⌣ π∗

2β.

Given α ∈ Hn(X;R) and σ : ∆n+m → X, we can define the cap product
a ⌢ α ∈ Hm(X;R) by,

σ ⌢ α = α(σ|[0,...,n])σ|[n,...,n+m].
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Extending by linearity, we obtain a module homomorphism,

⌢ : Cn+m(X;R)×Hn(X;R) → Cm(X;R).

Exercise 3.31. Show the cap product has the following properties:

(1) (∂σ) ⌢ α = σ ⌢ δα + (−1)|α|∂(σ ⌢ α).

(2) σ ⌢ (α ⌣ β) = (a ⌢ α) ⌢ β. 

Thus the cap product descends to an operation on homology,

⌢ : Hn+m(X;R)⊗Hn(X;R) → Hm(X;R).

We may also perform a relative version of these operations. Suppose A,B ⊂ X
are sufficiently nice, for example they have an open neighbourhood deformation
retracting to them. Then we may define relative versions of the cup and cap
product:

⌣ : H∗(X,A)⊗H∗(X,B) → H∗(X,A ∪B)

⌢ : H∗(X,A)⊗H∗(X,B) → H∗(X,A \B).

Homology with Twisted Coefficients. For a couple of our constructions
later, it will be useful to study homology where the coefficients depend on
some local data.

Definition 3.32

A local coefficient system {Gx} on a space X is a choice of abelian
group Gx for each x ∈ X and a homomorphism Φγ : Gγ(0) → Gγ(1) for
each γ : [0, 1] → X so that:

(i) Φγ depends only on the homotopy class of γ with fixed end-
points.

(ii) If γ1, γ2 are composable, Φγ1∗γ2 = Φγ1 ◦ Φγ2 .
(iii) For γ a constant path, Φγ = id.

Example 3.33. An important example for later is that if E → B is a Serre
fibration, then the homology of its fibres {H∗(Ex)} defines a local coefficient
system on the base B. 

Consider a local coefficient system G = {Gx} on X. Let σ : ∆k → X be
a singular simplex. Note since ∆k is contractible that Gσ(t) are canonically
isomorphic for all t ∈ ∆k and we may denote the local coefficients on the
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simplex by Gσ. Let C∗(X;G ) be the free Z-module generated by pairs (σ, g)
where σ is a singular simplex and g ∈ Gσ modulo the relation,

(σ, g1) + (σ, g2) = (σ, g1 + g2).

We can extend the differential ∂ from the usual singular complex to this com-
plex by letting it act linearly on the G coefficients. This still satisfies ∂2 and
so C∗(X;G ) is a chain complex.

Definition 3.34

The homology of X with local or twisted coefficients in a local coefficient
system G is the homology of the above chain complex,

H∗(X;G ) = H(C∗(X;G )).

The cohomology with local coefficients is defined analogously.

3.4. Homology on Manifolds. The well behaved structure of smooth
manifolds allows for important additional properties and a better geometric
understanding of the homology. We will assume throughout that our manifolds
are compact (possibly with boundary) and oriented. The same conclusions
hold for unoriented manifolds over Z2 instead of Z.

Fundamental Class. For manifolds, we should think of elements of H∗(X)
as representing something like submanifolds of X. Our intuition is that if
dim(X) = n, then Hn(X) should be generated by a single element representing
X itself. This is essentially true, and there are a few paths to a proof.

Definition 3.35

A simplical structure for X is an n-dimensional pseudomanifold if,
(1) The maximum dimension of a simplex in the simplicial structure

is n.
(2) Any two n-simplices of X is connected by a finite chain of n-

simplices which pairwise share an n− 1 dimensional face.
(3) Every n − 1 dimensional simplex is the face of precisely two

n-simplices of X (if we allow for boundaries, they may be the
face of just one n-simplex as well).

It is a classical theorem of topology that every smooth n-manifold is
homeomorphic to a n-dimensional triangulated subspace of Euclidean
space, so that the homeomorphism is smooth on the n-simplices. And
moreover, this triangulation is a n-dimensional pseudomanifold.
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Theorem 3.36: Fundamental Class

Given a smooth compact oriented n-manifold X, we have Hn(X, ∂X) =
Z if X is orientable, and equals zero otherwise. For any smooth compact
n-manifold Hn(X, ∂X;Z2) = Z2.

Proof. We can use our pseudomanifold structure to study simplicial ho-
mology. Let a ∈ Hn(X, ∂X) be non-zero and represented by a linear combina-
tion of n-simplices with no boundary. Since every (n−1)-simplex in X/∂X is a
face of two n-simplices, and the n-simplices are all connected, we immediately
deduce that every n-simplex of X appears in a, and furthermore all have the
same coefficient up to a sign. If we work modulo 2 then we are done, giving a
proof of the second part.

Working over Z, we see that Hn(X, ∂X) is generated by at most one element.
Such a generator a exists if and only if we can compatibly orient all the n-
simplices of X to match signs in our linear combination. If we have such
compatible orientations, then the orientations of each simplex patch together
to give an orientation of X. Conversely, if we cannot compatibly orient all the
simplices, then there is a path through a sequence of n-simplices connecting an
(n−1) simplex to itself which reverses orientation, and so X is not orientable.

□

Proof. (Take Two) I have come up with another admittedly quite long
and arduous proof, which avoids the need for pseudomanifolds (which I dislike)
and instead uses Morse homology (which I like very much). The first part
borrows an argument from here to show we can find a Morse function on X
with a unique local maximum. We’ll instead find a function with a unique
local minimum, and by flipping a sign we get what we want. Pick any Morse
function f . Let p1, . . . , pa be the local minima, i.e. index zero critical points
and q1, . . . , qb the index one critical points (b may equal zero but a ≥ 1 by the
extreme value theorem). By decreasing f adding a negative bump function
near the pi we can ensure f(pi) < f(qj) for any pair i, j.

Pick a compatible metric g. The network of gradient flow lines between the pi
and the qj will form an finite embedded graph in X. Note that this embedded
graph is the one-skeleton of a cell structure for X. Since X is connected,
the graph must be connected (by cell approximation any path connecting 0-
cells in X lands in the 1-skeleton). Now consider a spanning tree T for the
subcollection of vertices p1, . . . , pa, which exists by basic graph theory. Let U
be a tubular neighbourhood of T inside X. By adding to f a large negative
bump function subordinate to U we may ensure that f(qi) < C < f(qj) for any
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pair of index 1 critical points with qi in our graph and qj outside the graph
and some constant C. Now consider N = f−1((−∞, C]). This is an open
submanifold with boundary of X containing T and no other critical points of
f . Applying the gradient flow of f on N \T determines a smooth deformation
retract of N to T , which is itself contractible. Hence N is diffeomorphic to
a closed n-ball in X. We may alter f on N , replacing it by some radial
distance function smoothed at the boundary. This altered f has a unique
local minimum on N and hence on all of X.

Considering the Morse complex for a Morse function f with a unique local
maximum p, we have CMn(X) ∼= Z generated by p. It just remains to show
∂p = 0 iff X is oriented and always ∂p = 0 (mod 2). Fix any critical point
q of index n − 1. The Hessian of f is symmetric so its eigenvalues are real
and non-zero by our Morse assumption. Hence we can apply the Hartman–
Grobman theorem which allows us to locally linearize the gradient flow of f
near q. We conclude from the local linear picture and the fact Hessq(f) has
only one positive eigenvalue, that there are exactly two gradient flow lines that
stably converge to q. This immediately gives us that 〈∂p, q〉 = 0 (mod 2).

The final (difficult) ingredient is to show these two flow lines converging to q
have opposite orientation precisely when X is oriented. While orientations in
Morse theory are hard, they are not so bad for the case of codimension one.
We endow all the unstable manifolds of critical points with orientations of our
choosing (this is possible because they are diffeomorphic to contractible disks).
If γ is a flow line from p of index n to q of index n− 1, then the tangent space
to X at q has an orientation from the orientation of the unstable manifold at q
direct summed with the asymptotic direction of the gradient field along γ (i.e.
using the vector pointing out of the gradient flow line at q). We give a sign
±1 to our flow line according to if this orientation agrees or disagrees with the
orientation of TqX given by the unstable manifold of p; this is the sign in the
oriented count of flow lines defining the Morse boundary operator.

We can change our Morse function by a sign, so that p is the unique critical
point of index zero and the qi are critical points of index one. From Morse
theory as we’ve described it, there is thus a cell structure for X with a single
zero cell given by p and one cells given by the gradient flow lines. In particular,
each index one critical point q has two flow lines from q to p that together
determine a loop inM , which is a one cell with both ends glued to p. Hereafter,
we change our function back by a sign, so again p is the global maximum and
the points qi have index n − 1, with the new knowledge that these flow lines
from p to q determine a 1-skeleton for a CW structure of X.
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Note that by choice of a metric, TX has structure group O(n) and orienting
TX is equivalent to a reduction of structure group to SO(n). Such reduction
is the same as a section of the quotient bundle Q with fibre O(n)/SO(n) ∼= Z2.
Clearly Z2 has π0 group Z2 and all its higher homotopy groups are trivial. We
will conclude from obstruction theory, but one can probably prove directly,
that there is an obstruction to extending a section of Q from the 0-skeleton
of X (which can always be constructed trivially) to the 1-skeleton given by
an element of H1(X;Z2) (this is the first Stiefel-Whitney class w1(TX)). And
once we have a section of Q on the one-skeleton of X, there is no further
obstruction to extending it to all of X.

We conclude thatX will be orientable if and only if we can define an orientation
of TX over the gradient flow lines from p to the index n− 1 critical points qi.
If we remove the points qi, we are left with a “spider shaped” graph which is
contractible and hence we can define an orientation of TX over it. Thus X
is orientable if and only if the orientation extends to each index one critical
point q. This will be the case if and only if the orientations as defined on the
two flow lines converging to q meet compatibly at q.

Now pick an orientation on the one-skeleton of gradient flow lines punctured
at the index n − 1 critical points. At one such point q, use the two gradient
flow lines converging to q to define two candidate orientations for TqX. We
can represent these orientations by an ordered basis for TqX whose first n −
1 vectors span and induce a given orientation on the tangent space to the
unstable manifold of q and whose last vector spans the tangent to the gradient
flow line, pointing in whichever direction necessary to agree with the overall
orientation of the punctured one-skeleton. Since the first n− 1 vectors in each
oriented basis agree, we see that the orientation extends to q if and only if the
last vector in the pair of oriented bases point in the same direction. Because,
by Hartman–Grobman, the two gradient flow lines meeting at q lie on opposite
sides of the tangent space to the unstable manifold of q, the orientations extend
if and only if the orientation on exactly one of two gradient lines includes the
direction agreeing with the direction of gradient flow. Referring back to our
description of signs in Morse homology, the orientation extends to q if and
only if exactly one of the two gradient flow lines carries a positive sign in the
boundary operator of the Morse complex. That is, the orientation extends to q
if and only if 〈∂p, q〉 = 0 (and not ±2). Repeating this analysis for every index
n− 1 critical point, we see that the orientation extends to the one skeleton of
X, and hence to all of X by our discussion above, if and only ∂p = 0.

So if X is orientable, p is a non-zero generator for Hn(M ;Z) ∼= Z While if
X is not orientable, ∂p ∕= 0 and Hn(M ;Z) = 0. Nothing we said should use
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in a fundamental way that the manifold be closed, so we can with little work
extend to the case of compact manifolds with boundary. Phew. □

Exercise 3.37. Show by excision that for any x in the interior of X a smooth
manifold of dimension n, Hi(X,X \ {x}) ∼= Hi(S

n). This is called the local
homology of X at x. Furthermore, show that the map,

i∗ : Hn(X, ∂X) → Hn(X,X \ {x}),

induced by inclusion of the pair is an in isomorphism. Show that if X is
oriented, the local homology Hn(X,X \ x) has a canonical generator induced
by the orientation. 

If X is oriented with a given orientation, then there is a canonical generator
of Hn(X, ∂X), described in the language of the above proof as follows. We
consider a signed sum of the n-simplices of X which assigns a coefficient ±1 to
a simplex based off if the smooth embedding ∆n → X is orientation preserving
or reversing. Equivalently, the isomorphism described in the above exercise
should send the generator of Hn(X, ∂X) to the canonical generator of the top
local homology.

Definition 3.38: Fundamental Class

If X is a compact oriented n-manifold, the canonical generator of
Hn(X, ∂X) is called the fundamental class and denoted [X, ∂X]. If
X is closed, we write [X] ∈ Hn(X) for the fundamental class. If X is
non-oriented we use the same name and notation to refer to the unique
non-zero element of Hn(X, ∂X;Z2).

Definition 3.39: Degree

The degree of a continuous map f : M → N between com-
pact n-dimensional oriented manifolds is the integer by which f∗ :
Hn(M, ∂M) → Hn(N, ∂N) multiplies elements by under the isomor-
phism of top homology with Z. Equivalently, the degree d satisfies
f∗([M, ∂M ]) = d[N, ∂N ].

We can always homotope our map to be smooth, for which we have the fol-
lowing equivalent definitions of degree.

(1) By Sard’s theorem, f has an open dense subset of regular values. The
degree of f is an oriented count of the preimage of any regular value.
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(2) If ω is a volume form on N normalized to have volume one, then the
degree is given by,

d =

ˆ

M

f ∗ω.

To see these two are equivalent, note that the critical values are closed and
measure zero, so do not affect the integral. On the regular value set, we can
define a partition of unity and apply the change of variables theorem to deduce
the equivalence. To see (1) is the same as the topological version, pick a regular
value y and note that the map,

Hn(M) → Hn(M,M \ f−1(y)) → Hn(N,N \ y)

should be multiplication by the degree. But by excision, Hn(M,M \f−1(y)) is
a direct sum of the local homology at each point of f−1(y), and so the above
map factors as a multiplication by the sum of local degrees of the map near
each point of f−1(y). For our smooth map, each local degree is just plus or
minus one dependent on orientation from which we recover definition (1).

Poincaré Duality. We are now ready for the most fundamental result about
the topology of manifolds.

Theorem 3.40: Poincaré Isomorphism Theorem

If X is a smooth compact oriented n-manifold, one has for each i,

Hi(X, ∂X) ∼= Hn−i(X) and Hi(X) ∼= Hn−i(X, ∂X).

In particular, in the case of a closed oriented manifold, one has,

Hi(X) ∼= Hn−i(X).

If X is not oriented, the same isomorphisms hold over Z2. Moreover,
these isomorphisms are induced by capping with the fundamental class
[X, ∂X] or its dual in cohomology.

Remark 3.41. The isomorphism in the case of a closed manifold is called
Poincaré duality, while its generalization to manifolds with boundary is called
Lefschetz duality. For non-compact manifolds, there is a more general state-
ment provided we switch one of the groups in each isomorphism to (co)homology
with compact support. This can be defined as colimH∗(M,M \K) taken over
compact sets K directed by inclusion. Equivalently in de Rham theory, it is
the cohomology of the complex of differential forms with compact support. △
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Proof. We follow a somewhat unorthodox argument through Morse the-
ory. Consider a Morse function f ; we can perturb f so that all of its crit-
ical points have distinct critical values. Near some critical value c denote
M− = f−1((−∞, c− ε)) and M+ = f−1((−∞, c+ ε)) for ε sufficiently small.

Note that if there are no critical points on the interval [a, b], then gradient
flow determines a diffeomorphism between f−1((−∞, a)) and f−1((−∞, b)). In
particular, the topology of f−1((−∞, a)) only changes when we pass through
the level set of a critical point. Thus, we may inductively prove Poincaré
duality by assuming it holds for M− and showing it then holds for M+ for an
arbitrary critical value c.

Recall, the Morse lemma says that there are local coordinates (x1, . . . , xn) near
a critical point so that our Morse function has the form.

f(x) = f(c)− x2
1 − · · ·− x2

i + x2
i+1 + · · ·+ x2

n,

where i = ind(c). Thus, M+ is obtained from M− by gluing on a handle H =
Di ×Dn−i. The boundary of H is the union of two pieces ∂1H = ∂Di ×Dn−i

and ∂2H = Di × ∂Dn−i. We see that the handle H is glued to M− along ∂1H.

Now assume inductively that Poincaré duality holds for M−. The base case
is Poincaré duality for a disk, which is clear. Consider the triple (M+, ∂M+ ∪
H, ∂M+) and the pair (M+,M−) We may consider the homology sequence of
the triple and the cohomology sequence of the pair, which are connected by
the cap product.

· · · Hk(M+) Hk(M−) Hk(M+,M−) Hk+1(M+) · · ·

Hk(H, ∂1H)

Hn−k(M−, ∂M−) Hn−k(H, ∂2H)

· · · Hn−k(M+, ∂M+) Hn−k(M+, ∂M+ ∪H) Hn−k(∂M+ ∪H, ∂M+) Hn−k−1(M+, ∂M+) · · ·

⌢[M+,∂M+]

⌢[M−,∂M−]

ex.

⌢[M+,∂M+]

ex. ex.

∼=

⌢[H,∂H]∼=

Here, ex. denotes excision isomorphisms. We know the cap products in the
middle two columns are isomorphisms, since we know Poincaré duality holds
for the disk H and we assume it holds for M−. Thus, we have a morphism of
long exact sequences, which is an isomorphism on two of every three columns.
The five lemma implies the other columns are also isomorphisms, and so the
map,

⌢ [M+, ∂M+] : H
k(M+) → Hn−k(M+, ∂M+),

is an isomorphism. By induction, this extends to hold for (M, ∂M). Dualizing
our sequences and using the universal coefficient theorem gives the second
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isomorphism. The mod 2 case follows from the same argument using the mod
2 fundamental class. □

Proof. (Take Two) We can provide a simpler Morse theoretic proof of
the isomorphism (without the fact it is induced by capping with [M ]).

Take (f, g) to be a Morse–Smale pair onM . We can study its negative gradient
flow to obtain the usual Morse complex and then the Morse homology. Now
study the Morse homology of the pair (−f, g). Note that the critical points
of f of index i are in correspondence with the critical points of −f of index
n− i:

(3.1) CMi(M ; f, g) ∼= CMn−i(M ;−f, g).

Under this isomorphism, we can write the Morse chain complex of −f as a
cochain complex,

(3.2) · · · → CMi−1(M ; f, g)
δ−→ CMi(M ; f, g)

δ−→ CMi+1(M ; f, g) → · · · .
Given critical points p, q of index i and i + 1 with respect to f (so n − i and
n − i − 1 with respect to −f), the coefficient 〈δp, q〉 is an oriented count of
negative gradient flow lines of −f from p to q. But a negative gradient flow
line of −f is the same as a positive gradient flow line of f . And so changing
the direction, 〈δp, q〉 is an oriented count of negative gradient flow lines of
f from q to p. As a warning, these orientations may be different from the
ones in the Morse complex of f ; we can only guarantee they agree in the case
whereM is orientable and thus admits coherent orientations for all its unstable
manifolds (think back to our fundamental class result). We conclude, modulo
two, 〈δp, q〉 = 〈∂q, p〉 where ∂ : CMi+1(M ; f, g) → CMi(M ; f, g) is the usual
Morse boundary, and the equality holds over Z if M is oriented.

Hence under 3.1, δ is the adjoint of ∂ and the complex 3.2 is dual to the Morse
chain complex of f . Since the homology of CM(M ; f, g) computes the singular
homology of M , our dual complex 3.2 computes the singular cohomology of
M .

But on the other hand, (−f, g) is a Morse–Smale pair and we know its Morse
complex has to compute the singular homology ofM . Since the Morse complex
of −f is the same as 3.2 after re-indexing, we conclude,

Hi(M ;Z2) ∼= Hn−i(M ;Z2),

and for M oriented this extends to integers coefficients.

For the case where M has boundary, if we start with a Morse function f
pointing inward on the boundary it will compute H∗(M ;Z2). From the above
analysis, the Morse complex of −f will compute Hn−∗(M ;Z2). On the other
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hand −f is a Morse function pointing outward on the boundary and so its

Morse complex will compute H∗(M, ∂M ;Z2). Conversely, if f points out-

ward on the boundary, the Morse complex of − f simultaneously computes
Hn−∗(M, ∂M ;Z2) and H∗(M ;Z2). These results again extend over Z if M is
oriented. □

Poincaré duality together with the universal coefficient theorem give relatively
strict restrictions on the potential homology of a smooth manifold. In partic-
ular we have for a closed oriented n-manifold X,

H free
i (X) ∼= H free

n−i(X) and Htor
i (X) ∼= Htor

n−i−1(X).

As an example of the applications of this, consider the following exercise.

Exercise 3.42. Suppose M is a smooth closed 3-manifold with H1(M ;Z) =
0. Apply the UCT and the (mod 2) Poincaré isomorphism to conclude that
H3(M) = Z and so by Theorem 3.36, M is oriented (this also follows from
obstruction theory). Then apply Poincaré duality and the UCT to show M is
a homology sphere, that is H∗(M) = H∗(S

3). 

Remark 3.43. Let M be a closed n-manifold which is not oriented or maybe
not even orientable. A version of Poincaré duality still holds provided we use
local coefficients. Define the local coefficient system Ox = Hn(M,M \ {x}).
The condition that M is orientable is equivalent to finding a section of this
system, i.e. a trivialization of it. Any closed manifold has a local coefficient
fundamental class [M ] ∈ Hn(M ;O) defined so that its image under M →
(M,M \ {x}) is the unit in Ox. Capping with this fundamental class will then
give an isomorphism,

Hk(M ;G ) ∼= Hn−k(M ;G ⊗ O),

for any local coefficient system G . This can be proved just by inserting local
coefficients into our proof above. △

Intersection Theory. We are suddenly going to be quite fast and loose with
our arguments, favouring some basic geometric intuition. This is well in the
spirit of intersection theory, which personally I feel is one of the crown jewels
of algebraic topology.

First we briefly discuss a concept that will appear in greater detail in later
chapters when we study vector bundles. Suppose V is a rank r oriented vector
bundle over a closed base n-manifold. Let DV be the corresponding unit disk
bundle of V with respect to some metric (or just some tubular neighbourhood
of the zero-section of V ) and SV = ∂DV the unit sphere bundle.
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Definition 3.44: Thom Class

Proposition 3.45. There is a unique element tV ∈ Hr(DV, SV ) so
that for any fibre DxV of the bundle, the map

Hr(DV, SV ) → Hr(DxV, SxV ) ∼= Hr(Dr, Sr),

sends tV to the fundamental cohomology class [Dr, Sr] (with respect to
the orientation of the bundle).

This element tV is called the Thom class of the bundle V . One can
equivalently view it as living in Hr(TV ), where TV is the Thom space
of V defined as V ’s one point compactification.

Thom classes will allow us to answer the following basic question. Suppose Z
is an n−m dimensional oriented submanifold of a closed oriented n−manifold
M . We can define a fundamental submanifold class [Z] ∈ Hn−m(M) as the
image of the usual fundamental class [Z] ∈ Hn−m(Z) under the map induced
by inclusion. Our natural question is: what is the Poincaré dual of [Z]?

We are looking for α ∈ Hm(M) so that [M ] ⌢ α = [Z]. First, let U be a
tubular neighbourhood around Z; by a classical theorem, U is diffeomorphic to
a neighbourhood of the zero section of the normal bundle ν of the embedding
Z → M . We can instead include Z → U and consider [Z] ∈ Hn(U). By the
refinement lemma, we can thus restrict to look for α ∈ Hm(M,M \ U), which
by excision is the same as α ∈ Hm(U, ∂U).

Again by refinement and some locality arguments for manifolds, it suffices to
work locally. Pick a small neighbourhood of Z homeomorphic to a disk Dn−m

over which the normal bundle ν trivializes. Taking a product with the fibre,
we get a neighbourhood of U of the form Dn−m×Dm. On this neighbourhood,
by excision [M ] becomes [Dn−m × Dm, ∂(Dn−m × Dm)] = [Dn−m, ∂Dn−m] ×
[Dm, ∂Dm] and [Z] becomes [Dm, ∂Dm]. If we let [X] denote the fundamental
cohomology class of X. It is a simple lemma that in Dn = Dm ×Dn−m,

[Dn−m, ∂Dn−m]× [Dm, ∂Dm] ⌢ [Dn−m, ∂Dn−m] = [Dn, ∂Dn].

We deduce that the restriction of α ∈ Hm(U, ∂U) should coincide with the
fundamental cohomology class of the fibre [Dn−m, Sn−m]. By Proposition 3.45,
this is exactly the Thom class of the normal bundle tν ∈ Hn−m(U, ∂U). By
excision and pullback by inclusion, this becomes a class in Hn−m(M), which
we denote tZ .

Proposition 3.46. Given an oriented (n − m) dimensional submanifold Z
of an oriented n-manifold M , the Thom class tZ ∈ Hn−m(M) of the normal
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bundle of Z, realized as a tubular neighbourhood of Z ⊂ M satisfies,

[M ] ⌢ tZ = [Z],

and hence tZ is Poincaré dual to the fundamental class of Z. The same holds
with boundary, or mod 2 in the unoriented case.

From this we deduce the following very important theorem.

Theorem 3.47

Let Z and W be closed oriented submanifolds of a closed oriented man-
ifold M . Perturb Z and W so that they intersect transversally. By
convention, we orient Z ∩ W using the orientation of Z and the co-
orientation of W . Then,

tZ ⌣ tW = tZ∩W ,

or equivalently,

PD([Z]) ⌣ PD([W ]) = PD([Z ∩W ]).

The same holds modulo 2 in the unoriented case.

Proof. Let U and V be tubular neighbourhoods of Z and W respectively.
Suppose Z has codimension r and W has codimension s. We have tZ ∈
Hr(M,M \ U) and tW ∈ Hs(M,M \ V ). Thus,

tZ ⌣ tW ∈ Hr+s(M,M \ (U ∩ V )) ∼= Hr+s(U ∩ V, ∂(U ∩ V )),

where we use excision. As before, by refinement and locality arguments, it
suffices to analyze this cup product locally. Let Dn−r−s be a small open disk
in Z ∩W , over which all the normal bundles trivialize. The restrictions of the
normal bundles U, V over this disk have the form,

Dn−r−s ×Dr and Dn−r−s ×Ds

respectively. By transversality, the normal bundle to the embedding Z∩W →
M restricted to this disk has the form Dn−r−s ×Dr ×Ds.

By a similar computation to above for fundamental cohomology classes of disks
inside Dr ×Ds,

[Dr, ∂Dr] ⌣ [Ds, ∂Ds] = [Dr ×Ds, ∂(Dr ×Ds)].

Noting that the Thom classes of Z, W , and Z ∩ W restricted to this neigh-
bourhood correspond to the fundamental classes of the fibres of the respective
embeddings by Proposition 3.45, we conclude tZ ⌣ tW = tZ∩W . □

This result is powerful for computing ring structures.
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Example 3.48. The cellular complex of CP n has a single generator in even
gradings and is zero in odd gradings. Thus the differential is trivial and we
have,

Hk(CP n) =


Z 0 ≤ k ≤ 2n, even

0 otherwise.

By Poincaré duality, the cohomology is the same. Note from the cellular com-
plex that a hyperplane CP k for k < n is a closed submanifold of dimension
2k which represents the generator of H2k(CP n). If we take two generic hy-
perplanes of codimensions 2n − 2k and 2n − 2j, their intersection will be a
hyperplane of codimension 4n−2k−2j. We conclude from the above theorem
that,

PD([CP k]) ∩ PD([CP j]) = PD([CP j+k−n]).

We easily deduce that the cohomology ring is,

H∗(CP n) = Z[x]/(xn+1), |x| = 2.

Here x is Poincaré dual to the fundamental class of a hyperplane [CP n−1].

The same computation holds in the unoriented case for real projective spaces,

H∗(RP n;Z2) = Z2[x]/(x
n+1), |x| = 1.

Here x is Poincaré dual to the fundamental class of a hyperplane [RP n−1]. 

Some Geometric Applications. The simplest application of homology is as
a homotopy invariant to distinguish spaces which are not homeomorphic. But
there is much more we can do with it. We outline a few of the additional
invariants and results that can be proved from basic homology theory.

Definition 3.49

Let C∗(X) be a chain complex with finitely many free and finite dimen-
sional chain groups. The Euler characteristic of C∗(X) is given as,

χ(C∗(X)) :=


i

(−1)i dimC∗(X).

It is a simple exercise that this equals,

χ(C∗(X)) :=


i

(−1)i dimH free
i (X).

If the latter but not the former is well defined, we still call it the Euler
characteristic. For the case where our chain complex is C∗(X) the cellular
complex of a space with finite dimensional homology, we abbreviate to
χ(X), which we call the Euler characteristic of X.
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Exercise 3.50. Prove the following properties of the Euler characteristic.

(1) χ(M ×N) = χ(M) · χ(N).

(2) If M is a k-sheeted cover of M , χ(M) = kχ(M).

(3) If M,N are nice subsets of X (so that Mayer–Vietoris applies), then,

χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N).

(4) A genus g surface Σg has χ(Σg) = 2 − 2g. Deduce Euler’s formula
for a convex polyhedron: V −E + F = 2. What is the corresponding
formula for a polyhedron homeomorphic to a three-holed torus? What
about for an n-dimensional convex polytope?

We give one important result about the Euler characteristic.

Definition 3.51

Let V be a vector field on a smooth n-manifold M . If x is an isolated
zero of V , then in a small neighbourhood of x, the normalized vector
field V (x)/V (x) (with respect to some metric) restricted to a small
sphere around x defines a map Sn−1 → Sn−1. This map’s degree is
invariant under continuous deformations, and so is independent of the
metric (since the set of metrics is contractible) or the choice of sphere
around x.
The index of V at x is,

indx(V ) : deg

V/V  : Sn−1 → Sn−1


.

Theorem 3.52: Poincaré–Hopf Theorem

Let V be a vector field on a smooth closed manifold M with isolated
zeroes. Then, 

x∈crit(V )

indx(V ) = χ(M).

If M is compact with boundary, the same holds provided V points out-
ward along the boundary.

Proof. We use Morse homology. One notes that the sum of the indices
is independent of which vector field we use. There are a few ways to see this,
using homotopy invariance, embedding M into Euclidean space and studying
the degree of the Gauss map, or realizing this sum as the pairing 〈e(TM), [M ]〉.
Whatever way, we may take V to be a gradient vector field of a function f .
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By locality, we may assume locally at a critical point c of f and a zero of V , f
looks like f(c)− x2

1 + . . .− x2
i + x2

i+1 + . . .+ x2
n. We may also take our metric

to be standard with respect to these coordinates, so that the gradient vector
field looks like,

V = −2
i

j=1

xj
∂

∂xj

+ 2
n

k=i+1

xk
∂

∂xk

.

This is a linear vector field and hence it has degree plus or minus one depending
on if it preserves orientation or not. It preserves orientation precisely when i
is even. Hence, using the definition of the Morse complex,



x∈crit(V )

indx(V ) =


x∈crit(f)

(−1)ind(x) =
n

i=0

(−1)i dim(CMi(M)) = χ(CM∗(M)).

But note Morse and cellular homology agree, so χ(CM∗(M)) = χ(M).

The boundary case follows similarly from the Morse complex for manifolds
with boundary. □
Corollary 3.53 (Hairy Ball Theorem). Every smooth vector field on an odd
dimensional sphere has a zero. In particular, the odd dimensional spheres are
non-parallelizable.

Definition 3.54

Let X be a space with finitely generated homology and f : X → X
continuous. The Lefschetz number of f is defined as,

Λ(f) =


i

(−1)i tr

f∗ : H

free
n (X) → H free

n (X)

.

Note this is invariant under homotopies of f . And if f is homotopic to
the identity, Λ(f) = χ(X).

We have the following generalization of Brouwer’s fixed point theorem.

Theorem 3.55: Lefschetz Fixed Point Theorem

If X is a finite simplicial complex and f : X → X is continuous with
Λ(f) ∕= 0, then f has a fixed point. In particular if X has the rational
homotopy type of a point, then every f : X → X has a fixed point.

Proof. Assume f has no fixed points. By compactness, we know that
d(x, f(x)) obtains a positive minimum ε. By subdivision, we may assume that
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every simplex in X has diameter smaller than ε/2 and so f maps every point
out of its simplex. Analogous to the cellular approximation theorem, we prove
by the Lebesgue number lemma that after subdivision of the codomain, we
may approximate a continuous map f of simplices by a simplicial map g so
that for a simplex σ, f(σ) lies in the simplices containing g(σ).

Apply this simplicial approximation to approximate f by a simplicial map
g. Note that for any simplex σ and some x ∈ σ, all of g(σ) lies within ε/2
from f(x) and all σ lies within ε/2 from x. Since d(x, f(x)) ≥ ε, we conclude
g(σ) ∩ σ = ∅.

The induced map g∗ on the simplicial complex is described by the matrix
of coefficients in our simplicial map. But since g(σ) ∩ σ = ∅, the diagonal
coefficients are zero. Hence the trace of g∗ on the cell complex is zero. As with
the Euler characteristic, the alternating sum of traces of g∗ is invariant under
passing to homology and hence Λ(f) = Λ(g) = 0. □

There is the following theorem which generalizes both Lefschetz fixed point
and Poincaré–Hopf. We state it for interest, without proof.

Theorem 3.56: Lefschetz–Hopf

Let X be a finite simplicial complex and f : X → X have finitely many
fixed points. Then,

Λf =


x∈Fix(f)

indx(f),

where the index of f at a fixed point is defined as for the zero of a vector
field.

We prove one more very classical result using the full structure of the coho-
mology ring.

Theorem 3.57: Borsuk–Ulam

Any continuous map f : Sn → Rn agrees on some pair of antipodes.
That is there is x ∈ Sn so that f(−x) = f(x).

Proof. The case n = 1 is an easy consequence of the intermediate value
theorem.

Now suppose for contradiction there is an f : Sn → Rn that does not agree on
any antipodes. Setting g(x) = f(x) − f(−x), we obtain an odd function on
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Sn with no zeroes. Thus h(x) = g(x)/|g(x)| is a well defined odd continuous
function Sn → Sn−1. We claim such a map cannot exist.

In the case n = 2, we have an odd continuous function S2 → S1. Restricting
to the equator, gives an odd map t : S1 → S1. Note that t(π) is antipodal to
t(0) and so t must traverse an angle of π+2πk on [0, π] for some k ∈ Z. Since
t is odd, it traverses the same path on [π, 2π] as on [0, π] and so t traverses
an angle of (1 + 2k)2π after a full revolution. Hence the map t has an odd
winding number. But on the other hand, t extends to a map on the upper
hemisphere of S2 and hence is null homotopic. This is a contradiction with
the fact t represents an odd element in π1(S

1) ∼= Z.

For n > 2, we can use the fact h is odd to quotient by antipodal identification
to get a map h′ : RP n → RP n−1. Note that H1(RP n;Z2) is generated by
[RP 1], which we can represent by a standard embedding S1 → RP n. Lifting
to Sn, this map is a path half way along an equator. Composing with the
map h, since it’s odd, we get a path in Sn−1 connecting antipodes. Hence,
under quotienting, it becomes a non-contractible loop in RP n−1 which thus
represents [RP 1] the generator of H1(RP n−1;Z2).

We conclude that h′ induces an isomorphism on H1. And thus by dualiz-
ing its pullback induces an isomorphism on H1. Recall the structure of the
cohomology rings,

H∗(RP n) = Z[a]/(an+1) and H∗(RP n−1) = Z[b]/(bn).

We have just shown (h′)∗b = a. By naturality, since bn = 0,

0 = (h′)∗bn = ((h′)∗b)n = an.

This is obviously a contradiction. □

3.5. Cohomology of Some Common Spaces. For reference, we list
the homology and cohomology rings for some important spaces. These can be
computed either using cellular homology, or spectral sequences. We’ll revisit
some of the spectral sequence computations when we discuss them later.

Some Cohomology Groups

Spheres:
H∗(Sn) = Z[α]/α2 |α| = n,α = [Sn].
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Projective Spaces: As we found,

H∗(CP n) = Z[a]/(an+1) |a| = 2, a = PD[CP n−1]

H∗(RP n;Z2) = Z2[b]/(b
n+1) |b| = 1, b = PD[RP n−1].

We find over Z,

H i(RP n) =






Z i = 0 and n if n is odd

Z2 0 < i < n even

0 else

Grassmannians: Over C, the differentials in the cell complex for the
Schubert cell structure are trivial. So H2i(CG(n, k)) is the free
abelian group generated by the i square Young diagrams con-
fined in the k×(n−k) rectangle and the odd cohomology groups
are zero.

Over R, we can deduce the homology from the following descrip-
tion of attaching maps. Suppose ∆,∆′ are two Young diagrams
of size i and i− 1 respectively which we identify with Schubert
cells in G(n, k). If ∆′ ∕⊂ ∆, then the attaching map has degree
zero. Otherwise, if ∆ is ∆′ union the square (s, t), then the
attaching map has degree,

〈∂∆,∆′〉 =

0 : s+ t ≡ 0 (mod 2)

±2 : s+ t ≡ 1 (mod 2).

Whether the coefficient is plus or minus two can I think usu-
ally/always be fixed by the condition that ∂2 = 0. In particular,
the Z2 homology is just freely generated by Young diagrams as
in the complex case.

Surfaces: By Mayer–Vietoris, we can deduce the effect on homology of
attaching a handle. We can geometrically understand the cup
product. We deduce for an orientable surface of genus g Σg,

H∗(Σg) = Z[a1, b1, . . . , ag, bg, c]/(aiaj, bibj, aibj − δijc),

where |ai| = |bi| = 1, |c| = 2. The homology of the non-
orientable surface Sk, the connect sum of k copies of RP 2, is

H0(Sk) = Z, H1(Sk) = Z2k ⊕ Z2, and H2(Sk) = 0.
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Lie Groups: From spectral sequences we will deduce,

H∗(SU(n)) = Λ∗
Z[x3, x5, . . . , x2n−1]

H∗(U(n)) = Λ∗
Z[x1, x3, . . . , x2n−1]

H∗(Sp(n)) = Λ∗
Z[x3, x7, . . . , x4n−1].

The cohomology of SO(n) is harder. Here are some results,

H∗,free(SO(2k + 1)) = Λ∗
Z[x3, x7, . . . , x4k−1]

H∗,free(SO(2k)) = Λ∗
Z[a1, a7, . . . , a4k−5, a2k−1]

H∗(SO(n);Z2) =


0<i<n odd

Z2[bi]/(b
pi
i ),

where |bi| = i and pi = min{2k : |bi|2
k ≥ n}.

4. Homotopy Theory

We now move on to the other main set of algebro-topological invariants of
spaces: their homotopy groups. While conceptually simpler, the homotopy
groups will not admit the same kind of algorithmic formulation as homology;
even the homotopy groups of spheres are not fully known! Nevertheless, the
ideas of homotopy theory will vastly expand our understanding of topology
and the tools we have for the classification of spaces.

4.1. Homotopy Groups.

Definition 4.1

Given a pointed space (X, x0), its nth homotopy group as a set is given by
pointed homotopy classes of maps from the n-sphere, called spheroids :

πn(X, x0) := [(Sn, ∗), (X, x0)].

If X is path connected, this is independent of basepoint, and so we
usually ignore x0 in our notation. The group structure on πn can be
described as follows. Given two pointed maps f, g : Sn → X, we may
define f∗g by taking Sn, contracting the equator to a point, and mapping
the two hemispheres by f and g respectively.

The group πn has two equivalent descriptions. We can instead view πn(X)
as maps [(Sn, Sn \ B), (X, x0)], where B is a ball inside Sn. Then the group
operation is given by cutting out two balls from Sn and identifying each with
one of the composed elements. We may also view πn(X) as [(In, ∂In), (X, x0)].

60



Then the group operation is given by gluing two cubes In together and map-
ping on each by one of the composed elements. Our three perspectives are
shown below in Figure 2.

(X, x0)

f
(X, x0)

f

g

f

f

g

x0

x0

x0

f

x0

f g

Figure 2. Three Models of πn(X, x0)

Proposition 4.2. For n ≥ 2, the homotopy group πn(X) is abelian.

Proof. If we use the second picture, it is obvious. There is no preferred
ordering of the balls on which f and g are defined inside f ∗ g. The argument
using our cube picture is important and worth walking through. An illustration
of the proof is shown below in Figure 3. □

f ⇤ g

g ⇤ f

f g g ff g g f

Figure 3. Proof that πn is abelian.

Exercise 4.3. Prove πn(X × Y ) = πn(X)× πn(Y ). 

Given a continuous map f : X → Y , we can precompose it with a spheroid
in X to obtain one in Y . Thus f induces a map f∗ : πn(X) → πn(Y ). It
is immediate that this is a group homomorphism, natural with respect to
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composition, and only depends on the homotopy class of f . In particular we
obtain the following.

Theorem 4.4

Homotopy equivalent spaces have the same homotopy groups.

Because the definition of the homotopy groups is so simple, it does allow for
some easy computations.

Proposition 4.5. For n < m, πn(S
m) = 0.

Proof. Suppose we have a map f : Sn → Sm. By the cellular approxima-
tion theorem, we may homotope f to be cellular with respect to the usual cell
structures on the spheres. Hence Sn must land in the n-skeleton of Sm, which
is just a point since n < m. So f is null-homotopic and πn(S

m) is trivial. □

Proposition 4.6. If p : X → X is a covering map , then πn( X) = πn(X) for
n > 1.

Proof. We have a map p∗ : πn( X) → πn(X). Because Sn is simply
connected for n > 1, the map lifting lemma implies that any map f : Sn → X

lifts to a map f : Sn → X with chosen basepoint, hence p∗ is surjective. And
moreover, if p∗f is null homotopic, the map lifting lemma implies we may lift

the homotopy Sn × I → X to X. The uniqueness part of the map lifting
lemma tells us that this homotopy must connect f to the constant map and so
f is null homotopic as well. Hence p∗ is injective and thus an isomorphism. □

Corollary 4.7. Any space with contractible universal cover has trivial higher
homotopy groups. In particular, this applies to S1 and all surfaces of genus at
least one.

Definition 4.8

Given a pointed pair (X,A, x0), we may define its nth relative homotopy
group as,

πn(X,A) := [(In, ∂In, ∂In \ {0}× In−1), (X,A, x0)],

with the same product as in the absolute case. Note absolute homotopy
groups πn(X) are relative homotopy groups for the pair (X, x0).

We have a couple ways to visualize this as in Figure 4.
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x0

f

x0

f g

AA

A

x0f

Figure 4. Two models for πn(X, x0)

Exercise 4.9. Prove that πn(X,A) is abelian for n > 2 and show it need not
be for n = 2. Show the map π2(X) → π2(X,A) induced by inclusion of pairs
lands in the centre of π2(X,A). 
Remark 4.10. We can make sense of π0(X) as homotopy classes of pointed
maps S0 → X and hence homotopy classes of maps ∗ → X. That is, π0(X)
is the set (not group) of path components of X. We may similarly define
π1(X,A) as a set, although its meaning is less transparent. These sets are still
compatible with the framework of homotopy groups, and they will play a role
in the exact sequence we define in the next subsection.

Note that one can also define π−1(X), not as a set but as a Boolean variable,
recording if X is empty or not. △

4.2. Long Exact Sequences in Homotopy.

Long Exact Sequence of a Pair. We have a homotopical analogue of the
exact sequence of a pair in homology.

Theorem 4.11: Homotopy Long Exact Sequence of a Pair

Let (X,A) be a topological pair. There is a long exact sequence of
homotopy groups,

· · · → πn(A)
i∗−→ πn(X)

j∗−→ πn(X,A)
∂−→ πn−1(A) → · · · .

Here i∗ and j∗ are induced by inclusion, and ∂ is the map induced by
restricting relative spheroids In → X to the face {0}× In−1 → A.

Proof. Let’s check exactness at πn(X). If f ∈ πn(A), then i∗(f) lies only
within A. But then the relative spheroid j∗i∗(f) can be pushed down along
the first axis to become constant. If g ∈ πn(X) has j∗(g) = 0, then there is
a map In × I → X which is constant on all the faces except {0} × In−1 × I,
where it lies in A. We can consider a one parameter family of angled cubes
beginning from In × {0} and ending with {0}× In which defines a homotopy
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from g to a spheroid contained in A. So g comes from the image of i∗. Hence
im i∗ = ker j∗.

Let’s check exactness at πn(X,A). If f ∈ πn(X), then j∗(f) is a relative
spheroid which is constantly x0 on its base face. Hence ∂j∗(f) is constant. If
g ∈ πn(X,A) has ∂g = 0, then the base face of g can be homotoped to be
constant. By Borsuk’s theorem, this homotopy can extend to all of In, and
hence g is homotopic to a spheroid which is constantly x0 on its base, and thus
lies in πn(X). So im j∗ = ker ∂.

Lastly, we check exactness at πn(A). If f ∈ πn+1(X,A), then f : I × In → X
defines a homotopy between the base ∂f : {0} × In → X and the constant
spheroid {1} × In → X. Hence ∂f is trivial under the inclusion map i∗. If
g ∈ πn(A) has i∗(g) = 0, then there is a homotopy of I×In → X connecting g
to a constant map. This homotopy is precisely the data of a relative spheroid
In+1 → X. Hence im ∂ = ker i∗. □

Remark 4.12. The tail end of this sequence looks like,

· · · → π1(A) → π1(X) → π1(X,A) → π0(A) → π0(X) → 0.

After the first map, these are just maps of pointed sets, not groups. But
this still makes sense as an exact sequence of pointed sets. So for example
a path component A (an element of π0(A)) is in the basepoint component of
X (0 ∈ π0(X)) precisely when there is a path in X from the basepoint to an
element of that path component of A (i.e. it’s in the image of π1(X,A)). △

Exercise 4.13. Prove a homotopy long exact sequence for triples. 

Long Exact Sequence of a Fibration. The homotopy long exact sequence
of a pair is largely of instrumental use to give us the long exact sequence
of a fibration. This is the one point on which homotopy has homology beat
computationally, and we will try to milk it for all it’s worth.

Lemma 4.14. If p : (E, x0) → (B, b0) is a Serre fibration and π−1(b0) = F
then,

p∗ : πn(E,F, x0)
∼=−→ πn(B, b0)

is an isomorphism for each n.

Proof. We first prove injectivity. Suppose f ∈ πn(E,F ) has p∗f =
0. Then there is a homotopy (In, ∂In) × I → (B, b0) from p∗f to a con-
stant spheroid. By definition of a Serre fibration, this homotopy lifts to rel-
ative to f and a chosen homotopy within F on {0} × In−1 to a homotopy
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(In, ∂In, ∂In \ {0}× In−1)× I → (E,F, b0) of relative spheroids. By construc-
tion this homotopy is between f and a map lying in p−1(b0) = F . Hence, f is
null-homotopic in πn(E,F ).

Now we prove surjectivity. Suppose g ∈ πn(B, b0). Again by defining property
of a Serre fibration, g can be lifted relatively to a map (In, ∂In, ∂In \ {0} ×
In−1) → (E,F, b0) which gives an element of πn(E,F ). Since this is a lift, it
maps to g under p∗. □

Our central result now falls out for free.

Theorem 4.15: Homotopy Long Exact Sequence of a Fibration

Let p : E → B be a Serre fibration with fibre F over the base-point.
Then there is a long exact sequence,

· · · → πn(F )
i∗−→ πn(E)

p∗−→ πn(B)
∂−→ πn−1(F ) → · · · ,

where i∗ is induced by inclusion and p∗ by projection.

Proof. Consider the homotopy exact sequence of the pair (E,F ). Using
Lemma 4.14, we may replace the term πn(E,F ) with πn(B). Based on the
proof of the lemma we see the map p∗ is as described.

One should also check the end of the sequence:

· · · → π1(B) → π0(F ) → π0(E) → π0(B) → 0

is exact at π0(E), since the term π0(B) is replacing something ill-defined in
the long exact sequence of a pair. But this is clear, since a path component
of E projects to the path component of the basepoint in B precisely when it
contains a path component of F . □

Remark 4.16. What is the map ∂ in the long exact sequence? We may view a
spheroid Sn → B in πn(B) as a homotopy of spheroid Sn−1 × I → B from the
constant spheroid to itself by sweeping out cross sections of the sphere. We
may lift this homotopy to E relative to one endpoint to obtain a homotopy of
spheroids Sn−1× I → E for which Sn−1×{1} maps to F and hence defines an
element of πn−1(F ). This is essentially just repeating the proof of the above
lemma.

Example 4.17. This long exact sequence is our main computational tool to
find homotopy groups. Right away we can see a few important applications of
this result.
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(a) Consider the Hopf fibration S1 ↩→ S3 → S2. One way to see this
is identifying S2 = CP 1 and then this fibration is just the defining
quotient map of CP 1 as points of S3 modulo rescaling by complex
units. We have, remembering π2(S

3) = 0 by cell approximation,

· · · →✘✘✘✘✿0
π2(S

3) → π2(S
2)

∼=−→ π1(S
1) →✘✘✘✘✿0

π1(S
3) → · · · .

Hence π2(S
2) = Z. We proved earlier that the higher homotopy

groups of S1 vanish and so for n > 2 we find,

· · · →✘✘✘✘✘✿0
πn(S

1) → πn(S
3)

∼=−→ πn(S
2) →✘✘✘✘✘✘✿0

πn−1(S
1) → · · · .

Hence,

πn(S
3) = πn(S

2) for n ≥ 3.

We will show shortly that πn(S
n) = Z for all n, with homotopy classes

of maps Sn → Sn classified by their degree. Hence in particular
π3(S

2) = Z. The fibration long exact sequence show the unit of this
group is exactly the Hopf fibration, and other elements are given by
precomposing the Hopf fibration with higher degree maps of S3.

(b) One has a generalized Hopf fibration S1 ↩→ S2n+1 → CP n. And the
same long exact sequence argument shows πk(S

2n+1) = πk(CP n) for
all k ≥ 3 and π2(CP n) = Z.

Taking a direct limit gives the fibration S1 ↩→ S∞ → CP∞. Because
S∞ is contractible, one obtains πn(S

1) ∼= πn+1(CP∞) for all n. Hence
π2(CP∞) = Z and all its other homotopy groups vanish.

From quaternions and octonions one has analogous Hopf bundles
S3 ↩→ S7 → S4 and S7 ↩→ S15 → S8 which give some non-trivial
relations of homotopy groups.

(c) Given any pointed space (X, x0), it has a “path space fibration,”
ΩX ↩→ EX → X given by sending a path in X beginning at a
fixed endpoint x0 to its other endpoint. We see that the fibre over
x0 is given by ΩX. Note EX is contractible by performing a homo-
topy retracting paths to their first endpoint x0. Hence the long exact
sequence of this fibration gives for all n,

πn(X) ∼= πn−1(ΩX).

In the case n = 1, this is just the obvious statement that homotopy
classes of loops are the same as path components of the loop space.
The full statement is actually just a special case of the loop-suspension
adjunction:

[ΣX, Y ] = [X,ΩY ],
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which holds for any pair of spaces X, Y . To see this is true, note that
a pointed map ΣX → Y associates to each x ∈ X, a one-parameter
family of points in Y which begins and ends with the basepoint, i.e.
a loop, and so we can interpret it as a map X → ΩY . One then just
has to easily check this association is compatible with homotopies.
Applying this adjunction to Sn and our original space X and noting
ΣSn = Sn+1 gives the equality of homotopy groups.

This is in turn a special case of the adjunction,

[X ∧ A, Y ] = [X, [A, Y ]].

Exercise 4.18. Check this adjunctive isomorphism of homotopy classes
is compatible with the group structure of πn. 

(d) The determinant map gives a fibration SU(2)
det−→ U(2) → S1. Since

SU(2) ∼= S3, we deduce from the fibration long exact sequence that
π3(U(2)) ∼= π3(S

3) = Z, where we are again using the yet unproved
fact πn(S

n) ∼= Z.

The map given by taking an n×n unitary matrix and mapping to its
first column defines a fibration U(n−1) ↩→ U(n) → S2n−1. As long as
n ≥ 3, π3(S

2n−1) = 0. Hence we inductively find from the long exact
sequence of the fibration that for all n ≥ 2,

π3(U(n)) ∼= π3(U(n− 1)) ∼= · · · ∼= π3(U(2)) = Z.

(e) There are many more fibrations of Lie groups and homogeneous spaces
that can be exploited to find homotopy groups, some we will need to
apply later. Here are a few of note:

O(n− 1) ↩→ O(n) → Sn−1

U(n− 1) ↩→ U(n) → S2n−1

Sp(n− 1) ↩→ Sp(n) → S4n−1

V (n− k,m− k) ↩→ V (n,m) → V (n, k)

O(n) ↩→ V (n, k) → Gr(n, k).



4.3. The Freudenthal Suspension Theorem and Stable Homotopy
Theory. Suppose f : X → Y is a continuous map. There is a natural map
Σf : ΣX → ΣY induced by quotienting from the trivial product map f × id :
X × I → Y × I. Clearly we may suspend homotopies as well, so that if f, g
are homotopic, then Σf,Σg are homotopic.
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In the particular case of maps Sn → X, we may suspend to a map Sn+1 → ΣX.
Thus we obtain a map,

Σ : πn(X) → πn+1(ΣX).

It is simple enough to check Σ(f + g) is homotopic to Σ(f)+Σ(g) so that this
is a group homomorphism.

Definition 4.19

We say a space X is n-connected if πk(X) = 0 for 0 ≤ k ≤ n.

Theorem 4.20: Freudenthal Suspension Theorem

If X is n-connected, the suspension homomorphism,

Σ : πk(X) → πk+1(ΣX)

is an isomorphism for k ≤ 2n and surjective for k = 2n+1. In particular,

Σ : πn+k(S
n) → πn+k+1(S

n+1)

is an isomorphisms for n > k + 1 and surjective for n = k + 1.

We will not that prove this theorem since it is a bit of an involved argument.
One method is by smoothly approximating. Another is through homotopy
excision. We will prove the special case for the sphere where k = 0, since it is
necessary for what we do later.

Theorem 4.21

For every n ≥ 0, πn(S
n) = Z. These homotopy classes are labelled by

the degree of maps Sn → Sn.

Proof. Since homotopic maps have the same degree, we have a map,

πn(S
n)

deg−−→ Z.

Note given two maps f, g : Sn → Sn, their product f + g as an element of πn

is given by Sn → Sn ∨ Sn → Sn where we contract the equator and then map
on the pair of spheres by f and g.

We recall Hn(S
n
a ∨ Sn

b ) = Z2 is generated by [Sn
a ] and [Sn

b ], the fundamental
classes under inclusion. It is clear that the equatorial contraction map Sn →
Sn ∨Sn induces a map on homology that will send [Sn] to [Sn

a ] + [Sn
b ]. Almost
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by definition,

f∗[S
n
a ] = deg(f)[Sn] and g∗[S

n
b ] = deg(g)[Sn].

Hence,

(f + g)∗[S
n] = f∗[S

n
a ] + g∗[S

n
b ] = (deg(f) + deg(g))[Sn].

Thus the degrees are additive under the group operation of πn, and so the
above degree map we wrote down is a group homomorphism.

We know 1 is in the image of deg, since the identity map has degree one, and
so the homomorphism is surjective.

Exercise 4.22. Consider Sn ⊂ C × Rn−1 with coordinates (z, x). Show for
k ≥ 0 that the maps,

f(z, x) = (zk, x) and g(z, x) = (zk, x)

have deg(f) = k and deg(g) = −k. 

It only remains to show the homomorphism is injective. Suppose f : Sn → Sn

has degree zero. We can homotope f to be smooth, then a generic point p
with have preimages q1, . . . , q2n so that near qi, f is a local diffeomorphism
which is orientation preserving at half of the qi’s and orientation reversing on
the others. Now pair up the qi’s in pairs with opposite orientations and draw
paths connecting the pairs. In a tubular neighbourhood of each path, we may
homotope f so it corresponds in this neighbourhood to the sum of 1 and −1
in the fundamental group of Sn. Hence we may homotope f to be constant on
this neighbourhood, and in particular not equal p. Doing this on each tubular
neighbourhood, p will not be in the image of a function homotopic to f . But
then this map factors as Sn → Sn \ {p} ↩→ Sn. Since Sn \ {p} is contractible,
we conclude f is null homotopic. □

If we take the Freudenthal Suspension Theorem on faith, it leads us to the
following definition,

Definition 4.23

The kth stable homotopy group of a space X is,

πst
k (X) := lim

n→∞
πn+k(Σ

nX).

Later results will imply that the (n + 1)st suspension of any space is
n-connected. And hence this limit stabilizes after n = k + 2,

π2k+2(Σ
k+2X) = π2k+3(Σ

k+3X) = · · · = πst
k (X).
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In particular, we have the stable homotopy groups of the sphere,

πst
k := π2k+2(S

k+2).

It turns out that πst
k (·) is an extraordinary homology theory in the sense of

Definition 3.20. The homology groups of a point are the stable homotopy
groups of the sphere. Stable homotopy is in some sense the most fundamental
extraordinary cohomology theory and largely initiated their study.

We have already computed the 0th stable homotopy group of the sphere
πst
0 = π2(S

2) = Z. The first stable homotopy group πst
1 = π4(S

3) = Z2

will be computed later using spectral sequences. The stable homotopy groups
of a sphere are difficult to calculate, but some tools exist, for example the
Adams spectral sequence and chromatic homotopy theory. The unstable ho-
motopy groups πn+k(S

n) with n ≤ k + 1 are even harder. In Table 1, the
first several homotopy groups of low dimensional spheres are shown; in gray
are groups we know to be trivial, and the coloured diagonals are the stable
groups. While there are patterns, the possible groups are varied and sometimes
complicated.

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12 π13 π14 π15

S1 Z
S2 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2

2 Z12 × Z2 Z84 × Z2
2 Z2

2

S3 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2
2 Z12 × Z2 Z84 × Z2

2 Z2
2

S4 Z Z2 Z2 Z× Z12 Z2
2 Z2

2 Z24 × Z3 Z15 Z2 Z3
2 Z120 × Z12 × Z2 Z84 × Z5

2

S5 Z Z2 Z2 Z24 Z2 Z2 Z2 Z30 Z2 Z3
2 Z72 × Z2

S6 Z Z2 Z2 Z24 0 Z Z2 Z60 Z24 × Z2 Z3
2

S7 Z Z2 Z2 Z24 0 0 Z2 Z120 Z3
2

S8 Z Z2 Z2 Z24 0 0 Z2 Z× Z120

S9 Z Z2 Z2 Z24 0 0 Z2

Table 1. Homotopy Groups of Spheres

In Table 2, is a list of the first few stable homotopy groups. Memorizing these
is probably high on the list of bar tricks to impress a mathematician.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
πst
k Z Z2 Z2 Z24 0 0 Z2 Z240 Z2

2 Z2 × Z4 Z6 Z504 0 Z3 Z4

Table 2. Stable Homotopy Groups

One important result which one could maybe guess from the above tables is
the following.

Proposition 4.24 (Serre’s Finiteness Theorem). The homotopy groups of the
spheres πn+k(S

n) for k ≥ 0 are finite abelian groups except for:
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(1) k = 0 in which case πn(S
n) = Z.

(2) k = 2m and n = 2m− 1 in which case,

π4m−1(S
2m) = Z⊕ Fm,

for Fm finite abelian.

In particular, the stable homotopy groups πst
k are finite for k ≥ 1.

We will prove this result later using spectral sequences and describe a free
generator of π4m−1(S

2m).

This is the beginning of stable homotopy theory, in which spaces are stabi-
lized by repeated suspension and homotopy groups are studied in this direct
limit. In the modern perspective on algebraic topology, spaces are replaced by
spectra, which encapsulate this direct limit under stabilization. Spectra turn
out to be extremely important because it turns out extraordinary cohomol-
ogy theories are all representable functors and their representing objects are
precisely spectra; this is the Brown representability theorem. We will discuss
some other generalized cohomology theories and their associated spectra later
in these notes.

4.4. Homotopy and CW Complexes.

Whitehead Theorem. At this stage, a reasonable question to ask is: how
much of the homotopy type of a space is captured by its homotopy groups?
A partial answer is that for CW complexes the homotopy groups are almost
enough.

Recall we said that spaces X and Y weak homotopy equivalent if there is a
natural bijection [Z,X] → [Z, Y ] for any CW complex Z. A special case of
this, when the bijection is induced by a map, is described in the following
theorem.

Theorem 4.25

Let f : X → Y be a continuous map. The following are equivalent.
(i) f∗ : [Z,X] → [Z, Y ] is a bijection for any CW complex Z.
(ii) f∗ : πn(X) → πn(Y ) is an isomorphism for all n.
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(iii) For any CW pair (Z,W ) with maps h, g satisfying the following
commutative diagram,

X Y

W Z,

f

h g

there exists a map h : Z → X extending h so that f ◦ h ∼ g.
In this case we call f a weak homotopy equivalence.

Proof. (i) =⇒ (ii): Taking Z = Sn gives the result.

(iii) =⇒ (i): Take pair (Z,∅). This shows f∗ is surjective. Take pair
(Z × I, Z × {0} ⊔ Z × {1}). Given ϕ,ψ : Z → X homotopic in Y , we thus
obtain a homotopy in X. So, f∗ is injective.

(ii) =⇒ (iii): Let Cf be the mapping cylinder of f . This is homotopy
equivalent to Y and so from the long exact sequence of the pair (Cf , X) and
the fact f∗ is an isomorphisms on homotopy groups, we conclude πn(Cf , X) = 0
for all n.

Suppose we have a CW pair (Z,W ) and maps h : W → X and g : Z → Y so
that g|W = f ◦h. Because (Z,W ) is built out of cells and because πn(Cf , X) =

0, the map i◦g : Z → Cf on cells of Z \W can be homotoped to a map h lying

in X ⊂ Cf . By construction, composing h with f gives a map homotopic to
g. □

This has the following crucial corollary.

Theorem 4.26: Whitehead Theorem

Let f : X → Y be a weak homotopy equivalence between CW complexes.
Then f is a homotopy equivalence.

Proof. This proof is the same as Theorem 1.3. By Theorem 4.25, f
induces a bijection [Z,X] → [Z, Y ]. Applying this to X and Y , since they
are CW complexes, shows f∗ : [X,X] → [X, Y ] and f∗ : [Y,X] → [Y, Y ] are
bijections. Let g = (f∗)

−1(idY ). This implies f∗(g) = f ◦ g ∼ idY . On the
other hand, f∗(g ◦ f) = (f∗g) ◦ f ∼ idY ◦ f ∼ f∗(idX). Since f∗ is a bijection,
g ◦ f ∼ idX . So f and g determine a homotopy equivalence. □
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Note that it is not enough that X and Y have the same homotopy groups,
we need a map realizing this isomorphism in order to conclude the spaces are
homotopy equivalent. The following exercise demonstrates this.

Exercise 4.27. Show that S2 and S3×CP∞ have the same homotopy groups
but are not weak homotopy equivalent. Show the same for RP 3 × S2 and
S3 × RP 2. 

We can do even worse than this. The spaces S2 × S2 and CP 2#CP 2 have the
same homotopy and homology groups, but are not homotopy equivalent (which
can be seen by studying the cohomology ring). Worse still, there are two S3

bundles on S2. They have the same homotopy groups and cohomology ring
but are not homotopy equivalent (which can be seen by showing the non-trivial
bundle is not spin and applying the Wu formula).

Attaching Cells. We need several preliminary results dealing with how at-
taching cells to CW complexes affects homotopy. These will be applied in the
next few sections.

Proposition 4.28. If X is an n-connected CW complex, it is homotopy equiv-
alent to a CW complex with one 0-cell and no cells of dimension 1 through n.

Proof. We work by induction. In the base case, if n is 0-connected, it is
path connected. Thus for any pair of 0-cells, there is a path connecting them,
which by cellular approximation can be taken to be a one cell joining the 0-
cells. We may identify this 1-cell to a point and the resulting cell structure will
be homotopy equivalent with our two 0-cells identified. Doing this inductively
for all pairs of 0-cells and using the weak topology gives a homotopy equivalent
complex with only one 0-cell.

Now suppose that X is n-connected with one 0-cell and no cells of dimension
1 through n − 1. Thus the n-skeleton of X is a wedge sum of n-spheres.
Because X is n-connected, each such n-sphere is contractible in X. By cellular
approximation, this homotopy Sn×I → X to a point defines a disk Dn+1 lying

in the n + 1 skeleton of X. We can form a CW complex X by adding a disk
Dn+2 bounded by two copies of Dn+1 for each n-sphere in the n-skeleton of X.

By construction, Dn+2 is contractible and so X is homotopy equivalent to X.

If A is the wedge-product of these (n+ 2)-disks, we have that X ∼ X/A and
X/A has no n-cells. □

As we probably should have mentioned before, but only use now, there is an
obvious π1(X) action on the higher homotopy groups of X given by composing
a spheroid with some loop.
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Theorem 4.29: Cell-Attaching Lemma

Let X be a CW complex and Y a complex obtained from X by attaching
a disk Dn+1 with n ≥ 2 via ϕ : ∂Dn+1 → Xn. Then the inclusion
i : X → Y induces an isomorphism on homotopy groups πq for q < n.
For q = n, it induces a surjection with kernel generated by the π1(X)
orbit of the homotopy class of the attaching map [ϕ].

Proof. (Sketch) Given a spheroid Sq → Y , if q ≤ n, cellular approxima-
tion implies it can be homotoped to lie in X. Hence the map πq(X) → πq(Y )
is surjective. If a spheroid Sq → X is contractible under inclusion into Y and
q < n, then cellular approximation implies the contraction Dq → Y can be
homotoped to lie in X. Hence the spheroid Sq → X was contractible to begin
with and πq(X) → πq(Y ) is injective.

It only remains to check the kernel condition for q = n. Suppose f : Sn → X is

non-trivial and in the kernel of i∗ so that it extends to a contraction f : Dn+1 →
Y . We may homotope f to be smooth. Since f is not null-homotopic, f must
land at some point in Dn+1 ⊂ Y . Looking at a preimage of a neighbourhood

of regular value of f in Dn+1 gives a collection of neighbourhoods in Dn+1.

We can homotope f so the domain is a bouquet of spheres each containing
one of the preimage neighbourhoods. By retracting this neighbourhood onto

the entire sphere, and simultaneously onto all of Dn+1 ⊂ Y , f becomes a
connected sum of maps homotopic to ϕ up to composition with a loop on the
boundary. □
Corollary 4.30. Let X and Y be CW complexes.

(i) πn(X) = πn(Xn+1).

(ii) If X and Y are p and q connected respectively for p, q ≥ 1, then,

πn(X ∨ Y ) = πn(X)⊕ πn(Y ) for n ≤ p+ q.

(iii) πn(


m Sn) = Zm for n ≥ 2 and m ∈ N ∪ ∞, with generators corre-
sponding to the inclusion map of spheres in the bouquet.

Proof. (i) This is immediate from the cell-attaching lemma.

(ii) By Proposition 4.28, we may suppose X ∨ Y has one 0-cell at the joint
vertex and X, Y have no cells of dimensions 1 through p and 1 through q
respectively. Note that X × Y \X ∨ Y consists only of cells of dimension at
least p+ q + 2. Hence the result follows from cell-attaching.
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(iii) This is immediate from (ii). □

CW Approximation. We have seen that homotopy captures almost all the
information about homotopy type of CW complexes. We now have a partial
converse in that homotopy groups and weak homotopy equivalence captures
only as much about a space as can be encoded in a CW complex. The upshot
of this is that it means often one can conclude a result about homotopy or
homology holds for all spaces just by checking for CW complexes.

Theorem 4.31: CW Approximation Theorem

For any space X there is a CW complex XCW with a weak homotopy
equivalence f : XCW → X called a CW approximation to X. The CW
approximation of X is unique up to (homotopically unique) homotopy
equivalence. Moreover, two space are weak homotopy equivalent if and
only if they have the same CW approximation.

Proof. We construct XCW inductively as a direct limit,

XCW
0 ⊂ XCW

1 ⊂ XCW
2 ⊂ · · · ⊂ XCW .

Let XCW
0 be a point and f0 : X

CW
0 → X the map to the basepoint. Suppose

we have fn−1 : X
CW
n−1 → X which induces an isomorphism on homotopy group

πq for q ≤ n− 1.

Let Yn = XCW
n−1


α S

n
α, with α indexing a generating set for πn(X). We may

define a map gn : Yn → X which acts as fn−1 on XCW
n−1 and as a spheroids

ϕα representing the indexed generators of πn(X) on each Sn
α. Then, by the

cell attaching lemma, πq(X) and πq(Yn) are the same for q ≤ n − 1 with
isomorphisms induced by gn. Also the map,

(gn)∗ : πn(Yn) → πn(X)

is surjective since its image contains a generating set {ϕα} for πn(X). Now let
{ψβ : ∂Dn+1 → Yn} be a generating set for the kernel of (gn)∗ so that gn ◦ ψβ

extends to a map ψβ : Dn+1 → X for each β. Set XCW
n = Yn ∪β Dn+1

β glued

by ψβ. Define a map fn : XCW
n → X which is gn on Yn and ψβ on Dn+1

β .
By the cell-attaching lemma, fn induces isomorphisms on πq for q ≤ n − 1,
and actually also for q = n, since the generators of ker((gn)∗) are trivial in
πn(X

CW
n ).

To check uniqueness, suppose f1 : XCW
1 → X and f2 : XCW

2 → X are two
cellular approximations. These define weak homotopy equivalences, which by
transitivity, tells us XCW

1 and XCW
2 are weak homotopy equivalent. It is an
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easy extension of Whitehead’s theorem that weak homotopy equivalent CW
complexes are homotopy equivalent, as desired.

Lastly, suppose X and Y have the same CW approximation Z. Then X and
Z are weak homotopy equivalent and Y and Z are weak homotopy equivalent.
By transitivity of weak homotopy equivalence, so are X and Y . Conversely,
suppose X and Y are weak homotopy equivalent. And consider CW approxi-
mations Z1 → X and Z2 → Y . These define weak homotopy equivalences and
so again by transitivity, Z1 and Z2 are weak homotopy equivalent, and since
they are CW, they are homotopy equivalent. □
Remark 4.32. From this theorem we can infer another definition of a CW
approximation in terms of a universal property.

The CW approximation XCW → X of a space X is the unique up to homotopy
equivalence space so that any map f : Z → X for Z a CW complex uniquely
factors in hTop through XCW . That is, we obtain the following diagram
commuting up to homotopy:

Z

XCW X.

f
∃!

∼=WHE

In more categorical language, we can say that CW approximation defines a
functor hTop → hCW which is the right adjoint to the inclusion functor
hCW ↩→ hTop. △

Homotopy and Homology: The Hurewicz Theorem. We will now study the
first non-trivial homotopy group of a CW complex and compare it to homology.
We need the following proposition first.

Proposition 4.33. A weak homotopy equivalence f : X → Y induces an
isomorphism of homology groups.

Proof. Let Σ be an n dimensional CW complex representing a given n
dimensional singular cycle in Y under a map σ : Σ → Y . By definition of weak
homotopy equivalence, there is a unique homotopy class of map σ : Σ → X so
that σ = f ◦ σ. This map defines an n-cycle in X mapping to σ under f∗, and
so f∗ is surjective.

Now suppose σ : Σ → X is an n-cycle so that f∗(σ) = ∂τ for τ a singular
n-chain. We can thus extend Σ to an n+1 complex T so that T → Y extends
f ◦ σ and represents τ . By Proposition 4.25 in its relative incarnation, we can
lift Σ → X to T → X and so σ is a boundary in X. □
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Definition 4.34

Given a space X and a class of spheroid ϕ : Sn → X, we may define an
element

h([ϕ]) = ϕ∗([S
n]) ∈ Hn(X).

This only depends on the homotopy class of ϕ, and it’s easy to see that
adding spheroids in πn will sum their image under h in Hn. Hence we
obtain a group homomorphism,

h : πn(X) → Hn(X),

called the Hurewicz homomorphism.

Theorem 4.35: Hurewicz Theorem

For any space X, the Hurewicz homomorphism h : π1(X) → H1(X) is
surjective, with kernel the commutator subgroup of π1(X). Moreover, if
X is simply connected and n ≥ 2 then the following are equivalent:

(i) πk(X) = 0 for k = 1, . . . , n− 1,
(ii) Hk(X) = 0 for k = 1, . . . , n− 1.

In this case, h : πn(X) → Hn(X) is an isomorphism.

Proof. Without loss of generality, X is a CW complex. If not, we can
CW approximate and use that homology and homotopy are invariants of weak
homotopy equivalence.

Suppose X is (n − 1)-connected for n > 1. By Proposition 4.28, we may
assume X has a single 0-cell and no other cells of dimension less than n. In
this case, the chain groups Ck(X) are zero for k < n. So, Hn(X) is the free
abelian group generated by the n-cells of X quotiented by the image of the
boundary of (n+1)-cells. Meanwhile by the cell attaching lemma, πn(X) is the
free abelian group generated by the n-cells of X quotiented by the π1(X) orbit
of the attaching spheroids of (n + 1)-cells. Since π1(X) = 0, this is just the
free abelian group generated by attaching maps. But expressing the attaching
map of an (n+1)-cell as a sum of copies of the inclusion of each n-cell is easily
seen to be the same as the boundary map on that (n + 1)-cell in homology.
Hence our descriptions of πn(X) and Hn(X) are the same and so these groups
are isomorphic. Since the Hurewicz homomorphism sends the generators of
πn(X) to the generators of Hn(X) it induces this isomorphism.

In the case where n = 1, everything holds verbatim except that π1(X) is
generated instead of abelian generated by 1-cells. Hence to recover H1(X),
one has to abelianize, after which we obtain an isomorphism. The Hurewicz
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homomorphism must factor through the abelianization of π1(X) by universal
properties, after which it sends generators to generators and thus again must
give an isomorphism.

Finally, to show (ii) implies (i), suppose X is simply connected Hk(X) = 0 for
k = 1, . . . , n − 1. If πk(X) ∕= 0 for any of these groups k > 1, what we have
just established shows Hk(X) = πk(X) ∕= 0. Since we know Hk(X) = 0, we
conclude πk(X) = 0 for k = 1, . . . , n− 1. □

This result allows us to prove a homological version of the Whitehead theorem
(assuming we know the Serre spectral sequence).

Theorem 4.36: Homological Whitehead Theorem

Suppose f : X → Y is a continuous map between simply connected
spaces. If f∗ : H∗(X) → H∗(Y ) is an isomorphism, then f is a weak
homotopy equivalence. More generally, the following are equivalent:

(i) f∗ : πk(X) → πk(Y ) is an isomorphism for k < n and surjective
for k = n.

(ii) f∗ : Hk(X) → Hk(Y ) is an isomorphism for k < n and surjective
for k = n.

Proof. We can homotope f : X → Y to a fibration with homotopy fibre
F . From the long exact sequence of a fibration we conclude that condition (i)
in the theorem is equivalent to πk−1(F ) = 0 for k ≤ n.

Because π1(Y ) = 0, our fibration is homologically simple and so we can con-
sider the associated Serre spectral sequence. Suppose f∗ : Hk(X) → Hk(Y ) is
an isomorphism for k < n and surjective for k = n. We work inductively to
show Hk−1(F ) = 0 for 2 ≤ k ≤ n.

Suppose H0(F ) = Z and H1(F ) = · · · = Hk−1(F ) = 0. There are no non-
trivial differentials on the spectral sequence until the page k + 1:
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E2 = Ek+1

0

k

0 · · · k k + 1

H∗(Y ) Hk(Y ) Hk+1(Y )

0 · · · 0 0

∂k+1
k+1,0

H
∗(
F
)

This is the last time the illustrated squares participate in a non-trivial differ-
ential. We conclude E∞

k,0 = Hk(Y ), E∞
k+1,0 = ker ∂k+1

k+1,0 and E∞
0,k = coker ∂k+1

k+1,0.

We have that the f∗ : Hk(X) = E∞
p+q=k → E∞

k,0 = Hk(Y ) is a surjection with
kernel E∞

0,k. We also know that E∞
k+1,0 = im f∗ : Hk+1(X) → Hk+1(Y ) . In

particular, we have an exact sequence,

Hk+1(X)
f∗−→ Hk+1(Y )

∂k+1
k+1,0−−−→ Hk(F )

i∗−→ Hk(X)
f∗−→ Hk(Y ) → 0.

It follows that if H0(F ) = Z and H1(F ) = · · · = Hn−1(F ) = 0, then f∗ :
Hk(X) → Hk+1(Y ) is an isomorphism for k < n and surjective for k = n.
Conversely, if f∗ : Hk(X) → Hk+1(Y ) is an isomorphism for k < n and
surjective for k = n, we can inductively apply versions of the above exact
sequence for increasing k to show Hk(F ) = 0 for 0 < k < n. Hence the
condition (ii) in the theorem is equivalent to Hk−1(F ) = 0 for 1 < k ≤ n.

Thus we have reduced our theorem to showing πk−1(F ) = 0 for k ≤ n if
and only if Hk−1(F ) = 0 for 1 < k ≤ n. From the long exact sequence of a
fibration,

π2(Y ) → π1(F ) →✘✘✘✘✿0
π1(X) →✘✘✘✘✿0

π1(Y ),

we conclude π1(F ) is abelian and hence equal to H1(F ). The rest of the
equivalence is then just the Hurewicz theorem. □
Remark 4.37. A more standard proof goes the other way. We homotope
f : X → Y to a cofibration and then prove a relative version of Hurewicz.

Also note that we did not quite use the full strength of the assumption that
X, Y are simply connected. If we only assume they are homotopically simple
so that their fundamental groups are abelian and act trivially on the higher
homotopy groups, then the result still holds. △

4.5. Obstruction Theory. One very beautiful synergy of homotopy and
homology is to ask about whether a pair (X,A) admits extensions of maps
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A → F to maps X → F . Or more generally, we can ask about extending
sections over A of a bundle with fibre F to sections over X.

Obstruction Classes. We will deal with a fibration F ↩→ E → B with
B a CW complex and try to extend sections over some subcomplex of B to
additional cells. We will need some assumptions on the fibration to make this
work. We assume F is homotopically trivial so that the action of π1(F ) on its
homotopy groups is trivial (in particular π1(F ) should be abelian). We also
assume the fibration is homotopically simple so that E trivializes over any loop
in B (this holds for example if π1(B) = 0 or if E is a trivial fibration).

Suppose we have a section s : Bn → E defined over the n skeleton of B which
we wish to extend to an s defined on an n+1 cell Dn+1. Since Feldbau’s lemma
implies our bundle trivializes over a disk, we are dealing with the following
diagram:

F × ∂Dn+1 F ×Dn+1

∂Dn+1 Dn+1.

s s ?

Definition 4.38

The map s projected to F defines an n-spheroid cs(D
n+1) ∈ πn(F ).

Doing this for each (n + 1)-cell of B defines an element of the cochain
complex cs ∈ Cn+1(B; πn(F )) called the obstruction cochain of s.

Given two sections s, s′ on Bn that agree on Bn−1, they together define
for each n-cell Dn an n-spheroid ds,s′(D

n) ∈ πn(F ). Doing this for each
n-cell of B defines an element ds,s′ ∈ Cn(B; πn(F )) called the difference
cochain of s, s′.

Remark 4.39. Note that we used homtopic simplicity of F to ignore base-
points and we used homotopical triviality of the fibration to identitfy πn(F )
over different fibres. △

Given a fibration E → B and a map ϕ : B → B, we can pullback the bundle

to given ϕ∗E → B. A section s of E has a pullback section ϕ∗s of ϕ∗E. The
obstruction cochains we have defined are natural in the sense that,

cϕ∗s = ϕ∗cs.
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To see this, note that for any n+ 1 cell D of B

ϕ∗cs( D) = cs(ϕ∗ D) = cs(


β

degβ Dβ),

where degβ is the degree of the map B/ B \ D ϕ−→ B/B \ Dβ for each n-cell
dβ of B. Approximating ϕ smoothly and looking at the preimage of a regular

value, ϕ∗s on D is homotopic to a map on the preimages of the cells Dβ with
appropriate coefficients given by the degrees, as above.

Theorem 4.40: [A, §16.3]

Suppose we have sections s, s′ defined on the n-skeleton of the base of a
fibration E → B. The following hold.

(i) The obstruction cochains are cocycles: δcs = 0.
(ii) Obstruction cochains agreeing on Bn−1 are cohomologous via

the difference cochain: cs − cs′ = δds,s′ .
(iii) The obstruction class [cs] ∈ Hn+1(B; πn(F )) is zero if and only

if s extends to Bn+1, possibly after modifying s on Bn \Bn−1.

Proof. (i) Consider a (n+2)-cellDn+2 ofB. We wish to show δcs(D
n+2) =

cs(∂D
n+2) = 0. Denote by Γ ⊂ B the subcomplex ∂Dn+2. Consider the fol-

lowing diagram, where Z denotes the space of cellular cycle,

Cn+1(Γ; πn(F ))
∂−→ Zn(Γ; πn(F )) = Zn(Γn; πn(F ))

= Hn(Γn; πn(F ))
h←− πn(Γn)

s∗−→ πn(F ).

Here h is the Hurewicz theorem and s∗ is induced by s : Dn+2 → F ×Dn+2 →
F . For n > 1, Γn is n−1 connected and h is an isomorphism by Hurewicz, and
so ψ = s∗ ◦ h−1 is well defined. If n = 1, s∗ factors through the abelianization
of πn(Γn), and so we can still make sense of ψ : Zn(Γ; πn(F )) → πn(F ).

Since Cn−1(Γ; πn(F )) is free abelian, we may express Zn(Γ; πn(F )) as a direct
summand of Cn(Γ; πn(Y )). In particular ψ can be extended to a map,

ψ : Cn(B; πn(F )) → πn(F ).

We have cs(D
n+1) = s∗ ◦ h−1(∂Dn+1) = ψ(∂Dn+1). Hence,

cs(∂D
n+2) = ψ(∂∂Dn+2) = 0,

as desired.

(ii) We want to show that for any given (n+ 1)-cell Dn+1 ⊂ B,

cs(D
n+1)− cs′(D

n+1) = ds,s′(∂D
n+1).
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But this is almost obvious. The difference of the homotopy classes of maps
s, s′ : ∂Dn+1 → F is the homotopy class of the the glued map s ∪ −s′ :
∂Dn+1 → F .

(iii) We know that cs = 0 if and only if s extends to Bn+1 essentially by
definition. Then changing s to s′ by altering it on Bn in any way gives,
cs′ = cs + δds′,s = δds′,s. Hence [cs′ ] = 0 and so [cs] = [cs′ ] = 0.

Conversely, if cs = δf for f ∈ Hn(B; πn(F )) so that [cs] = 0, we can define s′

by altering s on each n-cell Dn to be a spheroid representing s(Dn) + f(Dn).
Then,

cs′ = cs − δds,s′ = cs − δf = 0.

So s can be altered on Bn to s′ which extends to Bn+1. □

We will not elaborate on the details, but one can easily extend this to a relative
version. Suppose E → B is a fibration and (B,A) a CW pair. If we want to
extend a section s from Bn∪A to Bn+1∪A, we can define a relative obstruction
cochain cs ∈ Cn+1(B,A; πn(F )) which turns out to be a cocycle and for two
sections agreeing on Bn−1 ∪ A, a difference cochain ds,s′ ∈ Cn(B,A; πn(F )).
Then [cs] = 0 if and only if s extends from Bn ∪ A to Bn+1 ∪ A after altering
it on Bn \Bn−1 ∪ A.

Remark 4.41. One can remove the assumption of homotopic triviality using
local coefficients. Given a homotopically simple fibration π : E → B, we define
for each k ≥ 0 the local coefficient system {πk(Ex)} on B. This local system
is trivial for each k and identified with πk(F ) exactly when the fibration is
homotopically trivial. Given a section s of E over the k-skeleton of B, we can
define its obstruction class,

cs ∈ Hk+1(B; {πk(Ex)}).
All our results are exactly analogous to the homotopically simple case. △

Example 4.42. The relative obstruction case has the following important
example for constructing homotopies. Suppose we have sections s, s′ defined
on a CW complex B and a homotopy between them on Bn−1, i.e. a map
Bn−1×I → E agreeing with s and s′ at the endpoints of I. We wish to extend
this to a homotopy on Bn.

The obstruction class cs∪s′ lives in Cn+1(B × I, B × {0} ∪ {1}; πn(F )) which
is the same as Cn(B; πn(F )). One can check explicitly that cs∪s′ = ds,s′ . We
have,

δcs∪s′ = δds,s′ = cs − cs′ = 0,

since s and s′ extend to B. We have that [cs∪s′ ] = 0 in Hn(B; πn(F )) if and
only if this homotopy extends to Bn × I without alteration on Bn−1 × I. 
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Example 4.43. There is another generalization that we may be useful. Sup-
pose p : E → B is a fibration and there is a map f : X → B. We can ask about
the existence of a lift g : X → E. Suppose such a lift g exists on the n-skeleton
of X and we wish to extend it to the (n+1)-skeleton. For a given (n+1)-cell

Dn+1, its boundary defines an attaching map Sn α−→ X
g−→ E. Composing with

p, we get a map Sn → B that we know extends to the disk Dn+1 via f . Hence
we have a homotopy Ft : S

n × I → B between f ◦ α and a constant. Since we
are dealing with a fibration, we may lift Ft to a map Gt : S

n × I → E so that
G0 = g ◦ α and p ◦ G1 is constant. Hence we may homotope g ◦ α : Sn → E
to a map Sn → F lying in a single fibre; to extend this to Dn+1 → F requires
the spheroid be contractible. Under our standard topological assumptions,
the obstruction to lifting g to a map Xn+1 → F thus defines an obstruction
cochain cg ∈ Hn+1(X; πn(F )). Similarly we define difference cochains and our
same results will hold. The case of sections is just this construction applied
when the map f we begin with on the base is idB : B → B. 

Another Proof of Homological Whitehead. We can use obstruction theory
to reprove the homological case of the Whitehead theorem without the need
for spectral sequences.

Theorem 4.44: Homological Whitehead Theorem

Let X and Y be homotopically simple CW complexes and f : X → Y
a continuous map inducing isomorphisms in homology. Then f is a
homotopy equivalence.

Proof. We may homotope f to be a cofibrationX ↩→ Y . From the homol-
ogy long exact sequence of a pair, because f∗ is an isomorphism, H∗(Y,X) = 0.
We conclude from the universal coefficient theorem that,

H∗(Y,X; πn(X)) = 0 for all n.

We would like to extend the identity map X → X to a map g : Y → X
completing the following diagram which commutes up to homotopy,

X Y

X.

id

f

g

Because X is homotopically simple we can do obstruction theory, The relative
obstruction to extending g to the i skeleton of Y lives inH i(Y,X; πi−1(X)) = 0.
Hence there is no obstruction to finding such a map g : Y → X so that
g ◦ f ∼= idX .
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Now note since id and f both induce isomorphisms on homology groups, the
above diagram implies that g∗ : H∗(Y ) → H∗(X) is also an isomorphism.

But now, since Y is homotopically simple, we can apply the same obstruction
theory argument to g as we did to f and find a map h : X → Y so that
h ◦ g ∼= idY .

But then,

f ◦ g ∼= h ◦ g ◦ f ◦ g ∼= h ◦ g ∼= idY .

Hence f is a homotopy equivalence between X and Y . □

First Obstructions. If our fibre F is highly connective, there may be no
obstruction to extending a section to some higher skeleta of the base B. The
first time we do run into an obstruction will carry some intrinsic data about
the fibration independent of the choice of section. This concept of “first ob-
structions” will give important geometric realizations of characteristic classes
which we study in depth in a later chapter.

Consider a homotopically trivial fibration p : E → B with CW base B and
fibre F . Suppose that,

π0(F ) = π1(F ) = · · · = πn−1(F ) = 0,

so that πn(F ) is the first non-trivial homotopy group of the fibre. From ob-
struction theory, we know that we can always obtain sections of E over the
n-skeleton Bn of the base.

Theorem 4.45

Given any two sections s, s′ : Bn → E, we have,

[cs] = [cs′ ] ∈ Hn+1(B; πn(F )).

Proof. Note that if s|Bn−1 and s′′|Bn−1 agree then cs − cs′′ = δds,s′′ and
so cs and cs′′ are cohomologous. Thus it suffice to show s′ is homotopic to a
section s′′ agreeing with s on Bn−1. Then we will have [cs′ ] = [cs′′ ] = [cs].

We can prove this inductively. Say s|Bk−1
= s′|Bk−1

for some 0 ≤ k < n. We
would like to homotope s′ to agree with s on Bk. The obstruction to such a
homotopy is precisely,

ds|Bk
,s′|Bk

∈ Ck(B; πk(F )) = 0.

Hence they are homotopic on Bk. We can extend this homotopy to a map on
all of B× I by a simple extension of Brosuk’s theorem. Hence s′ is homotopic
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to a section agreeing with s on Bk. Repeating this argument, we obtain our
result. □

Definition 4.46

In this setting, we define the first obstruction class of the fibration E to
be the cohomology class,

C(E) := cs ∈ Hn+1(B; πn(F )),

for any section s of E defined on the n-skeleton of B (this is independent
of s by the above theorem).

Suppose we have a cellular map f : B′ → B and a fibre bundle E on B. We
showed above that obstruction classes are natural with respect to pullback.
Hence,

(4.1) C(f ∗E) = f ∗C(E).

By cellular approximation this extends to non-cellular maps. In particular,
C(E) does not depend on the CW structure we put on B. If B is not CW,
we may take a CW approximation ϕ : BCW → B, and pullback our bundle E
and then define C(E) as (ϕ∗)−1C(ϕ∗E).

An association of a cohomology class in H∗(B) to any bundle E → B that
satisfies the naturality property 4.1 is called a characteristic class.

Thus, the first obstruction class defines a characteristic class of our fibre bundle
sometimes called the primary characteristic class.

We will have much more to say about characteristic classes in the case of vector
bundles later, but as a taste we will see one example now.

Definition 4.47

Let ξ → B be an oriented rank n vector bundle and Sξ be its associated
sphere bundle, defined by picking some metric on ξ and restricting to
vectors of norm one in each fibre. The fibres F = Sn−1 of Sξ are (n−2)-
connected and πn−1(F ) = Z. The fact the bundle is oriented means Sξ
is homotopically trivial. Thus we obtain a first obstruction,

e(ξ) := C(Sξ) ∈ Hn(B),

called the Euler class of ξ.

Here is some motivation for the name of the Euler class.
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Proposition 4.48. Let M be a closed oriented n-manifold. Then,

〈e(TM), [M ]〉 = χ(M).

Equivalently, e(TM) is Poincaré dual to χ(M) ∈ H0(M).

Proof. Pick a cell structure on M by use of Morse theory. Pick a generic
section V of TM , i.e. a vector field, so that the zeroes of V are discrete and
non-degenerate. We can assume the zeroes all lie in the interior of n-cells ofM .
Hence V defines a section of the sphere bundle STM over the n− 1 skeleton
of M . Our proof of the fundamental class theorem shows [M ] can be written
as the sum of all n cells of M , oriented compatibly with the orientation of
M . Given a single n-cell Dn, the value of 〈e(TM), [Dn]〉 is the value of the
obstruction class cV (D

n). The spheroid V : ∂Dn → STM |Dn ∼= Sn−1 × Dn

extends over Dn minus some small balls around the zeroes of V and so the
homotopy class of this spheroid (i.e. the degree of this map V : ∂Dn →
Sn−1 ×Dn) is the sum of the homotopy classes around each zero. Near each
of these zeroes, V determines a map Sn → Sn whose degree is by definition
the index of V at the zero. Hence, 〈e(TM), [Dn]〉 is the sum of the indices of
all interior zeroes. Summing over all cells,

〈e(TM), [M ]〉 =


V (x)=0

indx(V ) = χ(M),

where the last equality is just Poincaré–Hopf. □

We can give a more general geometric description of the Euler class.

Proposition 4.49. Let ξ be a rank r oriented vector bundle on B and let
tξ ∈ Hr(ξ, ξ \ B) ∼= Hr(Dξ, ∂Dξ) be its Thom class. The pullback of tξ under
the inclusion of the zero section i : B ↩→ ξ is i∗(tξ) = e(ξ) ∈ Hr(B).

Moreover, suppose B is an oriented n-manifold and s is a section of ξ that
transversely intersects the zero section. Let Z be the zero locus of s, which
is a submanifold of B of dimension n − r. Then e(ξ) is Poincaré dual to
[Z] ∈ Hn−r(B).

Proof. Pick some non-vanishing section s of ξ over the (k − 1)-skeleton
of B. The Euler class measure the first obstruction to extending the section
to the k-skeleton of B. Extend s to a section on Bk transversely intersecting
the zero section on each cell. The Euler class evaluated on each k-cell Dk

is an oriented count of the zeroes of s on Dk (see the proof of the previous
proposition).
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Because s is homotopic to the zero section on Dk, we can compute our restric-
tion of tξ by pulling back to s(Dk). Since s is non-zero on the (k−1)-skeleton,
we can pullback tξ to define an element of Hk(Bk, Bk−1). The section s con-
sidered in ξ modulo ξ \ B is homotopic to an oriented sum of the fibres of
ξ over which s vanishes. The Thom class on the other hand represents the
fundamental class of each fibre. So restricting the Thom class to the section
and then considering this as an element in the homology of the base gives the
cohomology class counting the oriented zeroes of s on each k-cell Dk. But this
is exactly what the Euler class does. Hence tξ|B = e(ξ).

For the second statement, recall from intersection theory that tξ is Poincaré
dual to [B], the fundamental class of the base in the total space of ξ. Pulling
back tξ to the base gives on the one hand e(ξ) by above, while on the other
hand it is Poincaré dual to the class of the self intersection of [B] in ξ. The
self intersection of [B] can be found by perturbing B to a section of ξ that has
transverse intersection with the zero section and looking at the class of this
intersection. This is exactly what we claimed. □
Example 4.50. The above proposition for a tangent bundle is a special case
of this result. There is another important case of the normal bundle νN of an
embedding N ↩→ M of smooth oriented manifolds. The Euler class e(νN) of
this embedding will be Poincaré dual to the self-intersection of N , [N ] · [N ]
inside N . In the case where dimM = 2dimN , the Euler class is identified with
an integer which is the self-intersection number of N ⊂ M . As the proposition
shows, this is computed by an oriented count of intersections of N with some
generic isotoped copy of itself. The submanifold N ⊂ M can be displaced
from itself only if its self-intersection number is zero. 

There is one final easy but important corollary of what we have said.

Corollary 4.51. The Euler class is unstable. If ξ is an oriented vector
bundle on B and R is the trivial line bundle on B, then e(ξ ⊕ R) = 0.

Proof. The section s(x) = (0, 1) of ξ ⊕ R is non-vanishing on B and so
there is no obstruction to extending a non-vanishing section of the bundle to
all the skeleta of B. □
Remark 4.52. Even if ξ → B is not oriented, we can use the construction of
obstruction classes with local coefficients to define an Euler class,

e(ξ) ∈ Hn+1(B; {Hn(Ex)}).
Here we use that Hn(Ex) ∼= πn(Ex) ∼= Z for each x ∈ B.

4.6. Some Important Constructions.
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Eilenberg–MacLane Spaces. Another very reasonable question to ask is
whether there exist spaces realizing any sets of homotopy groups. This can
easily be seen to be true.

Exercise 4.53. Let G1, G2, . . . be a collection of groups, all abelian except
possibly G1. Let ρi for i = 2, 3, . . . be a collection of group actions of G1 on Gi.
Construct a connected CW complex whose homotopy groups are πi(X) = Gi

and whose action of π1(X) on πi(X) is ρi. 

The general spaces constructed in the above exercise are usually not so inter-
esting. But, they turn out to be very important in the case when only one of
the homotopy groups is non-zero.

Definition 4.54

Let n be a positive integer and G a group, abelian if n > 1. A space is
called an Eilenberg–MacLane space and denoted K(G, n) if it satisfies,

πi(K(G, n)) =


G i = n

0 otherwise
.

While in general the homotopy groups are not enough to determine the weak
homotopy type of a space, they are sufficient in the case of Eilenberg–MacLane
spaces.

Theorem 4.55: Eilenberg–MacLane Spaces

There exists a unique Eilenberg–MacLane space K(G, n) up to weak
homotopy equivalence for any G and n. In particular, all CW Eilenberg–
MacLane spaces K(G, n) are homotopy equivalent.

Proof. Let’s construct a CW complex which is an Eilenberg–MacLane
space K(G, n). Let {gα} be a generating set for G. Consider Xn a bouquet of
n-spheres indexed by the generators gα. We have that πi(Xn) = 0 for i < n
and πn(Xn) is the free abelian group (or just free group if n = 1) generated
by the gα. We can thus find a subgroup H of πn(Xn) so that πn(Xn)/H ∼= G.
Let {hβ} be a generating set for H. We may attach n + 1 cells Dβ to Xn

using hβ : Sn → Xn as the attaching maps, to obtain a n+1 dimensional CW
complex Xn+1. Note by the cell attaching lemma that πi(Xn+1) = πi(Xn) = 0
for i < n. Moreover, πn(Xn+1) = πn(Xn)/H = G.
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Now, we finish inductively. Suppose we have anm+1 dimensional CW complex
Xm+1 for m ≥ n so that,

πi(Xm+1) =


G i = n

0 i ≤ m, i ∕= n.

Set πm+1(Xm+1) = Gm+1. Suppose this group is generated by spheroids fγ :
Sm+1 → Xm+1. We may attach a collection of m + 2 cells Dγ to Xm+1 using
fγ as the attaching maps, to obtain a m+ 2 dimensional CW complex Xm+2.
By the cell attaching lemma, πi(Xm+2) = πi(Xm+1) for i ≤ m. Moreover, by
the cell attaching lemma, πm+1(Xm+1) = 0.

Hence taking the direct limit of these CW complexes with the weak topology
gives a space X = limn→∞ Xn whose homotopy groups all vanish except for
πn(X) = G. That is X is an Eilenberg–MacLane space.

Now suppose Y is another CW version of K(G, n). From our construction of
X, we know πn(X) ∼= G is generated by the inclusions of spheres gα : Sn

α ↩→
β S

n
β = Xn ⊂ X. Let sα : Sn → Y a collection of spheroids representing the

same generators under an isomorphism πn(Y ) ∼= G. Now define a map on the
n-skeleta F : Xn → Y which on each sphere in the bouquet Sn

α ⊂ Xn restricts
to the map sα.

Note from obstruction theory, the series of obstructions to extending F to a

map F : X → Y live in H i+1(X, πi(X)) for i ≥ n. Note that every n+1 cell we
attach to Xn bounds a spheroid hα which is null homotopic after composition
with F (since F∗ sends generators of πn(Xn) to the corresponding generators
of G, and hα was chosen as a relation on the generators of G). Hence the
first obstruction cF ∈ Hn+1(X, πn(X)) vanishes and we can extend F to the
n + 1 skeleton. For any i > n, the obstruction class must vanish since X is a

K(G, n) and so F extends to a map F : X → Y with F |Xn = F .

It is clear that under isomorphism with G, F∗ : πn(X) → πn(Y ) acts as the

identity on generators and hence is an isomorphism. For all other i, F :
πi(X) → πi(Y ) is necessarily the trivial isomorphism.

Hence F is a weak homotopy equivalence, and by the Whitehead theorem is
a homotopy equivalence. Given any space Z which is a K(G, n), it has a
CW approximation ZCW → Z. Note ZCW is a CW K(G, n) which must be
homotopy equivalent to X by above. Hence every Eilenberg–MacLane space
is weak homotopy equivalent to X. □
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Example 4.56. While our proof of existence was constructive, it was far from
explicit, as in general we do not know what the (m+ 1)st homotopy group of
our (m+ 1)-skeleton that we need to kill will be.

For example, suppose we want to build a CW model for K(Z, n). We know
we may take its n-skeleton to be Sn. But already, we do not in general know
what πn+1(S

n) is so we do not know what (n+2)-cells to attach to ensure the
(n+ 1)st homotopy group vanishes.

We can make a few Eilenberg–MacLane space constructions explicit, as we
discuss now.

(i) If we wish to find an Eilenberg–MacLane spaceK(G, 1), one method is
to find a space with fundamental group G and a contractible universal
cover. Conversely, if G is discrete, we can find a contractible space
with a free G-action and take the quotient.

For example, quotienting Rn by a lattice gives, K(Zn, 1) = T n, the
n-torus. In particular, K(Z, 1) = S1.

(ii) Recall the sphere S∞ is contractible. The quotient by antipodal iden-
tification gives K(Z2, 1) = RP∞.

(iii) More generally, S∞ ⊂ C∞ has a Zm action by,

q · (z1, z2, . . .) = (z1e
2πiq/m, z2e

2πiq/m, . . .).

The quotient L∞
m = S∞/Zm is called an infinite lens space and is a

model for K(Zm, 1).

(iv) Any surface Σ which is not S2 or RP 2 has R2 as its universal cover
and hence is a model for K(π1(Σ), 1).

(v) Recall from the infinite Hopf fibration S1 → S∞ → CP∞ that πi(CP∞) =
πi−1(S

1). We conclude that CP∞ is a model for K(Z, 2). This is es-
sentially the only space K(G, n) for n > 1 that we can make totally
explicit.

(vi) Let Symn(X) denote the nth symmetric product of X, i.e. the quo-
tient Xn/Sn where Sn is the symmetric group acting by permutations
of factors. Note if X has a basepoint x0, there is an inclusion map
Symn(X) ↩→ Symn+1(X) sending (x1, . . . , xn) → (x1, . . . , xn, x0). Let
Sym∞(X) be the direct limit as n → ∞ of this construction. One can
construct a fibration to show for any path-connected Hausdorff space
X that πn(Sym

∞X) = πn+1(Sym
∞ΣX). In particular we deduce,

K(Z, n) = Sym∞(Sn).
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(vii) More generally, one has the Dold–Thom theorem, which says that for
a connected CW complex X,

πn(Sym
∞(X)) ∼= Hn(X).

One concludes that we can obtain any Eilenberg–McLane spaceK(G, n)
by finding a space X whose reduced homology is concentrated in de-
gree n and equals G there. Such a space is called a Moore space
M(G, n). These are not unique like Eilenberg-MacLane spaces, for
example there are homology spheres which have the same homology
as a sphere but a non-trival perfect fundamental group. A CW Moore
space M(Zk, n) can be constructed easily. Simply take an n-sphere
and glue on an n+ 1 dimensional disk by a degree k map.

(viii) LetTop(n) andPL(n) be respectively the topological groups of home-
omorphisms and piecewise linear homeomorphisms of Rn fixing the
origin. Let Top and PL be the direct limit of these groups under in-
clusions into one dimension higher by the identity on the last factor.
It is a result of Kirby and Siebenmann that Top/PL is a model for
K(Z2, 3). This has the following consequence in differential topology.

Associated to a manifoldM with anM-structure, there is a classifying
map for its tangent bundle M → BM, where BM is the classifying
space of the group M (we will talk about these later). So, to make
a topological manifold M piecewise linear (and hence smooth, since
those categories are equivalent) is to ask for a lift of the classifying
map M → BTop(n) to M → BPL(n).

As for any classifying spaces, there is a fibration,

Top(n)/PL(n) ↩→ BPL(n) → BTop(n).

By obstruction theory (our example 4.43), the obstructions to lifting
live in the groups H i+1(M ; πiTop(n)/PL(n)). It is known for n ≥ 5
that the map Top(n)/PL(n) → Top/PL is (n + 1)-connected and
hence the only obstruction to lifting is a characteristic class ks(M) ∈
H4(M ;Z2). This obstruction is called the Kierby–Siebenmann class
and by what we’ve claimed topological manifolds of dimension at least
5 are smoothable precisely when it vanishes. 

Exercise 4.57. Here are some properties of Eilenberg–MacLane spaces.

(1) Prove that K(π1, n)×K(π2, n) ∼= K(π1⊕π2, n). Construct as explic-
itly as possible K(F, n) for any finitely generated abelian group.

(2) Prove that K(π, n − 1) ∼= ΩK(π, n) and conclude ΩCP∞ is weak
homotopy equivalent to S1.
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(3) Prove that a group homomorphismG → H induces a map of Eilenberg–
MacLane spaces K(G, n) → K(H,n). Prove a short exact sequence
of abelian groups 0 → A1 → A2 → A3 → 0 induces a long exact
sequence of Eilenberg–MacLane spaces,

· · · → K(A1, n) → K(A2, n) → K(A3, n) → K(A1, n+ 1) → · · · .

What does the beginning of this sequence look like for the exact se-

quence 0 → Z ×2−→ Z → Z2 → 0? 

An Application to Homology. One very important application of Eilenberg–
MacLane spaces is to give a homotopical formulation of homology groups. This
can be useful in proving some properties of homology. But its main benefit is
reducing some homotopical questions, for example the classification of princi-
pal and vector bundles which we will intensively study later, to homological
considerations.

For some space X and some Eilenberg–MacLane space K(G, n), consider the
homotopy classes of pointed maps [X,K(G, n)]. Note this has a group struc-
ture described as follows. By the exercise above, K(G, n) ∼= ΩK(G, n + 1).
There is a map,

ΩK(G, n+ 1)× ΩK(G, n+ 1) → ΩK(G, n+ 1),

given by composition of loops. Applying the [X,−] functor and the above
isomorphism, this induces a map,

[X,K(G, n)]× [X,K(G, n)] → [X,K(G, n)].

This gives a group operation. The identity is the constant map and the inverse
is given by taking a map in [X,K(G, n)] ∼= [X,ΩK(G, n+ 1)] and composing
with the map reversing directions of loops.

There is also a graded ring structure on


n∈N[X,K(Z, n)] described as follows.
Consider the smash product K(Z, n) ∧ K(Z,m). Using our CW model of
Eilenber–MacLane spaces, we deduce this space is (n+m− 1) connected and
its πn+m group is Z. Hence we may glue on cells of dimension n+m+ 2 and
higher to obtain a cofibration K(Z, n)∧K(Z,m) ↩→ K(Z, n+m). Given maps
f : X → K(Z, n) and g : X → K(Z,m), we obtain a map f∧g fromX×X into
the smash product which we may precompose with diagonal ∆ : X → X ×X
and post-compose with inclusion to get a map X → K(Z, n + m). Thus we
obtain a map,

[X,K(Z, n)]× [X,K(Z,m)] → [X,K(Z,m+ n)].
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Exercise 4.58. Show this map distributes over our addition map. Show this
defines a ring multiplication on


n∈N[X,K(Z, n)]. Extend this to a map,

[X,K(G, n)]× [X,K(H,m)] → [X,K(G⊗Z H,n+m)],

for Z-modules G,H. In particular for G = H = G⊗H a field. 

As the final ingredient we need for the upcoming theorem, we note there is
a canonical element of Hn(K(G, n);G). Namely, note by the Hurewicz theo-
rem and the universal coefficient theorem that Hn(K(G, n);G) ∼= Hom(G,G).
Consider the element FG ∈ Hn(K(G, n);G) which under this isomorphism
represents the identity map in Hom(G,G).

This element has a couple equivalent definitions. Recall that we constructed
K(G, n) as a CW complex whose n-skeleton was a bouquet of n-spheres
Sn
α indexed by generators gα of G. We can define a cellular cochain FG ∈

Hom(Cn(K(G, n)), G) so that FG(S
n
α) = gα and then extend linearly. For any

n+ 1 cell Dn+1,

δFG(D
n+1) = FG(∂D

n+1).

But the boundary of (n+ 1)-cells we attach correspond to relations in G, and
so FG must evaluate to zero on them. Hence FG defines a cohomology class
and will agree with FG above.

For an obstruction theory perspective, we can view FG as the difference cochain
did,∗ ∈ Cn(K(G, n);G) between the identity and the constant maps K(G, n) →
K(G, n) on the n-skeleton. We know that both id and ∗ extend to all of
K(G, n) and so δdid,∗ = cid − c∗ = 0 − 0. Hence did,∗ ∈ Hn(K(G, n);G) is a
cohomology class. Studying this explicitly on the n-skeleton, we see it again
coincides with FG.

Theorem 4.59: Homotopical Formulation of Cohomology

For any CW complex X and any abelian group G there is a bijection,

[X,K(G, n)] → Hn(X;G) given by f → f ∗(FG),

which is natural with respect to X. Moreover, this is a group isomor-
phism using the loop composition map on the left and addition on the
right. Taking the direct sum over all n and G = Z or a field F , this is
a graded ring isomorphism using the smash product on the left and the
cup product on the right.

Proof. Consider a cellular cocycle representative of a cochain c ∈ Hn(X;G).
Consider the constant map f0 : Xn−1 → ∗ ⊂ K(G, n). We can extend this
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to fn : Xn → K(G, n) as follows. Because f0 is constant, we may factor fn
as Xn → Xn/Xn−1 → K(G, n). Xn/Xn−1 is a bouquet of spheres Sn

α corre-
sponding to the n-cells Dn

α of X. We define fn on Sn
α to represent the spheroid

c(Dn
α) ∈ G ∼= πn(K(G, n)). We have by construction and naturality,

c = dfn,∗ = f ∗
n(did,∗) = f ∗

nFG.

So c is in the image of our map at least on Xn. Also, since c is cocycle,

0 = δc = δdfn,∗ = cfn − c∗ = cfn .

This implies that fn extends to a map fn+1 : Xn+1 → K(G, n). But then
πk(K(G, n)) = 0 for k > n and so the map extends to all higher skeleta and
we obtain f : X → K(G, n) with f |Xn = fn. Hence f ∗FG = c. Thus, our map
is surjective.

Now suppose f, g : X → K(G, n) satisfy [f ∗FG] = [g∗FG]. By cellular ap-
proximation we may assume f, g are constant on the (n − 1)-skeleton. On
Xn,

df,g = df,∗ − dg,∗ = f ∗FG − g∗FG ∈ im(δ).

Hence δdf,g = 0. By example 4.42, we can find a homotopy between f and g on
Xn. Since the higher homotopy groups of K(G, n) vanish, obstruction theory
implies this homotopy extends to X. Hence f, g are in the same homotopy
class and our map is injective.

The naturality of the map with respect to X is clear, since if we have a map
g : Y → X and f ∈ [X,K(G, n)] then (f ◦ g)∗FG = g∗(f ∗FG).

To show the map is a group homomorphism, note that the inclusion ΩK
id×∗
↩−−→

ΩK×ΩK
◦−→ ΩK is homotopic to the identity, as is including by ∗× id instead.

Applying this to K(G, n) = ΩK(G, n + 1), our group operation precomposed
with inclusion from either factor is homotopic to the identity.

Let i1, i2 denote the two factor inclusions and µ our multiplication. We thus
have that i∗1µ

∗FG = i∗2µ
∗FG = FG. By the universal coefficient theorem and

the Künneth formula,

Hn(K(G, n)×K(G, n);G) = Hom(G⊗ Z⊕ Z⊗G,G).

We thus have, µ∗FG = FG ⊕ FG. But then for any f1, f2 : X → K,

(f1 × f2)
∗µ∗FG = (f1 × f2)

∗(FG ⊕ FG) = f ∗
1 (FG) + f ∗

2 (FG).

Now finally we show it is a ring homomorphism, beginning with some notation.
Let p1, p2 denote the projections from K(G, n)×K(G,m) to the two factors.
Let q be the composition of quotient and inclusion K(G, n) × K(G,m) →
K(G, n) ∧ K(G,m) → K(G, n + m). Let F i

G denote our canonical element
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in H i(K(G, i);G). It is simple enough to check explicitly in terms of cellular
descriptions using Künneth and otherwise that,

p∗1F
n
G ⌣ p∗2F

m
G = q∗F n+m

G .

We can rephrase this as follows. Applying the bijection we have just proved
to all the terms in the cup product gives a map,

[X,K(G, n)]× [X,K(G, n)] → [X,K(G, n+m)].

If we plug in X = K(G, n)×K(G,m), then we just concluded that the image
of (p1, p2) under this map is the map q. Now to verify that this cup product
map always agrees with the one coming from smash products is essentially just
a matter of naturality.

Given f ∈ [X,K(G, n)] and g ∈ [X,K(G,m)], the smash product we have
described maps this pair to q ◦ (f × g) ◦∆ ∈ [X,K(G, n +m)]. Hence under
our isomorphism, this product is sent to the cohomology class,

∆∗(f × g)∗q∗F n+m
G = ∆∗(f × g)∗(p∗1F

n
G ⌣ p∗2F

m
G ).

Note that pi ◦ f × g = f ◦ πi where πi are the projections X ×X → X,

= ∆∗(π∗
1f

∗F n
G ⌣ π∗

2g
∗Fm

G ).

Recalling the definition of the cup product in terms of the diagonal embedding
into the product,

= f ∗F n
G ⌣ g∗Fm

G

Thus the cup product applied after the isomorphism is the same as the smash
product applied before the isomorphism. Hence, we have a ring map. □

We have the following corollary.

Corollary 4.60. Reduced homology of spaces is stable under suspension:

Hi(X) ∼= Hi+1(ΣX).

Proof. By CW approximating, we may take X to be a CW complex so
our theorem applies. One has group isomorphisms for i ≥ 1,

H i(X) ∼= [X,K(Z, i)] ∼= [X,ΩK(Z, i+ 1)] ∼= [ΣX,K(Z, i)] ∼= H i+1(ΣX),

where we used loop-suspension adjunction in the middle. By the universal
coefficient theorem, we get an isomorphism of homology as well. For i = 0,−1,
this is easy to prove directly.

The isomorphism can be more explicitly realized by taking a singular simplex
σ : ∆n → X and suspending to Σσ : Σ∆n → ΣX. We may identify Σ∆n with
two copies of ∆n+1 glued along a pair of faces so that Σσ defines a singular
n+ 1 chain.
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One could also prove the isomorphism with Mayer–Vietoris. □

The fact we mentioned much earlier that the Freudenthal suspension theorem
implies stability of the homotopy groups of repeated suspensions can now be
proved.

Corollary 4.61. The (n + 1)st suspension of a space X is n-connected.
Hence, πst

k (X) = π2k+2(Σ
k+2X).

Proof. We have Hi(Σ
n+1X) = Hi−n−1(X) is zero as long as i < n + 1.

By Hurewicz, we conclude πi(Σ
n+1X) = 0 for i ≤ n. The second statement

follows directly from Freudenthal suspension. □

Remark 4.62. We should have probably discussed this earlier, but better late
than never. We define a homotopical generalization of topological groups (and
a dual object which doesn’t exist in Top!).

Definition 4.63

An H-space (H for Hopf) is a space X equipped with a multiplication
µ : X×X → X so that the following diagram commutes up to homotopy,

X ∨X

X ×X X.

id∨id

µ

A co-H-space is a space Y equipped with a comultiplication c : Y →
Y ∨ Y so that the following diagram commutes up to homotopy,

Y ∨ Y

Y Y × Y.

c

∆

Every loop space ΩX is an H-space via loop composition. Every topological
group (or even monoid) is by group multiplication (this is actually a special
case of loop spaces since G ∼= ΩBG as we will prove later).

Every suspension ΣY is a co-H-space by collapsing the equator. More generally
Y ∧ A is a co-H-space for any co-H-space A.

Note that if either X is a co-H-space or Y is an H-space, then the set [X, Y ]
obtains a multiplication (and if we’re lucky a group structure). In the case
X = Sn = ΣSn−1 or Y = K(G, n) = ΩK(G, n+1), these are just the familiar
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group operations on the homotopy and homology groups. If both X is a co-
H-space and Y is an H-space, we will obtain two multiplications, but it turns
out these must coincide and moreover are commutative and associative by the
Eckmann–Hilton argument. So for example the isomorphisms,

πn(K(G, n)) ∼= [Sn, K(G, n)] ∼= Hn(Sn;G)

are all compatible with group structures.

Similarly if X is an H-space or Y is a co-H-space, then [X, Y ] obtains a co-
multiplication structure. For example, the homotopy groups H∗(G;K) of a
topological group G have a co-multiplication. It turns out this is compatible
with the multiplication structure of the cup product, so that H∗(G) is a Hopf
algebra. Dualizing, the homology H∗(X) of an H-space X has a multiplication;
this multiplicative structure is called the Pontryagin ring of X.

As one last note motivating the definition of H-spaces, the smash product can
be seen as a topological version of the tensor product. And the definition of an
H-space really says we have something like an operation on the smash product
X ∧X up to homotopy. △

Combining this description of homology with the cellular approximation the-
orem and our knowledge about attaching cells may allow explicit descriptions
of homotopy classes [X, Y ] for certain pairs X, Y . This will be fruitful when
we wish to study principal G-bundles, which are known to be classified by
[X,BG]. Here is a preliminary example of this.

Corollary 4.64 (Hopf Theorem). Let X be an n dimensional connected CW
complex. Then,

[X,Sn] ∼= Hn(X;Z).

Proof. By cellular approximation, any map X → K(Z, n) can be as-
sumed to lie in the n-skeleton of K(Z, n) and any homotopy X×I → K(Z, n+
1) can be assumed to lie in the (n+1)-skeleton. So restricting the codomain to
the (n+1)-skeleton gives the same set of maps. From our Eilenberg–MacLane
space construction we see that a CW K(Z, n) can be constructed by starting
from Sn and gluing cells of dimension at least n+2, so that K(Z, n) has a cell
structure with (n+ 1)-skeleton Sn. Hence,

Hn(X;Z) ∼= [X,K(Z, n)] ∼= [X, skn+2K(Z, n)] ∼= [X,Sn].

□
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Cohomology Operations. The results we just proved lend themselves to a
compact description of the functorial operations one can perform on cohomol-
ogy.

Definition 4.65: Cohomology Operation

A cohomology operation of type (q, π, G) and degree n, for integers n, q
and abelian groups π, G is a natural transformation of the functors,

Φ : Hq(−; π) → Hq+n(−;G).

Equivalently, Φ assigns to each space X a map ΦX : Hn(X; π) →
Hq(X;G) which is natural with respect to X.
A stable cohomology operation Φ of degree n is a sequence of cohomology
operations {Φq} of type (q, π, G) ranging over q ∈ N so that for every
space X the diagram,

Hq(X; π) Hq+n(X;G)

Hq+1(ΣX; π) Hq+n+1(ΣX;G)

Φq

Σ Σ

Φq+1

is commutative.

Recall a functor F : C → Set is representable if there is an element X ∈ C
so that F (Y ) = Hom(X, Y ) for all Y ∈ C. Similarly for contravariant func-
tors. The possible cohomology operations are characterized by the following
foundational result of category theory.

Lemma 4.66 (Yoneda). Let F, F ′ be functors from a category C to Set. Sup-
pose F is representable: F (−) = Hom(−, Z). Then there is a canonical bijec-
tion between natural tranformations Φ : F → F ′ and elements ϕ ∈ F ′(Z).

Proof. Consider idZ ∈ F (Z) = Hom(Z,Z). Given Φ, let ϕ = Φ(idZ).
Conversely, given ϕ, define ΦX : F (X) → F ′(X) by ΦX(f) = f ∗(ϕ) for any
f ∈ Hom(X,Z), where f ∗ = F ′(f) : F ′(Z) → F ′(X). One can check this is
natural and these are inverse constructions. □

Corollary 4.67. Given representable functors Hom(−, Z) and Hom(−, Z ′),
there is a canonical bijection between natural transformations Φ : Hom(−, Z) →
Hom(−, Z ′) and elements ϕ ∈ Hom(Z,Z ′).
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Theorem 4.68

Cohomology operations of type (q, π, G) and degree n are in canonical
bijection with elements of Hq+n(K(π, q);G).

Proof. Such a cohomology operation is a natural transformationHq(−; π) →
Hq+n(−;G). These are both representable by Theorem 4.59. So this is the
same as a natural transformation,

[−, K(π, q)] → [−, K(G, q + n)].

By the above corollary, these are in bijection with [K(π, q), K(G, q+n)]. Again
by Theorem 4.59, this is isomorphic to Hq+n(K(π, q);G). □
Corollary 4.69. All non-zero cohomology operations have degree n ≥ 0.

Proof. By Hurewicz, the first non-trivial cohomology group of K(π, q) is
in degree q. By our theorem, we need to have n ≥ 0 to have any non-zero
cohomology operations. □

This gives us a good reason to want to understand the homology of Eilenberg-
MacLane spaces. We will study some of this with spectral sequences. For
example, it will be an exercise later to prove that for π a finitely generated
abelian group of rank r,

H∗(K(π, n);Q) =


ΛQ(x1, . . . , xr), |xi| = n : n odd

Q[x1, . . . , xr], |xi| = n : n even.

From this one can deduce for example if q is odd then the only cohomology
operations Hq(−,Z) → Hq+n(−,Q) have n = 0 and come induced from the
inclusion Z → Q multiplied by a rational constant.

As another example, one can show any degree one cohomology operation
of type (n,C,A) is a Bockstein homomorphism (i.e. the connecting homo-
morphism in the induced long exact sequence) from a short exact sequence
0 → A → B → C → 0. Over a field, there are cohomology operations given
by taking cup product powers of a cohomology class : x → x ⌣ · · · ⌣ x.

Over Z2 there are many novel cohomology operations.

Definition 4.70: Steenrod Squares

For n ≥ 0 there are stable cohomology operations

Sqn : Hq(X;Z2) → Hq+n(X;Z2),
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called Steenrod squares. These are uniquely determined by the following
properties.

(i) Sq0 is the identity.
(ii) Sqn(x) = x2 when x has degree n and Sqn(x) = 0 if x has

degree less than n.
(iii) The Steenrod squares applied to a product satisfy the Cartan

formula:

Sqn(xy) =


i+j=n

Sqi(x)Sqj(y).

There is a multiplication on all Z2 cohomology operations under composition
forming the Steenrod algebra. This Steenrod squares are not free in this al-
gebra. The multiplicative structure of the Steenrod squares is determined by
the Adem relations :

SqiSqj =


0≤k≤⌊i/2⌋


j − k − 1

i− 2k


Sqi+j−kSqk.

It turns out however that the Steenrod squares multiplicatively generate the
Steenrod algebra, so that all Z2 cohomology operations can be described as
linear combinations of iterated Steenrod squares. Using the Adem relations,
we can obtain a subset of Steenrod squares that freely generate the Steenrod
algebra. Let Fn ∈ Hn(K(Z2, n);Z2) be the fundamental/tautological class
defined in the previous section.

Theorem 4.71: (Serre)

H∗(K(Z2, q);Z2) is a polynomial algebra generated by certain iterates of
Steenrod operations applied to Fq. More precisely, if SqI = Sqi1 · · ·Sqij
for I = (i1, . . . , ij) a multi-index, the generators are SqIFq, where the
multi-index I satisfies ir ≥ 2ir+1 and i1 < i2 + . . .+ ij + q.

We will later give a construction of the Steenrod squares from spectral se-
quences. Although we will not prove their properties, we will give some intu-
ition for this result of Serre.

Remark 4.72. Steenrod also constructed corresponding stable operations on
Zp homology for primes p > 2 called the reduced p-th power operations

P n : Hq(X;Zp) → Hq+2n(p−1)(X;Zp).

These have the same characterizing properties as Sqn except that (ii) is re-
placed with the fact P n(x) = xp for |x| = 2n and 0 for |x| < 2n. They also
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satisfy similar but more complicated Adem relations. It was proved by Car-
tan that H∗(K(Zp, q);Zp) is multiplicatively generated by the reduced power
operations along with the Bockstein homomorphism βp coming from the short
exact sequence 0 → Zp → Zp2 → Zp → 0, and the cohomology is in fact a
polynomial algebra generated by some collection of compositions of the P n

possibly composed with βp (for p = 2, β2 = Sq1). △

Capping and Killing Spaces. Recall in our construction ofK(G, n) we glued
on cells of dimensions n+2 and higher to kill all higher homotopy groups. None
of this was special to the Eilenberg–MacLane space and we can do the same
to kill the higher homotopy groups of any CW complex X.

Proposition 4.73. For any CW complex X and any n ∈ N, there is a CW
complex Xn and a cofibration fn : X → Xn so that (fn)∗ : πi(X) → πi(X

n) is
an isomorphism for i ≤ n and so that πj(X

n) = 0 for j > n.

Definition 4.74

The space Xn given in the above proposition is called the nth capping
space of X. By construction,

πi(X
n) =


πi(X) i ≤ n

0 i > n.

Exercise 4.75. Show that the capping space Xn as described in the above
proposition is homotopically unique. Moreover for any pair of capping space
Xn

1 , X
n
2 , the cofibration X → Xn

2 factors up to homotopy through the cofibra-
tion X → Xn

1 and a homotopy equivalence Xn
1 → Xn

2 . 

Let X be (n− 1)-connected and consider our capping space fn : X → Xn. By
definition, Xn is a cellular K(πn(X), n). We may homotopy fn into a fibration
with homotopy fibre X|n+1. One can iteratively apply the construction to kill
off the n + 2 homotopy group and so on, and obtain a space X|m for any
m ≥ n.

Definition 4.76

The space X|m above is called the mth killing space of X. By the
homotopy long exact sequence of a fibration, it must satisfy,

πj(X|m) =

πj(X) j ≥ m

0 j ≤ m.
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Because X|n+1 is the fibre of fn, we obtain a map X|n+1 → X. We can
homotope this to a fibration and the fibre will be K(πn(X), n− 1). Similarly
there is a map X|m+1 → X|m for each m and composing them gives a map
X|m → X.

Example 4.77. Consider S3|4 → S3, a fibration with fibre K(Z, 2) = CP∞.
By the Hurewicz theorem, π4(S

3) = π4(S
3|4) = H4(S3|4). Once we have the

Serre spectral sequence, we will be able to use the homology of S3 and CP∞

to deduce the homology of S3|4 and hence compute π3(S
4), the second stable

homotopy group. 

Given a capping space X → Xn and m > n, we can consider the capping space
Xn → (Xn)m. Looking at the homotopy groups, we conclude by exercise 4.75
that (Xn)m is homotopy equivalent to Xm. Hence we conclude that we can
assemble all the capping spaces into a sequence of maps. Further, we can
homotope the maps to be fibrations for which the fibres will be Eilenberg–
MacLane spaces. We obtain a diagram like the following.

...

Xn

X
...

X2

X1 = K(π1(X), 1)

K(πn+1(X),n+1)

K(πn(X),n)

K(π3(X),3)

K(π2(X),2)

This is called a Postnikov system or Postnikov tower for X. It can be seen as
an attempt to build X from Eilenberg–MacLance spaces through a series of
fibrations. Indeed X looks something like a limit of this tower, which we can
make precise with the aid of the following lemma.

Lemma 4.78. Given a sequence of fibrations · · · → X2 → X1, the natural map

πi(lim←−Xn) → lim←− πi(Xn),

is surjective. It is injective if the maps πi+1(Xn) → πi+1(Xn−1) are surjective
for large n.
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Proof. An element of lim←− πi(Xn) is given by a collection of spheroids

fn : Si → Xn compatible in the sense that the fibration pn : Xn → X1 carries
fn to fn−1 up to homotopy. By definition of a fibration, we may homotope fn
so that pn ◦ fn = fn−1. We may do this inductively for all n, which gives the
surjectivity of our map.

Now we prove injectivity. We may ignore a finite set of terms from our in-
verse limit, and so we may assume all the maps πi+1(Xn) → πi+1(Xn−1) are
surjective. Suppose we have a spheroid f : Si → lim←−Xn so that each map

fn : Si → Xn is null-homotopic via some Fn : Di+1 → Xn.

We have pn◦Fn = Fn−1 when restricted to Si, hence we may glue them together
to a map gn−1 : S

i+1 → Xn−1. Since πi+1(Xn) → πi+1(Xn−1) is surjective, we
may pick Fn so that gn−1 is null homotopic and thus pn ◦ Fn

∼= Fn−1relS
i. By

the relative homotopy lifting property, we can ensure pn ◦ Fn = Fn−1. Doing
this inductively for all n to obtain a null homotopy of f . □
Corollary 4.79. The inverse limit of the Postnikov tower for X is weak
homotopy equivalent to X. Hence X is the CW approximation for lim←−Xn.

Proof. The lemma above implies lim←−Xn has the correct homotopy groups
and moreover the map X → lim←−Xn induces an isomorphism on all these
homotopy groups (since it does for n large enough). □

The homotopy fibres of the maps X → Xn are the killing spaces X|n. We can
form a sequence out of them, and homotope all the maps to be fibrations,

∗ → · · · → X|n+1
K(πn+1(X),n)−−−−−−−−→ X|n → · · · → X|2

K(π2(X),1)−−−−−−→ X|1 → X.

This is called the Whitehead tower of X. It is dual to the Postnikov tower
and gives X as a colimit of a tower of spaces again built from fibrations with
Eilenberg–MacLane spaces as the fibres. Note thatX|1 has the same homotopy
groups as the universal cover of X so we can also see this tower as a generaliza-
tion of the universal covering construction where we find n-connected spaces
X|n fibered over X.

We will not prove it, but it turns out that if (and only if) X is homotopically
simple, then each of the fibrations Xn+1 → Xn in the Postnikov tower can be
extended to fibre sequences,

K(πn+1(G), n+ 1) → Xn+1 → Xn → K(πn+1(G), n+ 2).

In this case, Xn+1 is the pullback under Xn → K(πn+1(G), n + 2) of the
pathspace fibration of K(πn+1(G), n+2) and so the homotopy type of Xn+1 is
determined by the homotopy class of the map Xn → K(πn+1(G), n+2).
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This defines an element kn ∈ [Xn, K(πn+1(G), n + 2] ∼= Hn+2(Xn; πn+1(X))
called the nth Postnikov k invariant. Because kn tells us the homotopy type
of Xn+1 and the homotopy class of the fibration Xn+1 → Xn, we can recover
the weak homotopy type of X from its homotopy groups along with some
obstruction-type classes which tell us how to fibre the spaces K(πn(X), n) over
each other to re-obtain X. For example, if all the k invariants vanish, then
these fibrations are trivial and X is the product of the Eilenberg–MacLane
spaces corresponding to each of its homotopy groups.

5. Spectral Sequences

Spectral sequences are powerful tools to compute the homology of some graded
(or more generally filtered) complex (or even more generally differential group)
in homological algebra. There are several important spectral sequences in
algebraic topology: the Serre and Eilenberg–Moorse spectral sequences for
fibrations, the Adams spectral sequence for stable homotopy, and the Atiyah–
Hirzebruch spectral sequence for K-theory and generalized homology. We will
focus on the Serre spectral sequence, which is the easiest and of the greatest
importance. The initial notational framework of spectral sequences is very
daunting, but most of it can be ignored, and once understood they become
an extremely useful tool to have in attempting computations. We will mostly
omit proofs of the basic homological results as they are unenlightening and of
little importance in practice to computations.

As some elementary motivation for the construction, consider a complex C∗
of abelian groups with a subcomplex D∗. Then we obtain a short exact se-
quence,

0 → D∗ → C∗ → C∗/D∗ → 0,

which induces a long exact sequence in homology,

· · · → Hn(D∗) → Hn(C∗) → Hn(C∗/D∗)
∂n−→ Hn−1(D∗) → · · · .

Suppose we know the homologies H∗(D∗) and H∗(C∗/D∗). We can consider
the homology of the two term chain complex,

H∗(C∗/D∗)
∂∗−→ H∗(D∗),

which will be two groups G1H∗ and G0H∗. Then, decomposing the long exact
above, we obtain short exact sequences,

0 → G0H∗ → H∗(C∗) → G1H∗ → 0.

This determines H∗(C∗) up to an extension problem.
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The goal of spectral sequences will be to generalize this from a subcomplex
to a sequence of nested subcomplexes, i.e. a filtration. Computing the ho-
mology of the associated graded groups through a sequence of approximations
will yield the homology of our original complex, up to a series of extension
problems.

5.1. Spectral Sequences in Homological Algebra. We introduce spec-
tral sequences in full generality. This discussion can be freely skimmed.

Definition 5.1

A differential abelian group (F, d) is an abelian group F equipped with
a differential ∂ : F → F so that d2 = 0. A filtration on F is a nested
sequence of subgroups 0 ⊂ F0 ⊂ F1 ⊂ · · · which union to all of F and
so that d : Fp → Fp preserves the filtration. In this case, F has an
associated graded group,

GrF :=


p

Fp/Fp−1, GrnF := Fn/Fn−1.

In the cases we are interested in F =


n Cn will be a chain complex.
A graded filtered differential group F is a filtered differential abelian
group so that F =


n Cn and so that the differential restricts to a

map d : Cn → Cn−1. Further, we ask the filtration and grading are
compatible in the sense that,

Fp =


n

Fp ∩ Cn.

For ease of notation, we abbreviate Fp ∩ Cn by FpCn.

Spectral Sequence of a Filtered Differential Group. Associated to a filtered
differential group is its spectral sequence, which is a sequence of graded differ-
ential groups (Er, dr) for r = 0, 1, . . . ,∞. In terms of the grading, Er =


p E

r
p

and the differential restricts to a map dr
p : E

r
p → Er

p−r.

The first term in the sequence is E0
p = GrpF with differential d0 given by

the overall differential d on F descended to the quotient. We recursively
define (Er+1, dr+1) to be the homology of the previous term in the sequence:
Er+1 = Hp(E

r
p , d

r). The differential dr+1 is inherited from the original d by
whatever “remnant” is left in the quotient group we have defined.

More explicitly, we have,

Er
p =

Fp ∩ d−1Fp−r

Fp−1 ∩ d−1Fp−r + Fp ∩ dFp+r−1

.
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And the differential,

Fp ∩ d−1Fp−r

Fp−1 ∩ d−1Fp−r + Fp ∩ dFp+r−1

dr−→ Fp−r ∩ d−1Fp−2r

Fp−r−1 ∩ d−1Fp−2r + Fp−r ∩ dFp−1

= Er
p−r,

is just the differential d applied to this quotient in the obvious way. It is
elementary but tedious to check this is all well defined and matches the de-
scription above that Er+1 is the homology of Er.

What happens as r → ∞? Using the expression for Er above, we see heuris-
tically,

E∞
p =

Fp ∩ d−1(0)

Fp−1 ∩ d−1(0) + Fp ∩ dF
= Grp(H(F, d)).

One often speaks of the spectral sequence converging to the homology of F
and one writes,

E1
p = H(Grp(F )) =⇒ GrpH(F ).

Sometimes one omits the Gr on the right side and says the spectral sequence
converges to H(F ), even if this is technically not true.

We say that the spectral sequence degenerates or collapses at index k if di = 0
for i ≥ k, and hence Ek = Ek+1 = · · · . In this case we will obtain E∞

after finitely many steps. If the filtration is finite, then the spectral sequence
always collapses after finitely many pages. In general, the sequence may never
collapse, although the E∞ term can always be realized as a direct limit since
the filtered differential dr

p will always collapse for fixed p and large enough
r. We will not be so interested in this subtlety as in the cases we apply the
spectral sequence will almost always degenerate.

Spectral Sequence of a Graded Filtered Differential Group. In the cases we
are interested in, our differential abelian group will be a chain complex, and
hence will be graded by degree. So suppose that F =


q Cq is a graded

filtered differential group. Because the filtration and grading are compatible,
the associated spectral sequence Er of F now inherits the q grading from the
Cq and hence will be bigraded,

Er
p,q :=

FpCp+q ∩ d−1(Fp−rCp+q−1)

[Fp−1Cp+q ∩ d−1(Fp−rCp+q−1)] + [FpCp+q ∩ d(Fp+r−1Cp+q+1)]
.

The differential is also compatible with this bigrading and restricts to a map,

dr
p,q : E

r
p,q → Er

p−r,q+r−1.

It is again elementary but tedious to check this all works.

This is a lot of indices to keep track of in our spectral sequence. Fortunately,
there is a graphical way to efficiently organize all this information. We refer
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to the total group


p,q

Er
p,q as the rth page of the spectral sequence. Each

page of the spectral sequence is represented by a grid of the terms Er
p,q, with

p increasing along the horizontal axis and q increasing along the vertical axis.
The terms along a downwards diagonal will all have the same total degree
n = p + q. See the following picture showing the differentials on the first few
pages. Diagonals of fixed total degree are shown in pink and yellow.

pp− 2 p+ 2

q

q + 2

q − 2

Er
p,q

d0
d1

d2

d3

On each page the differentials all point in the same direction. We obtain the
next page by taking the homology of all the diagonal complexes on the page.
To help remember how the differentials go, you can remember the second
differential d2 (usually the first one we care about) is a knight’s move and
later differentials are extended knight’s moves, where all differentials need to
decrease the total degree by one.

What happens as r → ∞ in this case? We have,

E∞
p,q =

FpCp+1 ∩ d−1(0)

Fp−1Cp+q ∩ d−1(0) + FpCp+q ∩ dF
=

FpHn

Fp−1Hn

= GrpHp+q,

where n = p+q is the total degree and Hn is the nth homology group of F with
respect to the grading of F . Again, in the cases we care about, the sequence
usually degenerates after finitely many pages and we converge to E∞.

The relation between the actual homology of F and these associated graded
pieces can be a little subtle. But if on the E∞ page the diagonal of total degree
n is empty, then we must have Hn(F ) = 0. And if that diagonal has only one
non-zero entry, that entry must equal Hn(F ).
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Spectral Sequences in Cohomology. Of course we can do a very similar con-
struction in cohomology with a differential that increases the graded degree.
A trick to make the construction especially easy is to notice that by flipping
the indexing of the grading, the cohomological differential becomes a homo-
logical differential. So, we may flip the indexing, apply the techniques above,
and the flip back to get our cohomological spectral sequence. The result will
be diagrams that look the same, except with the differentials pointing in the
opposite direction. Because we are dealing with cohomology, the grading in-
dices should now be superscripts. Correspondingly, we move our page indices
to subscripts. See the picture below.

pp− 2 p+ 2

q

q + 2

q − 2

Ep,q
r

d0
d1

d2

d3

Naturality. Suppose we have a homomorphism of filtered differential groups
C → C ′ which is compatible with the filtrations. If our groups are graded, we
ask the homomorphism be compatible with that as well.

Then it is clear we will induce morphisms of the corresponding spectral se-
quences E → E ′ on each page. This extends to the page at infinity, where the
morphism GrH(C) → GrH(C ′) should be the usual one induced on homology
(and then to the associated graded quotient).

5.2. Basic Examples of Spectral Sequences. We will begin with a
few simple spectral sequences to get a sense for the subject. One can also refer
back to our usage of spectral sequences in proving the universal coefficient
theorem and Künneth formula.

The Hochschild–Serre Spectral Sequence. This is a spectral sequence for
computing group cohomology of a group G by studying a normal subgroup H
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and the quotient G/H, which may be considerably simpler. We will look at
the particular case of Lie algebra cohomology.

Let g be a complex Lie algebra and M a g-module, which will be our coefficient
space. We define a cochain complex with Cn(g;M) = HomC(Λ

ng,M) and
differential d : Cn(g;M) → Cn+1(g;M) given by,

dc(g1 ∧ · · · ∧ gn+1) =


s<t

(−1)s+t−1c([gs, gt] ∧ g1 ∧ · · · gs · · · gt · · · ∧ gn+1)

−


u

(−1)uguc(g1 ∧ · · · gu · · · ∧ gn+1),

where · denotes an omitted term.

The Lie algebra cohomology Hn(g;M) of g is the cohomology of the complex
Cn(g;M).

To apply spectral sequence techniques, consider a Lie subalgebra h ⊂ g. Define
a filtration on our cochain spaces by,

F pCp+q(g;M) =


c ∈ Cp+q(g;M) : c(g1∧· · ·∧gp+q) = 0 if g1, . . . , gq+1 ∈ h


.

It is simple enough to see that this filtration is compatible with the differential
and grading. Hence we obtain a spectral sequence converging to GrHn(g;M)
called the Hochschild–Serre spectral sequence.

On the E0 page we have,

Ep,q
0 =

F pCp+q

F p−1Cp+q
= Grp(C

p+q) = Cq(h; HomC(Λ
p(g/h),M)),

where the verification of the last equality is left to the reader. The effect of
the differential d0 is to increase the degree of q by one, and so it is no surprise
that, Ep,q

1 = Hq(h; HomC(Λ
p(g/h),M)).

In the case where h is an ideal, we can rewrite this as, Ep,q
1 = Cp(g/h;Hq(h;M)).

Hence taking homology,

Ep,q
2 = Hp(g/h;Hq(h;M)) =⇒ Hp+q(g;M) = Ep+q

∞ .

So the cohomology of g can be deduced from the homology of h and a quotient
g/h using a spectral sequence. For proofs of these claims, see the original
paper [HS].
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Spectral Sequence of a Filtered Topological Space. Suppose we have a topo-
logical space X filtered by subspaces:

∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · = X.

If the filtration is infinite, X should have the weak topology with respect to
the filtration (so X is the colimit of inclusion maps).

The space of singular chains on X has a filtration with pth part FpCn :=
Cn(Xp), consisting of singular chains living in Xp. This makes the singular
chains on X into a graded filtered group and we can study the corresponding
spectral sequence.

Note that E0
p,q = Grp(Cp+q(X)) = Cp+q(Xp, Xp−1). The differential d0 is just

inherited from the usual differential map on homology and so,

E1
p,q = Hp+q(Xp, Xp−1).

The differential on the first page,

d1 : E1
p,q = Hp+q(Xp, Xp−1) → E1

p−1,q = Hp+q−1(Xp−1, Xp−2),

is the connecting homomorphism in the long exact sequence of the triple
(Xp, Xp−1, Xp−2). This spectral sequence will converge to the associated graded
group of H(X).

Let us briefly consider the special case of a pair, where our filtration of X is
∅ ⊂ A ⊂ X. Then the first three pages in our spectral sequence have the
following form.

E0 0 1

−1

0

1

2

C0(A)

C1(A)

C2(A)

C1(X,A)

C2(X,A)

C3(X,A)

0 C0(X,A)

E1 0 1

−1

0

1

2

0

H0(A)

H1(A)

H2(A)

H0(X,A)

H1(X,A)

H2(X,A)

H3(X,A)

E2 0 1

−1

0

1

2

0

coker ∂∗

coker ∂∗

coker ∂∗

H0(X,A)

ker ∂∗

ker ∂∗

ker ∂∗

After this, the sequence degenerates. We conclude that Hn(X)/ coker(∂∗) ∼=
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ker ∂∗. This is just equivalent to the long exact sequence of a pair,

· · · → Hn+1(X,A)
∂∗−→ Hn(A) → Hn(X) → Hn(X,A)

∂∗−→ Hn−1(A) → · · · .

Spectral Sequence of Cellular Complex. Let X be a CW complex. As be-
fore, consider a filtration of X but now specifically given by the successive
skeleta of X:

∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · = X.

As before, we get a spectral sequence converging to the homology of X. We
see that,

E1
p,q = Hp+q(Xp, Xp−1) = Hp+q(Xp/Xp−1) =


Cp(X) q = 0

0 q ∕= 0.
.

Hence the E1 page of our spectral sequence looks like the following.

E1 0 1 2 3

0

1 0 0 0 0

C0(X) C1(X) C2(X) C3(X)

Referring back to our discussion of cellular homology, one sees the map here
is precisely the boundary map in the cellular chain complex (alternatively we
could use this spectral sequence to define the complex). Thus the E2 page
looks like the following.

E2 0 1 2 3

0

1 0 0 0 0

Hcell
0 (X) Hcell

1 (X) Hcell
2 (X) Hcell

3 (X)

The spectral sequence degenerates here. There is only one entry in each diag-
onal and hence,

Hi(X) = Hi(C∗(X), ∂∗),

which gives another proof that singular and cellular homology agree.
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5.3. The Serre Spectral Sequence. We now move on to the main sub-
ject of this chapter. The Serre spectral sequence allows us to relate the ho-
mology of a total space of a fibration with the homology of the base and the
fibre.

The Homological Sequence. Suppose π : E → B is a Serre fibration with
base B a CW complex and fibre F . We will need to assume our fibration is
homologically simple. By this we mean that the homotopy equivalence from
Theorem 1.10 between fibres of π is independent of the path used to define it.
More succinctly, we might say we require π1(B) to act trivially on H∗(F ). In
practice it is easiest to verify this by assuming B is simply connected.

There is a filtration of B by its skeleta: ∅ ⊂ B0 ⊂ B1 ⊂ · · · = B. This in turn
determines a filtration of E by Ep = π−1(Bp). From this we get a filtration of
the singular chain complex of E:

0 ⊂ C∗(E0) ⊂ C∗(E1) ⊂ · · · ⊂ C∗(E),

by singular chains landing in Ep. This makes C∗(E) a graded filtered differ-
ential group, and hence it has a spectral sequence. The zeroth page of the
sequence is E0

p,q = Cp+q(Ep, Ep−1) with standard differential,

∂ : Cp+q(Ep, Ep−1) → Cp+q−1(Ep, Ep−1).

Hence E1
p,q = Hp+q(Ep, Ep−1).

Now, for each p-cell of Bp, pick a small ball Dp
α. The inclusion,

Bp−1 ↩→ Bp \


α

Dp
α

is a homotopy equivalence. Hence,

π−1(Bp−1) = Ep−1 ↩→ π−1


Bp \



α

Dp
α



is a weak homotopy equivalence from the long exact sequence of a fibration
and the five lemma. Hence,

Hp+q(Ep, Ep−1) = Hp+q


Ep, Ep \ π−1(



α

Dp
α)


.

By excision,

= Hp+q


π−1(



α

Dp
α), π

−1(


α

∂Dp
α)



=


α

Hp+q


π−1(Dp

α), π
−1(∂Dp

α)

.
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By Feldbau’s lemma, the fibration trivializes on each disk Dp
α. Using our

homological simplicity to speak unambiguously about the homology of fibres
on each path component and identifying fibres on different path components
by an arbitrary isomorphism,

=


α

Hp+q(F ×Dp
α, F × ∂Dp

α).

By the Künneth formula,

=


α

Hq(F )

= Cp(B;Hq(F )).

The boundary map on the E1 page is,

E1
p,q = Cp(B;Hq(F ))

∂−→ Cp−1(B;Hq(F )) = E1
p−1,q.

Comparing the explicit construction of this boundary map to the cellular
boundary map reveals they are the same. Hence,

E2
p,q = Hp(B;Hq(F )).

This spectral sequence should converge to the associated graded GrpHp+q(E) of
the homology of the total space E. If the spaces B or F are finite dimensional,
then the spectral sequence will degenerate by the page min{dimB, dimF} +
1. If the spaces are infinite, the sequence may not degenerate at a finite
page. But at a square Er

p,q, all differentials involving this square are zero for
r > max{p, q + 1}, and so on any fixed diagonal


p+q=n E

r
p,q the sequence is

constant once r = n + 2. Hence there is no ambiguity in what it means to
converge to the homology of E. We thus have a proof of the following central
result.

Theorem 5.2: Serre Spectral Sequence

Let π : E → B be a homologically simple Serre fibration with a con-
nected CW base and a fibre F . Then there is a spectral sequence,

E2
p,q = Hp(B;Hq(F )) =⇒ Hp+q(E).

That is, it has E2 page given by the homology of the base with homology
of the fibre coefficients and converges to (the associated graded of) the
homology of E.

As we noted before, the relationship between Hn(E) and Grp(Hp+q(E)) may
be difficult to work out, since entries E∞

p,q of the E∞ page are quotients
FpHp+q(E)/Fp−1Hp+q(E) of intermediate subgroups of Hp+q(E) (i.e. there
is still a sequence of extension problems involved in determining Hn(E)). But
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the fact that our spectral sequence is contained in the first quadrant of each
page does give us some important information. We know that the entries E∞

0,n

in the zeroth column of the infinity page are equal to F0Hn(E) and in partic-
ular are a subgroup of Hn(E). Correspondingly, the entries E∞

n,0 in the zeroth
row of the infinity page are equal to Hn(E)/Fn−1Hn(E) and in particular are
quotient groups of Hn(E). Thus we get canonical injections and surjections
for each n,

(5.1) E∞
0,n ↩→ Hn(E) ↠ E∞

n,0.

Here is an important immediate corollary of our spectral sequence.

Corollary 5.3. If E → B is a homologically simple fibration with fibre F
so that B is a finite CW complex and each homology group of F is finite rank
then,

χ(E) = χ(B)χ(F ).

Proof. We compute from the Künneth formula,


p,q

(−1)p+q dimE1
p,q =



p,q

(−1)p+q dim Cp(B) dimHq(F ) = χ(B)χ(F ).

But passing to homology does not affect the Euler characteristic. Hence going
from the E1 page to the E∞ page will not affect the answer,

χ(B)χ(F ) =


p,q

(−1)p+q dimE∞
p,q =



n

(−1)n dimHn(E) = χ(E).

□
Remark 5.4. If our fibration is not homologically simple, there is still a way
to interpret the second page of our spectral sequence. Instead of considering
the homology of B with coefficients in H∗(F ), we should use a local coeffi-
cient system where the homology has coefficients in the locally constant sheaf
Hq(π

−1(x)) on B. The details can be found in [FF, §22.2].

If p : E → B is a map, not necessarily a fibration, we can still get a sheaf of
abelian groups on B as coefficients. Namely, Ȟq(p−1(U);Z) for U an open set
of B, where Ȟ∗ denotes sheaf or Čech cohomology and Z is the usual locally
constant sheaf (this is a right derived functor of the direct image p∗ of Z).
Denote this sheaf by Ȟq(F ). Then there is a cohomological spectral sequence,

Ep,q
2 = Ȟp(B; Ȟq(F )) =⇒ Ȟp+q(E;Z).

This is called the Leray–Serre spectral sequence and it directly generalizes the
Serre spectral sequence as well as the local coefficient case. It is an important
tool in algebraic geometry and more advanced topics in algebraic topology like
equivariant cohomology. △
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Cohomology. As we saw for the homology of any spectral sequence of a
filtered complex, we can define analogously a spectral sequence for cohomol-
ogy. The diagrams will look the same will differential arrows pointing in the
opposite direction. We conclude by the same proof as above that we have a
cohomological Serre spectral sequence,

Ep,q
2 = Hp(B;Hq(F )) =⇒ Hp+q(E).

As with (5.1), we obtain important injection and surjection maps on the E∞

page but now reversed due to the change in direction of the filtration,

En,0
∞ ↩→ Hn(E) ↠ E0,n

∞ .

Morphisms. Suppose that one has a morphism f : E → E ′ of fibrations,
meaning there is a commutative diagram of the following form.

(5.2)
E E ′

B B′

f

π π′

g

Further suppose the map on the base g : B → B′ is cellular. In this case
we get homomorphism between the chain complexes of E and E ′ compatible
with the filtration by skeleta of B,B′. Thus we get a morphism of spectral
sequences f∗ : E

r
p,q → E ′r

p,q. This has the following properties.

(1) f∗ : E1
p,q → E ′1

p,q is the usual induced map on relative homology
Hp+1(Ep, Ep−1) → Hp+1(E

′
p, E

′
p−1).

(2) The map f∗ on the (r + 1)st page is the induced map on homology
from the map f∗ on the rth page.

(3) The map f∗ on the E∞ page is the usual induced map f∗ : Hn(E) →
Hn(E

′) on the associated graded groups.

We also of course get a contravariant induced map on spectral sequences in
cohomology, f ∗ : E ′p,q

r → Ep,q
r . The corresponding properties hold.

Actually, even if the map f : E → E ′ gives a map g : B → B′ on the base which
is not cellular, we can still construct an induced map f∗ on spectral sequences
from the second page onwards. The first step is to cellulary approximate g,
but the full argument is more involved for a Serre fibration. We provide a full
proof since the result is important, although it may freely be skipped on first
reading.

Proposition 5.5. Let f : E → E ′ be a morphism of homologically simple
fibrations (i.e. inducing a diagram like (5.2)) with CW bases. Then starting
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from the E2 page, there is a well defined and canonical induced morphism of
Serre spectral sequences f∗.

Proof. We define a homotopy G : B × [0, 1] → G′ between G0 = g and a cellular map G1 = g′. We
obtain a pullback fibration E = G∗E′ via the following diagram,

E E′

B × [0, 1] B′.

F ′

G

F ′

G

We denote by Et the inverse image of B×{t} under the above fibration. By restriction, we have the following
diagram,

(5.3)

E1 E′

B × {1} B′.

F ′

g′

F ′

g′

By the universal property of pullback fibrations, we get a map f ′ : E → E0 completing the following diagram,

(5.4)

E E0 E′

B B × {0} B′.

f ′

F

f

F ′

g

F ′

id g

We have the following two diagrams coming from inclusions,

(5.5)

E0 E E1 E

B × {0} B × [0, 1] B × {1} B × [0, 1].

F ′

i0

F ′

i1

F ′ F ′

Note the morphisms of fibrations g′, f ′, i0 and i1 depicted in (5.3)–(5.5) have cellular bases. Hence they
define morphisms of spectral sequences which we now analyze starting from the E2 page. We know that on
the E2 page, the induced morphism is the one coming from the induced map on homology of the base and
fibre. So for diagram (5.3), we have,

(g′)2∗ : H∗(B;H∗(F
′)) → H∗(B

′;H∗(F
′)),

induced by g′∗ : H∗(B) → H∗(B′) and the identity on the fibres. For diagram (5.4), we have

(f ′)2∗ : H∗(B;H∗(F )) → H∗(B;H∗(F
′)),

induced by h∗H∗(F ) → H∗(F ′) and the identity on the base. For the diagrams in (5.5), we see that the
map on the fibres is the identity and the maps on the base are homotopy equivalences. Hence (i0)∗ and
(i1)∗ give isomorphisms of the E2 pages of the spectral sequences for the three fibrations E → B × [0, 1],
E0 → B, and E1 → B.

Composing these morphisms gives the following,

E2
p,q(E) = Hp(B;Hq(F ))

(f ′)2∗−−−−→ E2
p,q(E0)

∼=−→ E2
p,q(E1)

(g′)2∗−−−→ Hp(B
′;Hq(F

′)) = E2
p,q(E

′).

It is clear from our definition of these morphisms above, that the total morphism is given by h∗ : Hq(F ) →
Hq(F ′) and g′∗ : Hp(B) → Hp(B′). Since g and g′ are homotopic, they induce the same maps in homology.
Thus the map of E2 pages, E2

p,q(E) → E2
p,q(E

′), is precisely the one we would expect for the map f : E → E′

of fibrations.

To conclude, we just need to show this morphism of spectral sequences extends to all higher pages. If
a morphism of spectral sequences is an isomorphism on a certain page it is an isomorphism on all later
pages including ∞ (since the induced map on homology will always be an isomorphism). Thus (5.5) gives
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isomorphisms of spectral sequences for E0, E and E1 on all pages 2 and beyond. Composing with the other
morphisms, we obtain for all p, q and all k > 2,

Ek
p,q(E)

(f ′)k∗−−−−→ Ek
p,q(E0)

∼=−→ Ek
p,q(E1)

(g′)k∗−−−−→ Ek
p,q(E

′).

Thus we see that g gives a morphism of Serre spectral sequences on all pages 2 and greater. □

From this we conclude that from the E2 page onwards the Serre spectral
sequence is independent of the cellular structure on the base. Moreover, this
means if we have a homologically simple fibration E → B, even if B is not a
CW complex, we may consider a CW approximation BCW → B. We can define
the Serre–spectral sequence for BCW with respect to the pullback fibration.
The long exact sequence of a fibration and the five lemma implies this gives
a weak homotopy equivalence of total spaces. Thus we may extend the Serre
spectral sequence to our non-CW fibration and there is no ambiguity on the
E2 page and beyond due to the above result on morphisms.

Remark 5.6. The original construction of Serre does not require a CW struc-
ture. In that approach, we work with homology defined in terms of cubical
singular chains σ : Ip+q → E. We may filter Cp+q(E) so that FpCp+q(E) is
generated by cubical singular chains σ : Ip+q → E for which π ◦ σ : Ip+q → B
is independent of the last q coordinates. The resulting spectral sequence of
this filtration replicates the Serre spectral sequence as we have constructed it.
A full proof (as well as a very good general presentation of spectral sequences)
is given here. △

Edge Morphisms. There are two simple but important examples of mor-
phisms of spectral sequences associated to any fibration π : E → B that we
wish to study, both coming from the edges of the spectral sequence. For the
first one, let Fx0 → x0 be the fibration π : E → B restricted to a fibre over a
single point x0 ∈ B. Then we have a morphism of fibrations coming from the
embedding i : Fx0 ↩→ E. The corresponding of morphism of spectral sequences
on the E2 page is represented by the embedding of the zeroth column as shown
below, where the magenta region is unknown.

E2 E2

0 1 · · ·

H
∗(
F
)

0
i∗

H
∗(
F
)

0 1 · · ·

117

https://math.berkeley.edu/~hutching/teach/215b-2011/ss.pdf


On the left side, the sequence degenerates: E2 = E∞. On the right, the

sequence may continue and the zeroth column E∞
0,∗ will end up as some quotient

of H∗(F ) (since all differentials out of E0,∗ are trival). On E∞, the morphism
should just be the map on homology induced by embedding i∗ : H∗(F ) →
H∗(E). Hence, using (5.1), this map factors as follows:

Hn(F ) Hn(E)

E∞
0,n.

i∗

The second morphism of fibrations we want to consider is the projection π
from π : E → B to the identity fibration B → B. On the E2 page, the
corresponding morphism of spectral sequences is the projection killing all the
rows above the zeroth row, as shown below.

E2 E2

0

1

...

H∗(B)

0
π∗

H∗(B)0

1

...

On the right side, the sequence degenerates: E2 = E∞. On the left, the
sequence may continue and the zeroth row E∞

∗,0 will be some subgroup of
H∗(B) (since all differentials into E∗,0 are trival). One E∞, the morphism
must correspond to the map on homology induced by projection π∗ : H∗(E) →
H∗(B). Hence, again using (5.1), this map factors as follows:

Hn(E) Hn(B)

E∞
n,0.

π∗

We get analogous diagrams applying these morphisms to the cohomological
spectral sequence:

Hn(B) Hn(E) Hn(E) Hn(F )

En,0
∞ E0,n

∞ .

π∗ i∗
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Transgression. Given a first quadrant spectral sequence (homological or
cohomological), there are a series of maps that connect the zeroth row and
column:

dr
r0 : E

r
r,0 → Er

0,r−1 and d0,r−1
r : E0,r−1

r → Er,0
r .

These maps are called edge maps. They are the last non-trivial map in the
spectral sequence that these squares interact with. In light of (5.1), we can
think of these as partially defined maps (i.e. maps from a subgroup to a
quotient group),

τ : E2
r,0 → E2

0,r−1 and τ : E0,r−1
2 → Er,0

2 .

These maps are called transgressions and elements of the domain of τ are
called transgressive. Understanding the transgressions is important for under-
standing the differentials of a spectral sequence. They can be thought of as
generalizations of the connecting homomorphisms in the snake lemma.

In the Serre spectral sequence case, the transgressions are partially defined
maps,

Hr(B) → Hr−1(F ) and Hr−1(F ) → Hr(B).

Thankfully these have a nice geometric interpretation.

Theorem 5.7: Transgressions in the Serre Spectral Sequence

Let π : E → B be a homologically simple fibration. The transgression
maps in the homological and cohomological Serre spectral sequence of
π coincide respectively with the following partially defined maps:

Hn(B) = Hn(B, ∗) (π∗)−1

−−−−→ Hn(E,F )
∂∗−→ Hn−1(F )

Hn−1(F )
δ∗−→ Hn(E,F )

(π∗)−1

−−−−→ Hn(B, ∗) = Hn(B).

Here ∂∗, δ
∗ come from the long exact sequences of a pair, and π∗, π

∗ may
not be invertible, hence these are only partially defined.

Proof. We prove just the homological version, the other being analogous.
By restricting to a path component of the base, we may assume B has only a
single 0-cell ∗. The group En

n,0 is

FnCn(E) ∩ d−1F0Cn−1(E)

Fn−1Cn(E) ∩ d−1F0Cn−1(E) + FnCn(E) ∩ dF2n−1Cn+1

.

Representatives of this group consist of chains c ∈ Cn(π
−1(Bn)) with bound-

aries in Cn−1(π
−1(∗)) = Cm−1(F ). I.e. by relative cycles of the pair (π−1(Bn), F ).

We identify En
n,0 with a subgroup of Hn(B) by sending c to π∗(c). The differ-

ential dn
n,0 acts by sending c to ∂c ∈ Cn−1(F ). This completes the proof. □
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Two Exact Sequences. We discuss now a couple of exact sequences that can
be derived from the Serre spectral sequence. They both deal with fibrations
involving spheres.

The first is the Gysin sequence for sphere bundles. Suppose π : E → B is
a homologically simple fibration with spherical fibre Sn. If this is a smooth
sphere bundle, the homological simplicity assumption is the same as asking
that the bundle be orientable.

We know the homology of Sn and so we deduce that the E2 page of the spectral
sequence is two copies of the homology of B in rows 0 and n. The only non-
trivial differential can occur on the page En+1 when we get a family of maps
dn+1
r,0 : En+1

r,0 → En+1
r−n−1,n for each r ≥ n+ 1. See the figure below.

E2 = En+1

0

0 · · · n+ 1

...

n H0(B)

Hn+1(B)

H∗(B)

H∗(B)

dn+1
n+1,0

We see these differentials give rise to maps Hr(B) → Hr−n−1(B) for each
r.

The cohomology of this page is En+2 = E∞ We conclude that each diagonal
E∞

p+q=m consists of at most two non-zero terms, namely E∞
r,0 = ker(dn+1

r,0 ) and

E∞
r−n,n = coker(dn+1

r+1,0). We know that because it lies in the last non-trivial row,
E∞

r−n,n is a subgroup of Hr(E), while because it lies in the first non-trivial row,
E∞

r,0 is a quotient of Hr(E) (see (5.1)). So we have short exact sequences,

0 → coker(dn+1
r+1,0) → Hr(E) → ker(dn+1

r,0 ) → 0.

This is equivalent to the exact sequence,

Hr+1(B)
dn+1
r+1,0−−−→ Hr−n(B) → Hr(E) → Hr(B)

dn+1
r,0−−−→ Hr−n−1(B).

120



Because the differential squares to zero, these can be merged to a long exact
sequence,

· · · π∗−→ Hr+1(B)
d−→ Hr−n(B)

π!

−→ Hr(E)
π∗−→ Hr(B) → · · · .

This is called the Gysin sequence. The fact the map Hr(E) → Hr(B) coincides
with π∗ follows directly from our earlier discussion of edge morphisms of spec-
tral sequences. The map π! maps a homology class in B to its inverse image
under π. If we are dealing with a smooth bundle, then π! is the “wrong-way”
map on homology given by the pullback on cohomology composed on both
sides with the Poincaré isomorphism:

π! : Hr−n(B)
PD−−→ Hb−r+n(B)

π∗
−→ Hb−r+n(E)

PD−−→ Hr(E),

where dim(B) = b. In this context, this map π! is usually called the Gysin
homomorphism. The map d, which came from the differential in the spectral
sequence, can be interpreted as the cap product with the Euler class of our
sphere bundle e(E) ∈ Hn+1(B).

This last fact is a consequence of the following proposition.

Proposition 5.8. Let F ↩→ E
π−→ B be a homologically simple fibration

for which F is (n − 1)-connected. Define a tautological cohomology class
cF ∈ Hn(F ; πn(F )) so that cF (h(α)) = α for any α ∈ πn(F ), where h is
the Hurewicz homomorphism. Then under the transgression τ in the Serre
spectral sequence of π, cF is sent to the first obstruction of our fibration:

τ(cF ) = C(E) ∈ Hn+1(B; πn(F )).

Proof. By Theorem 5.7, we want to show that δ∗(cF ) = π∗(C(E)) ∈
Hn+1(E,F ; πn(F )).

Since C(E) is the first obstruction to lifting a section of E, σ : B → E to
the n + 1 skeleton of B, we conclude π∗(C(E)) is the obstruction to lifting a
fibrewise map σ : En → E to the (n + 1)-skeleton of E. Equivalently, this is
the first obstruction to lifting the identity map F → F to a map E → F (refer
to example 4.43).

Now note δ∗(cF ) evaluated on some relative (n+1)-cell of (E,F ) is cF evaluated
on its boundary, an n-cell of F . Since cF is tautological, this is just the
homotopy class of the boundary. But this precisely describes δ∗(cF ) as the
first obstruction to lifting the identity map F → F to a map E → F just like
π∗(C(E)). □

We have an analogous Gysin sequence in cohomology:

· · · d−→ Hr(B)
π∗
−→ Hr(E)

π!−→ Hr−n(B)
d−→ Hr+1(B) → · · · .
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Now d is the cup product with e(E) and in the smooth case π! is the wrong-way
map in cohomology.

Now we consider the Wang sequence. Suppose π : E → Sn is a fibration over
a sphere with fibre F . If n = 1, we should assume homological simplicity,
otherwise it is automatic. The E2 page of the corresponding specral sequence
consists of two copies of the homology of F on the zeroth and n columns. The
only non-trivial differential can occur on the page En when we get a family of
maps dn

n,r−n+1 : E
n
n,r−n+1 → En

0,r for each r ≥ n−1. See the figure below.

E2 = En

0

0 · · ·

n− 1

...

n

H0(F )

Hn−1(F )

H
∗(
F
)

H
∗(
F
)

dnn,0

We see the differential gives rise to maps Hr(B) → Hr−n+1(B) for each r.
We have En+1 = E∞ and as with the Gysin sequence we obtain short exact
sequences,

0 → coker(dn
n,r−n+) → Hr(E) → ker(dn

n,r−n) → 0,

which patch together into a long exact sequence,

· · · i!−→ Hr−n+1(F )
d−→ Hr(F )

i∗−→ Hr(E)
i!−→ Hr−n(F ) → · · · .

This is called the Wang sequence. The map i∗ is induced from inclusion, as
we know from our discussion on morphisms. The map i! is given by restricting
a cycle to a fibre; in the smooth situation this is the wrong way map corre-
sponding to i. The map d coming from the differential can be dscribed as
follows. Consider h : Dn → Dn/∂Dn = Sn and let h∗E be the pullback of our
fibration; being over Dn this is necessarily trivial. Thus the map h∗E → E

gives a map Dn × F → E which restricts to a map h : Sn−1 × F → F . The

map d is given by d(α) = h([Sn−1 × α). A proof is left to the reader. We also
have an analogous cohomological Wang sequence,

· · · d−→ Hr−n(F )
i!−→ Hr(E)

i∗−→ Hr(F )
d−→ Hr−n+1(F ) → · · · .
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Multiplication. As for cohomology vs. homology, the cohomological Serre
spectral sequence has a major advantage over the homological version in that
it has the structure of a graded ring.

We can use the multiplication to understand the cup product structure of the
total space of a fibration, or the cup product on the fibre and base. Addi-
tionally, the product structure sometimes tells us a priori what the differential
maps of the spectral sequence need to be without having to work through their
quite involved definition.

We begin in full generality. Suppose F = F 0 ⊃ F 1 ⊃ · · · is a filtered differen-
tial algebra equipped with a multiplication F p × F q → F p+q compatible with
the differential in the sense that there is a Leibniz rule,

δ(ab) = (δa)b+ (−1)|a|a(δb).

We are assuming here that F is Z2 or Z-graded. If not then just we can set
|a| = 0 for all a.

This multiplication descends to a map F ⊗ F → F . Note that this tensor
product has an induced filtration and differential given by,

(F ⊗ F )n =


p+q≤n

F p ⊗ F q and δ(a⊗ b) = δa⊗ b+ (−1)|a|a⊗ δb.

This makes F ⊗ F → F a map of filtered differential algebras and so we get a
corresponding map of spectral sequences. This begins with the induced map
on the associated graded groups E0⊗E0 → E0. By passing to the cohomology,
we get a map,

H∗(E0)⊗H∗(E0) → H(E0 ⊗ E0) → H(E0).

Here the first map is the embedding from the Künneth formula and the second
is the induced map on E1 pages from F ⊗ F → F . Thus, we obtain a map
E1 ⊗ E1 → E1. In this exact way, we pass to all later pages. If F possesses
a grading, then this whole structure is compatible with the bigrading of the
spectral sequence, as we expand on in the following central result.

Theorem 5.9: Multiplication in the Serre Spectral Sequence

Let π : E → B be a homologically simple fibration with fibre F . Then
the cohomological Serre spectral sequence of π obtains a multiplication
on each page beginning at E2 possessing the following properties:

(i) The multiplication is compatible with the bigrading in the sense
that if α ∈ Ep,q

r and β ∈ Es,t
r , then αβ ∈ Ep+s,q+t

r .
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(ii) The differentials satisfy a bigraded Leibniz rule: if α ∈ Epq
r and

β ∈ Est
r then,

dp+s,q+t
r (αβ) = (dp,q

r α)β + (−1)p+qα(ds,t
r β).

(iii) The multiplication on the page Er+1 is induced from the mul-
tiplication on Er, so that if α, β ∈ Er+1 are represented by
dr-cycles a, b, then αβ is represented by ab.

(iv) On the E2 page, the multiplication is just the multiplication in
H∗(B) with coefficients in the ring H∗(F ).

(v) The multiplication on E∞ is inherited from the multiplication
on H∗(E) in the following sense. If a ∈ F pHm(E) and b ∈
F pHn(E) represent α ∈ Ep,m−p

∞ and β ∈ Eq,n−q
∞ , then ab ∈

F p+qHm+n(E) represents αβ ∈ Ep+q,m+n−p−q
∞ .

Proof. We need only construct the multiplication on E2. The facts (i)–
(iii) are just general consequences of our set up described above.

By CW approximation, we can restrict to the case where B is cellular. Con-
sider the diagonal embedding of fibrations factored through the pullback bun-
dle.

E ∆∗
EE × E E × E

B B B × B

F

∆E

F×F F×F

id ∆B

By Proposition 5.5, we may CW approximate ∆B by ∆CW
B and obtain a mor-

phism of Serre spectral sequences beginning at the page E2. Note the cup
product is usually defined as the pullback under ∆B of the cross product of
cohomology classes. We may equally well use ∆CW

B since they are homotopic
and hence induce the same maps on cohomology.

From the proof of Proposition 5.5, the induced map on E2 factors as in the
commutative diagram above into maps,

H∗(B × B;H∗(F × F )) → H∗(B;H∗(F × F ))(5.6)

H∗(B;H∗(F × F )) → H∗(B;H∗(F )).(5.7)

We also have a morphism given by the Künneth formula, which on the E2

page looks like,

H∗(B;H∗(F ))⊗H∗(B;H∗(F )) → H∗(B × B;H∗(F × F ))(5.8)
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The composition of (5.6) with (5.8) is the cup product on H∗(B) and the cross
product on H∗(F ). Composing with (5.7), the total construction is the cup
product on H∗(B) and H∗(F ). This is our desired map of spectral sequences.

From the usual properties of morphisms of spectral sequences, the map on E∞
is the associated graded of the cup product on H∗(E), proving (v). □
Remark 5.10. The induced multiplication on E∞ = Gr(H∗(E)) may be much
less rich than that on H∗(E). For example, even if the multiplication on E∞
is trivial, we only know that F pH∗(E) · F qH∗(E) ⊂ F p+q+1H∗(E). △

5.4. Computations with the Serre Spectral Sequence. We will now
take a look at several applications of computing homology (and homotopy)
from the Serre spectral sequence. The sequence is useful for computing the
stable homotopy groups of spheres and the homology of Eilenberg-MacLane
spaces and we will briefly touch on these subjects. Our main interest will be
in finding the homology rings of some Lie groups and homogeneous spaces;
the Serre spectral sequence is very useful for this purpose since Lie groups
and homogeneous spaces come equipped with many geometrically motivated
fibrations, some of which we touched on earlier. We will also give a proof of
the Thom isomorphism theorem.

Some Miscellaneous Examples. We begin with a few examples to become
acquainted with explicit calculations using spectral sequences.

To ease into things, let us re-compute the ring structure of H∗(CP∞) which
we previously found from intersection theory. We will use the cohomological
Serre spectral sequence associated to the infinite complex Hopf fibration S1 ↩→
∗ = S∞ → CP∞, which is homologically simple. We know the cohomology
ring of S1 is H∗(S1) = Z[y]/(y2) where |y| = 1. From cellular homology we
know that H i(CP∞) is zero in odd degrees and Z in even degrees. Let xi

denote a generator of H2i(CP∞). For ease of computation, it is customary
when drawing a page of a spectral sequence to write the generator of each
square in place of the group it generates. If a square is the trivial group, we
usually leave it empty. Thus our E2 page will look like the following.

0 2 4 6

1

0 1 x1

y

x2

x1y x2y

x3

x3yd2 d2 d2

This is the last page with non-trivial differentials and so E3 = E∞. Since S∞

is contractible, the E∞ page should be empty apart from E0,0
∞ . Hence all the
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diagonal maps d2 : E2k,1
2 → E2k+2,0

2 must be isomorphisms. Without loss of
generality, we can inductively modify the generators xi up to a sign so that
d2(y) = x and d2(xiy) = xi+1 for i ≥ 1. Since the differential leaving xi is
trivial, the graded derivation structure implies that,

d2(xiy) =✘✘✘✘✿0
d2(xi)y + xid2y = xix1.

We conclude, x2 = x2
1, x3 = x2x1 = x3

1, and so on. So that xi = xi
1. We

conclude all the powers of x1 are non-zero and that the 2nth cohomology
group of CP∞ is generated by xn

1 . Thus we rediscover

H∗(CP∞) = Z[x], where |x| = 2.

Let us compute the cohomology of the loop space ΩS3 of S3. Note there is a
path space fibration ΩS3 ↩→ ∗ = ES3 → S3. This is homologically simple and
so we can use the Serre spectral sequence. We know the cohomology ring of S3

is H∗(S3) = Z[u]/(u2), where |u| = 3. The E2 = E3 page of the cohomological
spectral sequence of our fibration looks like the following.

H
∗ (
Ω
S
3
)

u
·H

∗ (
Ω
S
3
)

0 3

2

4

0 1 u

...

d3

d3

d3

This is the last page on which non-trivial differentials occur. Since the spectral
sequence must converge to the trivial homology of ES3, all the maps d3 :
E0,n

3 → E3,n−2
3 for n ≥ 1 must be isomorphisms. We conclude inductively that

Hn(ΩS3) = Z if n is even and 0 if n is odd. This could have been deduced
from (really it is the same computation as) the Wang sequence.
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We can now look at the E3 page again to deduce the multiplicative structure
Let βn denote a generator for H2n(ΩS3). The E3 page looks as follows.

0 3

2

4

0 1 u

β1

β2

β1u

β2u

...

d3

d3

d3

Inductively, we may choose βi so that d2(β1) = u and d3(βi) = βi−1u. for
i > 1. We would like to determine the relationship between the products of
the generators. Suppose that βk · βℓ = λk,ℓβk+ℓ for some coefficient λk,ℓ ∈ Z.
We determine from the derivation structure,

d3(βkβℓ) = d3(βk)βℓ+βkd3(βℓ) = βk−1βℓu+βkβl−1u = (λk−1,ℓ+λk,ℓ−1)βk+ℓ−1u.

On the other hand,

d3(βkβℓ) = d3(λk,ℓβk+ℓ) = λk,ℓβk+ℓ−1u.

We conclude that the coefficients satisfy the coupled integer equations,

λk,ℓ = λk−1,ℓ + λk,ℓ−1 for k, ℓ ∈ N.

But note these are exactly the relations for λk,ℓ the kth entry of the (k + ℓ)th
row of Pascal’s triangle. So our coefficients are binomial coefficients:

βkβℓ =


k + ℓ

k


βk+ℓ.

We conclude the ring structure is,

H∗(ΩS3) = Z[xk/k! : k = 1, 2, . . .] where |x| = 2.

Exercise 5.11. Show that if n is odd, then H∗(ΩSn) has the same ring struc-
ture but where |x| = n−1. Find the ring structure of H∗(ΩSn) for n even. 
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Homotopy Groups of Spheres. As a first application to stable homotopy
theory, we can finally compute the first stable homotopy group of the sphere,
namely π4(S

3). Consider the killing space S3|4. We have by Hurewicz,

π4(S
3) = π4(S

3|4) = H4(S
3|4).

Recall from our construction of killing spaces, S3|4 is the total space of a Serre
fibration,

K(Z, 2) ↩→ S3|4 → S3.

This fibration is homologically simple and so we can study the associated
Serre spectral sequence. We know the cohomology of S3 and K(Z, 2) = CP∞

as rings:

H∗(S3) = Z[x]/(x2) and H∗(K(Z, 2)). = Z[y],
where |x| = 3 and |y| = 2. The E2 = E3 page of the spectral sequence looks
like the following.

0 3

2

4

0 1 x

y

y2

xy

xy2

...

d3

d3

d3

This will be the last page on which non-trivial differentials occur so that E4 =
E∞. We know by the Hurewicz theorem that H i(S3|4) = πi(S

3|4) = 0 for
i = 1, 2. Hence all contents of the pink squares must be killed by the E∞
page. By the universal coefficient theorem, H4(S

3|4) is the free part ofH4(S3|4)
direct sum the torsion part of H5(S3|4), so to compute our homotopy group
we need to understand the yellow squares of the spectral sequence on the E∞
page.

In order that the contents of the pink squares are killed, we need the trans-
gressive map d0,2

3 to be an isomorphism. Without loss of generality, changing
the sign of x if necessary, we can set d3y = x. Applying this to the next map
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d0,4
3 and using the graded derivation structure,

d3(y
2) = 2y d3y = 2xy.

We conclude the E4 = E∞ page looks like,

0 3

2

4

0 1 0

0

0

Z2

Z3

...

Since each diagonal has at most one non-trivial entry we have,

H4(S3|4) = 0 and H5(S3|4) = Z2.

Thus,H4(S
3|4) = Z2. In fact we easily compute all higher homotopy groups:

Hn(S
3|4) =


Zm n = 2m

0 else.

We conclude π4(S
3) = H4(S

3|4) = Z2. And so the first stable homotopy group
of the sphere is Z2. By the Freudenthal suspension theorem, we know this
homotopy class of map S4 → S3 is given by suspending the Hopf fibration
S3 → S2. The preceding computation demonstrates that if we precompose
the Hopf fibration with a degree two map S3 → S3 and then suspend (or
suspend the Hopf fibration and precompose with a degree two map S4 → S4)
the resulting map is null-homotopic.

This looks like a promising method for computing homotopy groups of spheres,
and indeed it is. But further computations will not be as easy because un-
derstanding the cohomology of the capping spaces becomes harder as its rela-
tion to the sphere in the associated Whitehead tower becomes more compli-
cated.

We now give another application to homotopy theory by proving Serre’s finite-
ness theorem (Proposition 4.24). We begin with a lemma.
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Lemma 5.12. Let X be a simply connected space with finitely generated ho-
mology which is a rational odd homology sphere. I.e. H∗(X;Q) = H∗(Sm;Q)
for m odd. Then πq(X) is finite for q ∕= m and has rank one if q = m.

Proof. We have Hm(X;Q) = Q and so there is an element of infinite
order α ∈ Hm(X;Z). Let Fm ∈ Hm(K(Z,m);Z) be the tautological class. By
obstruction theory, we can construct f : X → K(Z,m) so that f ∗(Fm) = α.

Exercise 5.13. Inductively apply the Serre spectral sequence to the fibrations
K(Z, n − 1) ↩→ ∗ → K(Z, n) to conclude the rational homology of these
Eilenberg–MacLane spaces is,

H∗(K(Z, n);Q) =


ΛQ[x] n odd

Q[x] n even
where |x| = n.

Apply the spectral sequence of the more general fibration K(G, n− 1) ↩→ ∗ →
K(G, n), to show the homology Hq(K(G, n) is finitely generated for any q and
any G finitely generated abelian. 

Having proved this exercise, we conclude f ∗ is an isomorphism on rational
homology.

We may homotope f to be a fibration with homotopy fibre F and consider
the corresponding Serre spectral sequence. Recall from our discussion of edge
morphisms that the induced pullback projection map f ∗ : Hn(K(Z,m);Q) →
H∗(X,Q) has to factor through the quotient mapHn(K(Z,m;Q)) → E∗,0

∞ onto
the first row of the infinity page. Because f ∗ is an isomorphism, this quotient
must be an isomorphism and so the zeroth row of the spectral sequence can
never participate in any differentials.

On the other hand, because Hn(K(Z,m);Q) ∼= H∗(X,Q), the only contents of
the E∞ page of the spectral sequence can be in the first row, since additional
non-zero squares would complicate the homology of the total space. Suppose
Hm(F ;Q) is the non-trivial rational homology group of F with minimalm > 0.
Then as we just noted, E0,m

2 = Hm(F ;Q) must be killed on some page of the
sequence. But the only row below m containing non-zero squares is the zeroth
row. So E0,m

2 can only be killed by a transgression. But this would force a
non-trivial map to hit the zeroth row, which we said could not happen. We
obtain a contradiction and so the homology Hm(F ;Q) = 0 for all m > 0.

Hence by the universal coefficient theorem, all the homology groups of F are
torsion. Because the integral homology of X and K(Z,m) are finitely gener-
ated (by the above exercise) the same must be true of F (using the integral

130



Serre spectral sequence). Hence F has finite homology groups. Now induc-
tively studying the fibrations,

K(Hn(F |n);n− 1) ↩→ F |n+1 → F |n,
we conclude from the corresponding spectral sequences that the killing spaces
F |n all have finite integral homology groups. Hence πn(F ) = Hn(F |n) is finite
for each n.

Now we can look at the homotopy long exact sequence of the fibration F ↩→
X → K(Z,m). We conclude the maps f∗ : πn(X) → πn(K(Z,m)) all have
finite kernel and cokernel. Hence using the homology of K(Z,m) when m is
odd, we obtain the result. □

Proof. (of Serre’s finiteness theorem) We wish to show πq(S
n) is finite

except for q = n or in the case π4m−1(S
2m) where the rank is one. If n is odd,

then we are done directly by the above lemma.

Let n = 2m be even and consider the fibration K(Z, n − 1) ↩→ Sn|n+1 → Sn.
The rational cohomological spectral sequence will look like the following with
the first (and last) non-trivial differential on the nth page.

0 · · · n

n− 1

...

0 Q Q

Q Q

dn

Because Hn−1(Sn|n+1) = Hn(Sn|n+1) = 0, the illustrated map d0,n−1
n has to be

an isomorphism. Hence, H∗(Sn|n+1;Q) ∼= H∗(S2n−1;Q).

We conclude from the previous lemma that for q > 2m, πq(S
2m|2m+1) =

πq(S
2m) is finite unless q = 4m− 1, in which case it has rank one. □

In fact we can give a nice construction of a free generator in π4m−1(S
2m). There

is a graded Lie algebra structure on the direct sum of the homotopy groups of
a space called the Whitehead bracket,

[·, ·] : πk(X)× πℓ(X) → πk+ℓ−1(X).

This defines a graded Lie algebra in the sense it is bilinear, supersymmetric,
and satisfies a super/graded Jacobi identity.
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To construct this bracket, note Sk × Sℓ is formed from Sk ∨ Sℓ by attaching a
(k + ℓ)-cell. Hence there is a cell attaching map ψ : Sk+ℓ−1 → Sk ∨ Sℓ. Then
the Whitehead bracket is defined by,

[f, g] = ψ∗(f ∨ g).

Proposition 5.14. Let id2n ∈ π2n(S
2n) be the homotopy class of the identity

map. Then [id2n, id2n] ∈ π4n−1(S
2n) has infinite order.

Proof. (Sketch) Given f : S4n−1 → S2n, form its cone Cf = S2n ∪f D
4n

which up to homotopy equivalence depends only on the class [f ] ∈ π4n−1(S
2n).

The cohomology ring of Cf is easily seen to be,

H∗(Cf ) = Z[α, β]/(αβ, β2,α2 − h(f)β), where |α| = 2n, |β| = 4n.

Here h(f) is some integer depending on f , called the Hopf invariant.

It can be shown that h : π4n−1(S
2n) → Z is a group homomorphism. To

see this, one studies the space Yf,g = S2n ∪f∨g (D
4n ∨D4n) and the effect on

cohomology of the natural maps Cf , Cg, Cf+g → Yf,g.

One can also show h([id2n, id2n]) = 2. For this, one can form C[id2n,id2n] as the
quotient of S2n×S2n by identifying points (x, x0) with (x0, x), where x0 is the
basepoint. An explicit study of the cohomology of this space gives the Hopf
invariant.

We conclude that non-zero multiples of [id2n, id2n] in π4n−1(S
2n) all have non-

zero Hopf invariants and hence can never be null-homotopic. □

Lastly for this section, let us compute the second stable homotopy group of the
sphere. Consider the identification ΣS2 → S3. By the loop-suspension adjunc-
tion, we obtain a map f : S2 → ΩS3. We may homotope f to a fibration with
homotopy fibre F . From the homotopy long exact sequence of this fibration,
F is 2-connected, and so by Hurewicz π3(F ) = H3(F ). We computed earlier
the ring structure of H∗(ΩS3). We deduce from this that H4(ΩS

3) = Z. Con-
sidering the spectral sequence of our fibration, since H3(S

2) = H4(S
2) = 0, the

trangressive map on the E4 page, H4(ΩS
3) → H3(F ) must be an isomorphism

(it is the first and last non-trivial map to hit the squares E4,0 and E0,3). Hence,
Z = H3(F ) = π2(F ).

We consider the following segment of the homotopy long exact sequence of our
fibration.

· · · π4(S
2) π4(ΩS

3) π3(F ) π3(S
2) π3(ΩS

3) · · ·

· · · Z2 π5(S
3) Z Z Z2 · · ·

f∗ f∗
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We have used π4(S
2) = π4(S

3) = Z2 from the long exact sequence of the Hopf
fibration and the fact πn(ΩS

3) = πn+1(S
3). The map Z → Z2 is either the

quotient map or trivial. Hence the map Z → Z is multiplication by ±2 or
±1, in particular it is injective. Thus the map π5(S

3) → Z is trivial and so
Z2 → π5(S

3) is a surjection. We now want to show it is non-trivial and hence
equals Z2.

Now consider the fibration K(Z, 2) → S3|4 → S3. We computed π4(S
3|4) =

Z2. So construct a map g : S3|4 → K(Z2, 4) inducing an isomorphism on π4

(this is clearly doable by obstruction theory). We can homotope g to a fibration
with homotopy fibre Y . From this fibration, we conclude that Y is 4-connected
and so by Hurewicz and the fibration exact sequence we have H5(Y ) = π5(S

3).
Since π5(S

3) is 0 or Z2, we may reduce mod 2: H5(Y ;Z2) = π5(S
3).

Now consider the cohomological spectral sequence of the fibration Y ↩→ S3|4 →
K(Z2, 4) over Z2. On the E2 page the sequence looks like the following.

0 4 5 6

5

0 Z2 Z2 H5(K) H6(K)

π5(S3) Z2 H5(K) H6(K)

d5

Here the blue squares are all zero and we writeHn(K) to denoteHn(K(Z2, 4);Z2).
The green squares are not relevant to our computation. Clearly no non-trivial
differentials affect the squares we are interested in up until the E5 page and
none will affect them again afterwards. On the E5 page the only important
differential is the pictured transgression,

d0,5
5 : H5(Y ;Z2) = π5(S

3) → H6(K(Z2, 4);Z2).

By Serre’s theorem on cohomology operations, we know that H5(K(Z2, 4);Z2)
and H6(K(Z2, 4);Z2) are generated by Sq1F4 and Sq2F4 respectively, where
F4 ∈ H4(K(Z2, 4);Z2) is the tautological class. (We will shortly give some
indication of how to prove Serre’s theorem for those concerned by this gap in
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our argument). Hence we know the entries of our spectral sequence E0,5
5 =

E0,6
5 = Z2. Now recall in finding the first stable homotopy group of the sphere

we determined the homology of S3|4, in particular H5(S3|4;Z2) = Z2 and
H6(S3|4) = 0. Since the above transgression d0,5

5 is the last map impacting the
relevant region of our spectral sequence, we must have in order to converge to
the correct cohomology of S3|4 that E0,5

6 = E6,0
6 = 0. Hence, the map d0,5

5 is
an isomorphism. In particular,

π5(S
3) = H6(K(Z2, 4);Z2) = Z2.

We are almost done. Consider the quaternionic Hopf fibration S3 ↩→ S7 → S4.
From this it is clear that πn(S

4) = πn−1(S
3) for n ≤ 6. Hence, π6(S

4) =
π5(S

3) = Z2. This is the second stable homotopy group. Note the standard
Hopf fibration also tells us π5(S

2) = Z2. At this stage we know the following
chart of homotopy groups depicted in Table 3. The coloured squares are the
stable groups. Referring back to the Table 1, we see that π6(S

2) = π6(S
3) =

Z12, although we haven’t computed that.

S1 S2 S3 S4

π1 Z 0 0 0
π2 0 Z 0 0
π3 0 Z Z 0
π4 0 Z2 Z2 Z
π5 0 Z2 Z2 Z2

π6 0 ? ? Z2

Table 3. The Computed Homotopy Groups of Spheres

It is possible to go a lot further in building out this chart than we have done,
but it requires progressively more work. See Chapters 3–5 of [FF] for a com-
prehensive discussion of the theory and a computation of the first thirteen
stable homotopy groups. The low dimensional unstable groups can also be
computed using similar methods involving Steenrod squares; see [HatcherSS,
Thm 5.4.1] for a computation of π6(S

2).

Constructing Steenrod Squares. We now use the homology of Eilenberg–
MacLane spaces to give a quick construction of Steenrod squares. Recall the
Steenrod squares were stable (mod 2) cohomology operations,

Sqi : Hn(X;Z2) → H i+n(X;Z2).

By the Yoneda lemma, these are determined by knowing

Sqi(Fn) ∈ H i+n(K(Z2, n);Z2),
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where Fn ∈ Hn(K(Z2;n);Z2) is the canonical cohomology class.

The axiomatic properties of Steenrod squares force Sq0F1 = F1, Sq
1F1 = F 2

1

and SqiF1 = 0 for i > 1. We now work inductively, supposing we know
SqiFn−1 for all i and determining SqiFn.

Consider the fibration K(Z2, n − 1) ↩→ ∗ → K(Z2, n) and the corresponding
cohomological spectral sequence over Z2. Suppose i < n − 1. We then have
the following schematic picture of several pages of our sequence.

0 n· · · · · · n+ i · · · 2n− 1

...

n− 1

...

n+ i− 1

...

2n− 2

0 Z2 Z2

Z2 Z2

SqiFn−1

SqiFn

Sqn−1Fn−1

Sqn−1Fn

dn+i

dn

d2n−1

The yellow squares contain potentially non-zero entries while all the clear
empty squares are zero from E2 onwards. Since i < n − 1, the only non-
trivial differential impacting the squares E0,n+i−1 and E0,n+i is the transgres-
sion,

d0,n+i−1
n+i : Hn+i−1(K(Z2, n− 1);Z2) → Hn+i(K(Z2, n);Z2).

Because this spectral sequence has to converge to the homology of a point,
this transgression must be an isomorphism. Hence we can define,

SqiFn := dn+iSq
iFn−1.
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Now consider the case of Sqn. The square E0,2n−2 is involved in two potentially
non-trivial differentials: the map d0,2n−2

n and the map d0,2n−2
2n−1 , both shown

above. Note since the top Steenrod square is the actual square,

dn(Sq
n−1Fn−1) = dn(F

2
n−1) = 2Fn−1dn(Fn−1) = 0 (mod 2).

Hence Sqn−1Fn−1 persists to the E2n−1 page and is in the domain of the tran-
gression,

d0,2n−2
2n−1 : ker(d0,2n−2

n ) → H2n−1(K(Z2, n);Z2).

Since this has to again be an isomorphism, we may define,

Sqn−1Fn := d2n−1Sq
n−1Fn−1.

We know axiomatically that we must have SqnFn = F 2
n and SqiFn = 0 for

i > n. Thus we have inductively defined the Steenrod squares for all i, n.

The stability of these operations can be expressed as saying that the sequence
of elements SqrFn should be obtained by applying the suspension maps,

Hr+n−1(K(Z, n− 1);Z) Σ−→ Hr+n(ΣK(Z, n− 1);Z) (i∗n)
−1

−−−→ Hr+n(K(Z, n);Z).
But one can show these maps agree with the transgression maps in our above
spectral sequence. Hence we find the Steenrod squares are stable. Conversely,
we see that to be stable, the Steenrod squares need to commute with transgres-
sions. This proves the uniqueness of our axiomatic definition of the squares
since we inductively defined them just in terms of transgressions and the other
axioms. The proof of Cartan’s formula proceeds from some geometric manip-
ulations with the Eilenberg–MacLane spaces. See [FF, §29–30] for the details
of these proofs as well as a proof of the Adem relations.

Lastly, let us sketch an argument for Serre’s theorem on the fact the Steen-
rod squares multiplicatively generate all Z2 cohomology operations. The key
ingredient is a theorem of Borel.

Proposition 5.15 (Borel’s Theorem). Suppose F ↩→ E → B is a fibration
with simply connected base and weakly Z2 contractible total space. Further,
suppose H∗(F ;Z2) is multiplicatively generated by elements ai which are trans-
gressive in the Serre spectral sequence and so that the monomials ai1ai2 · · · aik
with i1 < i2 < · · · < ik form an additive basis for H∗(F ;Z2). Then H∗(B;Z2)
is the polynomial algebra generated by the images bi = τ(ai) under transgres-
sions.

Proof. (Sketch) We can construct an abstract multiplicative spectral se-

quence whose E2 page is H∗(F ;Z2) ⊗ Z2[b1, b2, . . .] and compare to the Serre
spectral sequence E2 of the fibration. We let the differentials act trivially on
each bi and act trivially on the ai’s until the appropriate page |ai| + 1 where
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dai = bi. It is routine to check this is all well defined and gives a multiplicative

spectral sequence. Each generator of the E2 page either eventually has non-
trivial image under a differential or lies in the image of a differential. Hence

the E∞ page of this sequence is trivial.

There is a map between our two spectral sequence by sending the correspond-

ing elements ai, bi to each other. Now suppose this spectral sequence E2 differs
from the Serre spectral sequence of F ↩→ E → F on the E2 page, so that the
multiplicative map between the first rows is not an isomorphism. Then the
first row of E2 either contains an element c (of minimal dimension) which is
not generated by the image of the transgressions or contains a non-trivial rela-
tion f(bi) = 0 (of minimal dimension) between the image of the transgressions.
But comparing with the spectral sequence we constructed, there is nothing on

E2 to kill c and so E∞ can’t be trivial, or there is nothing on E2 to kill f(bi)

and so E∞ can’t be trivial. □

Proof. (of Serre’s theorem) We work inductively on n in K(Z2, n). The
algebra H∗(K(Z2, 1);Z2) = H∗(RP∞;Z2) = Z2[e1] is the polynomial algebra
on Sq0 as desired.

Suppose we have obtained the desired description of H∗(K(Z2, n−1);Z2). We
may pick a suitable indexed set of Steenrod squares SqIFn−1 and their powers
which multiplicatively generate and whose monomials with increasing indices
additively generate H∗(K(Z2, n−1);Z2) (this can be done for any polynomial

algebra, for example Z[x] is generated by x2i in the sense we desire). We can
then apply Borel’s theorem to the fibration K(Z2, n − 1) → ∗ → K(Z2, n).
We conclude that H∗(K(Z2, n);Z2) is also a polynomial algebra generated by
images of transgressions of the generators. By construction of the Steenrod
squares, the image of the transgressions will be Steenrod squares SqIFn and
their powers. Fiddling around with the indexing for a while, one can show
the set of generators matches the description given in the statement of Serre’s
theorem. □

In addition to helping compute homotopy groups of spheres, Steenrod squares
also have several other applications throughout algebraic topology. They can
be used as a homotopy invariant to distinguish spaces with the same cohomol-
ogy/homotopy, like lens spaces or the following example.

Exercise 5.16. Prove with Steenrod squares that ΣCP 2 and Σ(S2 ∨ S4) are
not homotopy equivalent. 

They are also express an important property of Stiefel–Whitney classes, which
we present in the next chapter.
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Thom Isomorphism Theorem. We now prove an extremely important result
for understanding the topology of vector bundles that we will need for our
chapter on characteristic classes.

Theorem 5.17: Thom Isomorphism Theorem

Let π : E → B be a rank n oriented vector bundle. The cup and cap
product with the Thom class tE ∈ Hn(E,E \ B;Z) determine isomor-
phisms,

⌣ tE : H i(B;Z)
∼=−→ H i+n(E,E \B;Z)

⌢ tE : Hn+i(E,E \B;Z)
∼=−→ Hi(B;Z).

In the unoriented case, the same holds over Z2.

Proof. Pick a metric on our vector bundle so that we can deal with the
unit disk and sphere bundles DE and SE which are deformation retracts of
E and E \B respectively.

It is a simple extension of the Serre spectral sequence to work for relative
fibrations. So consider the fibration of pairs,

(Dn, Sn−1) ↩→ (DE,SE) → B.

We will ignore coefficients to treat Z and Z2 simultaneously. The important
point is that in the oriented case, the coefficients coming from the homology
of the fibres are untwisted and we can freely work over Z. The E2 page of the
relative cohomological spectral sequence is given, using the universal coefficient
theorem, by

Ep,q
2 = Hp(B;Hq(Dn, Sn−1)) ∼= Hp(B)⊗Hq(Dn, Sn−1) =


0 q ∕= n

Hp(B) q = n.

This isomorphism is given by tensoring with the fundamental class of the fibre
[Dn, Sn−1]. Since there is only one non-trivial row of this spectral sequence,
there are no non-trivial differentials and Ep,q

2 = Ep,q
∞ . This spectral sequence

must converge to the homology of the pair (DE,SE). Hence,

Hp(B) ∼= Hp+n(DE,SE).

Let tE ∈ Hn(DE,SE) ∼= H0(B) be the multiplicative unit under the isomor-
phism. Note that by our discussion of edge morphisms, pulling back tE by
inclusion of a fibre can be seen by looking at the E2 page to give the funda-
mental class of the fibre. Hence tE agrees with our earlier definition of the
Thom class.
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Note because the spectral sequence was degenerate and respects multiplication,
that since the isomorphism sends 1 ∈ H0(B) to tE, it must send α ∈ H0(B)
to tE ⌣ α. So our isomorphism is as described.

For the second isomorphism, the universal coefficient theorem implies that
Hi+n(E,E \ B) ∼= Hi(B). By duality, this isomorphism is given by x → z
where β(z) = (β ⌣ tE)(x) for all β ∈ H i(B). But,

(β ⌣ tE)(x) = β ⌢ (tE ⌢ x).

Hence z = tE ⌢ x and the isomorphism on homology comes from capping
with the Thom class. □

Cohomology of Lie Groups. As an essential application of spectral se-
quences, we find the cohomology rings of the classical compact Lie groups.
Some of these results were stated at the end of the chapter on homology.

Proposition 5.18. The cohomology ring of U(n) is,

H∗(U(n)) = ΛZ[α1,α3, . . . ,α2n−1] where |αi| = i.

Proof. We work by induction, the case H∗(U(1)) = H∗(S1) = ΛZ[α1] is
known to us. Suppose the cohomology ring of U(n−1) is as claimed. Consider
the fibration U(n− 1) ↩→ U(n) → S2n−1 induced by sending a unitary matrix
A to the vector in R2n represented by the first column of A. The last n − 1
columns represent a unitary basis of the orthogonal complement of the first
column (hence an element of U(n− 1)).

Let α2n−1 denote a generator of H2n−1(S2n−1). The E2 page of our Serre
spectral sequence looks like the following, where we only write down the mul-
tiplicative generators.

139



0 2n− 1

3

2n− 3

0 1

· · ·

α1

α3

...

α2n−3

α2n−10

d2n−2

The green region consists entirely of zeroes. Note all the differentials leaving
the elements αi are trivial. Since these multiplicatively generate the whole page
and the differential satisfies a Leibniz rule, we conclude all differentials are zero
and thus E2 = E∞. We conclude that additively H∗(U(n)) has the claimed
description. It remains to show the multiplicative structure is correct (since the
fact E∞ is associated graded to H∗(U(n)) may distort the multiplication). We
do know that α1, . . . ,α2n−1 have representatives in H∗(U(n)) (which we’ll refer
to by the same name) that multiplicatively generate the homology of U(n).
These elements must all anti-commute in the cohomology ring by the super-
commutativity of the cup product. Because there is no 2-torsion, we also know
α2
i = 0. There can be no other relations between the αi, otherwise the rank of

H∗(U(n)) would be less than the rank of ΛZ2 [α1, . . . ,α2n−1] contradicting the
additive isomorphism. Thus the ring structure of H∗(U(n)) is as claimed. □

Proposition 5.19. The cohomology ring of SU(n) is,

H∗(SU(n)) = ΛZ[α3,α5, . . . ,α2n−1] where |αi| = i.

Proof. This is the same argument as the U(n) case. We knowH∗(SU(2)) =
H∗(S3) = ΛZ[α3] as claimed. We can then work by induction using the fibra-
tion SU(n − 1) ↩→ SU(n) → S2n−1. The spectral sequence will look like the
picture above just without the α1 square. The differentials are again all trivial
and hence E2 = E∞ is additively the correct group. The same reasoning shows
a multiplicative isomorphism holds as well. □
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Proposition 5.20. The cohomology ring of the complex Stiefel manifold CV (n, k)
is,

H∗(CV (n, k)) = ΛZ[β2(n−k)+1, β2(n−k)+3, . . . , β2n−1], where |βi| = i.

Proof. Again the argument is the same. We work inductively on n and
k simultaneously. In the base case, CV (n, 1) = S2n−1 and we have the correct
description.

We can then use the Serre spectral sequence of the fibration CV (n − 1, k −
1) ↩→ CV (n, k) → CV (n, 1) = S2n−1. All the differentials will be trivial
giving an additive isomorphism and by the same argument a multiplicative
isomorphism. □
Proposition 5.21. The cohomology ring of Sp(n) is,

H∗(Sp(n)) = ΛZ[γ3, γ7, . . . , γ4n−1] where |γi| = i.

Proof. Proceed as above, inductively, applying the Serre spectral se-
quence to the fibration Sp(n− 1) ↩→ Sp(n) → S4n−1. □
Proposition 5.22. The mod 2 cohomology of SO(n) is additively given by,

H∗(SO(n);Z2) = ΛZ2 [δ1, δ2, . . . , δn−1] where |αi| = i.

Proof. We work inductively. The case n = 2 is clear. Suppose we know
the cohomology of SO(n− 1). Consider the fibration SO(n− 1) ↩→ SO(n) →
Sn−1. Our spectral sequence looks like the following, where we let δn−1 denote
the generator of Hn−1(Sn−1;Z2).

0 n− 1

n− 2

0 1

· · ·

δ1

δ2

...

δn−2

δn−1

dn−1

Here the pink squares are all zero. The differentials acting on δi are all neces-
sarily zero, except maybe on δn−2. We need to check the transgression d0,n−1

n−1
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sends δn−2 to zero. Consider the following morphism of fibrations given on
total spaces by sending a matrix to its first two columns,

Sn−2 V (n, 2) Sn−1

SO(n− 1) SO(n) Sn−1.

id

This induces a corresponding morphism in the other direction of cohomo-
logical Serre spectral sequences. On the square E0,n−2

2 , this must send the
fundamental class of Sn−2 to δn−2 (since we inductively know the fibration
SO(n− 1) → Sn−2 induces an injection in cohomology). So it suffices to show
d0,n−2
n−1 is zero (mod 2) in the spectral sequence of V (n, 2) → Sn−1. We know

from the Gysin sequence that this differential takes the fundamental class of
Sn−2 to the Euler class of the sphere bundle V (n, 2) → Sn−1. Note this bun-
dle V (n, 2) → Sn−1 is actually the unit tangent bundle of Sn−1 (consider the
tangent bundle as a sub-bundle of TRn under Sn−1 ↩→ Rn using the standard
metric). Hence,

d0,n−2
n−1 [Sn−2] = χ(Sn−1)[Sn−1].

But spheres all have even Euler characteristic, and so the differential is zero
mod 2. □

5.5. The Atiyah–Hirzebruch Spectral Sequence. We briefly1 describe
a generalization of the Serre spectral sequence to generalized homology, amely
the Atiyah–Hirzebruch spectral sequence.

K-theory. To apply the Atiyah–Hirzebruch spectral sequence, we should
know a little more about generalized cohomology. Recall a generalized co-
homology theory is a contravariant functor from spaces to abelian groups
satisfying all the Eilenberg–Steenrod axioms except possibly the dimension
axiom. We know that singular homology and stable (co)homotopy are two
such theories. We introduce a couple more, beginning with K-theory.

Let X be a space and consider the commutative monoid of equivalence classes
of finite dimensional vector bundles on X with addition given by direct sum.
There is a classic construction to turn a commutative monoid into an abelian
group, called its Grothendieck group. What we do is simply consider formal
differences a− b of elements of the monoid with the obvious addition and the
equivalence c − c = 0. In our case, we want to study virtual vector bundles
(V+, V−) on X with the equivalence (V, V ) ∼ (0, 0). The Grothendieck group
of vector bundles on X is called the K-theory of X. If we are considering

1Whoops.
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complex vector bundles, this is denoted K0(X). For real vector bundles, we
write KO0(X) and for quaternionic vector bundles we write KSp0(X).

It turns out, for suitably nice spaces, that for every vector bundle V , there is
a bundle W so that V ⊕ W is trivial. This implies that all the elements of
K0(X) have the form (V,Cn), where Cn is a trivial bundle, and this form is
unique up to stabilization by direct summing both with another trivial bundle
(there are analogous descriptions for real and quaternionic cases).

As we will see in the next chapter, there are classifying spaces BO(n), BU(n),
and BSp(n) so that n-dimensional real, complex, or quaternionic vector bun-
dles on a finite CW complex X are in bijection with homotopy classes of maps
from X to the corresponding classifying space. These spaces can be described
as the Grassmannian of n-dimensional subspaces of infinite dimensional real,
complex, or quaternionic space.

Taking a colimit of the inclusions U(1) ↩→ U(2) ↩→ · · · gives a space U with
a classifying space BU . Homotopy classes of maps [X,BU ] classify stable
isomorphism classes of complex vector bundles on X. Similarly to define BO
and BSp. Our K-theory group records pairs (V, n) where V is an stable
isomorphism class of bundle on X and n is an integer, the dimension of our
virtual vector bundle. Thus we have the following description of our K-theory
groups for suitably nice spaces X,

K0(X) = [X+, BU × Z],
KO0(X) = [X+, BO × Z],
KSp0(X) = [X+, BSp× Z].

HereX+ denotesX with an adjoined basepoint, which we need to do in keeping
with the convention that [−,−] denotes based homotopy classes.

It turns out these define the zeroth groups of generalized cohomology theories.
Using the suspension axiom for cohomology and the loop-suspension adjunc-
tion, we are forced into the following definition for the higher K groups of
X.

Definition 5.23: K-theory

The complex K-theory of a space X is the graded group,

K−i(X) := [X+,Ω
i(BU × Z)].

Similarly, the real K-theory of X is,

KO−i(X) := [X+,Ω
i(BO × Z)],
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and the quaternionic K-theory is,

KSp−i(X) := [X+,Ω
i(BSp× Z)].

This only defines the negative graded part of K-theory but we will
shortly see from Bott periodicity that this extends to all i ∈ Z.

These have a group structure coming from the fact loop spaces are H-spaces
(we’ll see in a second BU,BO,BSp are themselves loop spaces too). In fact in
the case of K and KO, these generalized cohomology theories have a graded
multiplication, like the cup product in usual cohomology, given by taking the
tensor product of vector bundles. Formally, this means some K-theories are
ring spectra.

Because K-theory is a generalized cohomology theory, the K-theory of a point
should be non-trival. We see that, K−i(pt) is the group of homotopy classes of
maps from a point to Ωi(BU × Z), or equivalently, πi(BU × Z). Analogously
for real and quaternionic theories. We see immediately that K0(pt) = Z; this
is just the fact that virtual vector spaces (i.e. virtual bundles over a point)
are classified by virtual dimension. The same holds in the other cases.

Proposition 5.24. If G is a topological group, then G is weak homotopy
equivalent to ΩBG.

Proof. As we will explain in the next chapter, the classifying space BG
is defined in general as the base of a fibration EG → BG with fibre G and
a contractible total space EG called the universal bundle. Consider the path
space fibration ΩBG ↩→ EBG → BG. Since EBG is contractible, we may
also think of this as the universal bundle of ΩBG. Let E be the pullback
by EBG → BG of the universal bundle; by universal properties it is also the
pullback by EG → BG of the universal bundle of ΩBG. We have the following
commutative diagram.

G G

ΩBG E EG ∼ pt

ΩBG EBG ∼ pt BG.

By the long exact sequence of a fibration applied to the horizontal and vertical
pullbacks, we see that E is weak homotopy equivalent to G and to ΩBG. By
transitivity, G ∼=WHE ΩBG. □
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Since ΩBG× Z = ΩBG, we conclude that for i ≥ 1 the K-theories are given
by homotopy classes of maps into iterated loop spaces of U,O, and Sp. In
particular for i ≥ 1,

K−i(pt) = πi−1(U), KO−i(pt) = πi−1(O), and KSp−i(pt) = πi−1(Sp).

One of the magical results of algebraic topology is that these groups are pe-
riodic. Moreover, iterated loopings of the groups U,O, Sp return back to the
group themselves. This implies the K-theory of all spaces is periodic. We
will not prove this wonderful result; the classical methods are by Morse theory
although there are many other approaches.

Theorem 5.25: Bott Periodicity

Up to weak homotopy equivalence,

Ω2U ∼= U, Ω8O ∼= O, and Ω8Sp ∼= Sp.

Explicitly, there are periodic sequences of loop spaces and their corre-
sponding periodic π groups, as depicted in Tables 4 and 5. In particu-
lar,the complex K-theory of any space is 2-periodic, while the real and
quaternionic K-theories are 8-periodic. Further, quaternionic K-theory
is the same as real K-theory up to a shift in degree by 4.

i (mod 2) 0 1
ΩiU U BU × Z

Ki+1(pt) = πi(U) 0 Z
Table 4. Bott Periodicity for U

i (mod 8) 0 1 2 3 4 5 6 7
ΩiO O O/U U/Sp BSp× Z Sp Sp/U U/O BO × Z

KO−i+1(pt) = πi(O) Z2 Z2 0 Z 0 0 0 Z
Table 5. Bott Periodicity for O and Sp

As rings, these have the following descriptions [S],

K∗(pt) = Z[ν, ν−1],

KO∗(pt) = Z[η,α, β, β−1]/(2η, η3, ηα,α2 − 4β)

KSp∗(pt) = KO∗(pt) · θ,
where |ν| = −2, |η| = −1, |α| = −4, |β| = −8 and |θ| = −4. Here, ν ∈
π2(BU) represents the tautological complex line bundle on CP 1, η ∈ π1(BO)
represents the tautological line bundle on RP 1, θ ∈ π4(BSp) is the tautological
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quaternionic line bundle on HP 1 with α ∈ π4(BO) the underlying real bundle,
and β ∈ π8(BO) is the tautological octonionic line bundle on OP 1 = S8.

Example 5.26. Let us find the complex K-theory of a sphere. We have,

K0(Sn) = [Sn
+, BU×Z] = Z⊕πn(BU) = Z⊕πn−1(U) =


Z n ∼= 1 (mod 2)

Z2 n ∼= 0 (mod 2).

And,

K1(Sn) = [Sn
+, U ] = Z⊕ πn(U) =


Z2 n ∼= 1 (mod 2)

Z n ∼= 0 (mod 2).

In the case of n = 1, we will see in the next chapter that all complex line
bundles on S1 are trivial and hence K0(S1) = Z just tracks the dimension of
a trivial bundle.

In the case n = 2, the complex line bundles on S2 are tensor products of copies
of the tautological/Hopf line bundle ξ and its dual. Since c1(ξ

⊗n) = nc1(ξ)
are all different for different n, the integers index a family of stably distinct
bundle. Since K0(S2) = Z2, we conclude the stable classes of bundles on S2

are given by nC ⊕ ξ⊗m for m,n ∈ Z. It turns out that (ξ ⊗ ξ) ⊕ C ∼= ξ ⊕ ξ.
Hence the K-theory of S2 may be described as a ring,

K0(S2) ∼= Z[ξ]/(ξ − 1)2.


Bordism Theory. Now we move on to a brief description of bordism. We

begin with some important intuition. In homotopy theory, we understand a
spaceX in terms of its holes; we consider all the ways to map spheres Sn intoX
up to identifying maps Sn → X connected by a map of cylinders Sn× I → X.
This may seem awfully restrictive in what types of holes we can capture.
Why don’t we consider maps of arbitrary n-manifolds M into X? Because
we now are dealing with many distinct spaces mapping into X we should
define identify maps not just through cylinders but through arbitrary (n+1)-
manifolds connecting maps of n-manifolds. This is essentially the content of
bordism theory (although we are often interested in adding extra structure to
these manifolds). As an extra note, one could see homology theory as taking
this one step further: we consider maps not just from manifolds into X but
from arbitrary “closed” CW complexes (i.e. cycles) into X up to boundaries
(this analogy is not quite right because there is the extra structure of a chain
complex in the homology case).

Consider a space X and “singular closed n-manifolds” in X, i.e. continuous
maps f : Mn → X from a closed smooth n-manifold M to X. Two such
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singular n-manifolds f : M → X, g : N → X are called bordant (or cobordant)
if there is a compact (n + 1)-manifold W and a continuous map F : W → X
so that ∂W = M ⊔ N and F |∂W = f ⊔ g. In this case, we call W a bordism
(or cobordism) between f and g. If f : M → X has a bordism to the empty
map ∅ → X (i.e. there is g : W → X with M = ∂W and g|∂W = f) we say f
is null-bordant.

Definition 5.27: Bordism Groups

Given a space X, its nth bordism group is the set,

ΩO
n (X) := {singular n-manifolds in X}/{null-bordant elements},

equipped with the group operation of disjoint union. That is, we identify
bordant singular n-manifolds.

If we require that our singular n-manifolds be oriented and that our
bordisms are oriented compatibly (so that ∂W = M ⊔ −N), then we
obtain the nth oriented bordism group,

ΩSO
n (X) := {oriented singular n-manifolds}/{oriented bordism}.

A stable almost complex structure on a smooth manifold M is a complex
vector bundle structure on the normal bundle ν of some embedding
M ↩→ RN . We can study singular n-manifolds up to bordisms ∂W =
M ⊔N with stable almost complex structures inducinga the given stable
almost complex structures on M and on −N :

ΩU
n (X) := {stable a.c. singular n-manifolds}/{stable a.c. bordism}.

There are several more versions of this construction, ΩG
n (X) given by

asking the stable normal bundles to have a G-structure. For example,
we could take G = Spin, SU, Sp, etc.. More exotically, we could consider
Ωfr

n(X), cobordisms of manifolds with stable normal framings (i.e. stable
trivializations of the normal bundle). Also there are ΩPL

n (X),ΩTop
n (X),

where we extend from cobordisms of smooth to topological or piecewise
linear manifolds.
aGiven a stable almost complex structure on a bordismW coming from an embedding
i : W → Rn with a normal bundle νW with a complex structure, it will restrict to a
bundle νM ⊕R on a boundary component M with a complex structure. Composing
i|M with the standard embedding Rn → Rn+1 gives an embedding of M with normal
bundle νM ⊕R, which we know has a complex structure and so gives a stable almost
complex structure on M .

These all define generalized homology theories; the corresponding cohomology
theories are called the cobordism groups. Since this is a generalized theory, the
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homology of a point is non-trivial. The graded groups ΩG
∗ := ΩG

∗ (pt) are called
the cobordism rings. These are the groups of all closed smooth n-manifolds
up to abstract cobordism (with the appropriate stable G-structure). They
have a graded ring structure coming from taking the Cartesian product of
spaces.

When X is a manifold, these bordism groups also possess a multiplication,
which can be described as follows. Suppose f : M → X and g : N → X
are two singular manifolds of dimension n and m and X is a closed manifold
of dimension k. We can consider the product, f × g : M × N → X × X.
Let X∆ ⊂ X × X be the diagonal. We can homotope f × g so that P =
(f × g)−1(X∆) is a smooth submanifold of M × N of dimension n + m − k.
Thus we get a singular manifold (f × g)|P : P → X which up to cobordism
is independent of our choice of homotopy and hence defines a multiplication
ΩG

n (X)× ΩG
m(X) → ΩG

n+m−k(X).

Note that every element of ΩO
∗ is 2-torsion. This is because a cylinder M × I

defines a null bordism of M ⊔M for any closed manifold M . The same is not
true in ΩSO

∗ or ΩU
∗ because M × I defines the wrong orientation on one of the

boundary components, instead this shows us that −M is the additive inverse
to M in the bordism group.

Let us compute these groups ΩG
n for G = O, SO in low dimensions n = 0, 1, 2.

Zero dimensional manifolds are points and bordisms between 0-manifolds are
line segments. An orientation on a point is given by a choice of sign. We
conclude ΩO

0 = Z2 (by counting points mod 2) and ΩSO
0 = Z (by counting

signed points).

One dimensional closed manifolds are all circles. These are always null-bordant
via the disk. Hence ΩO

0 = ΩSO
0 = 0.

In the two dimensional case, oriented two manifolds are surfaces Σg, which are
all null-bordant via handlebodies. Hence ΩSO

2 = 0.

To find ΩO
2 = 0 we thus need only study the non-orientable surfaces, which

are connected sums of projective planes. The projective plane RP 2 is not
null-bordant. This can be seen from the fact χ(RP 2) = 1 and the following
proposition.

Proposition 5.28. Any closed null-bordant manifold has even Euler charac-
teristic.

Proof. If M is odd dimensional, by Poincaré duality it has even Euler
characteristic. If M = ∂N is even dimensional, then X = N ⊔M N has Euler
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characteristic χ(X) = 2χ(N)− χ(M). But X is closed and odd dimensional,
hence has even Euler characteristic, which implies M does too. □

The Klein bottle K = RP 2#RP 2 is null-bordant. To see this, note the Klein
bottle can be formed by gluing the ends of a cylinder with opposite orienta-
tions. A null-bordism is just given by filling in the cylinder: see figure 5 where
the pink Klein bottle is filled in by the green interior.

Figure 5. Null Bordism of Klein Bottle

Given compact manifolds with boundary M,N , we can define a boundary
connect sum M#∂N by cutting out small hemispheres in boundary charts of
M and N , with the flat faces of the hemispheres sitting in the boundaries
of M and N , and gluing together along a cylinder with boundary gluing the
boundaries together. It is clear that ∂(M#∂N) = ∂M#∂N . In this way, we
see that we can boundary connect sum Klein bottles to show that connect
sums of Klein bottles are null-bordant. This shows that connect sums of even
numbers of copies of RP 2 are null-bordant, and it remains to deal with the odd
number cases. For that, we have the following proposition which generalizes
the results we just stated on Klein bottles.

Proposition 5.29. The group operation of disjoint union in the cobordism
ring is equivalent to the operation of connect sum. That is, given closed man-
ifolds M and N , the connect sum M#N is cobordant to M ⊔N .

Proof. Take a look at the picture proof in figure 6. □

From this we conclude that #2n+1RP 2 = (#nT 2)#RP 2 = Σn#RP 2 is bordant
to RP 2, since Σn is null-bordant. Thus, every surface is either null-bordant or
bordant to RP 2 and we conclude ΩO

2 = Z2.

Analyzing the case n = 3 is possible using handle decompositions and one
finds ΩSO

3 = 0. For n ≥ 4 the classification of manifolds is too intractable to
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M N

M#N

Figure 6. A bordism between M ⊔N and M#N

directly compute bordism groups. It turns out that,

ΩSO
4 = Z generated by CP 2,

ΩSO
5 = Z2 generated by SU(3)/SO(3),

ΩSO
6 = 0,

ΩSO
7 = 0,

ΩSO
8 = Z2 generated by CP 4 and CP 2 × CP 2.

All higher oriented bordism groups turn out to be non-zero. In spite of the
geometric complexity, the methods of characteristic classes, stable homotopy,
and spectra allow for computations of the bordism rings, as first undertaken
by Thom [Thom].

Theorem 5.30: (Dold, Milnor, Novikov, Quillen, Thom, Wall)

The unoriented bordism ring is,

ΩO
∗
∼= Z2[xi : 1 ≤ i ∕= 2k − 1] ∼= Z2[x2, x4, x5, x6, x8, . . . ],

where |xi| = i. For even i we may take xi to be the cobordism class of
RP i. For odd i we may take xi to be the cobordism class of P (2r−1, s2r)
where i = 2r(2s + 1) and P (m,n) is the Dold manifold defined as the
quotient of Sm × CP n under a Z2 action given by swapping antipodes
on Sm and complex conjugation on CP n.
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Rationally, the oriented and complex bordism rings are,

ΩSO
∗ ⊗Q = Q[y2, y4, y6 · · · ]
ΩU

∗ ⊗Q = Q[y1, y2, y3, · · · ],
where |yi| = 2i and we may take yi to be the cobordism class of CP i in
both cases. These complex projective spaces do not generate integrally,
although it turns out that,

ΩU
∗ = Z[a1, a2, a3, . . .] where |ai| = 2i,

and modulo 2-torsion, ΩSO
∗ is integrally generated by bi of degree 4i.

Remark 5.31. There is a known family of manifolds called the Milnor hyper-
surfaces Hij for i ≤ j which multiplicatively generate ΩU

∗ over Z. They are
defined as subvarieties of CP i × CP j given by,

Hij = {([z0 : · · · : zi], [w0 : · · · : wj]) ∈ CP i × CP j| z0w0 + · · ·+ ziwi = 0}
These are CP j−1-bundles over CP i. However, there are algebraic relations
in the bordism ring between these surfaces so that they are not a free set of
generators; there is not a known nice general description for the ai which form
a multiplicative basis.

The Atiyah–Hirzebruch Spectral Sequence. Now we can study the Atiyah–
Hirzebruch spectral sequence for the computation of generalized homology.
We will prove its construction and give a few simple applications.

Recall back to our construction of the Serre spectral sequence that given a
homologically simple Serre fibration p : E → B over a CW base, there was
a filtration of the chain complex of E by singular chains contained in the
preimages of successive skeleta of B, Ep = p−1(Bp). This gave the zeroth page
of a spectral sequence: Ep,q

0 = Cp+q(Ep, Ep−1). The first page of this spectral
sequence then had entries Ep,q

1 = Hp+q(Ep, Ep−1), which we were able to show
agreed with Cp(B;Hq(f)).

Now suppose h∗ is a generalized homology theory. The first page of a spectral
sequence still makes sense,

E1
p,q = hp+q(Ep, Ep−1).

We follow the argument we used for the Serre case, but diverge to avoid the
use of Künneth (which does not hold for generalized homology). By excision
and Feldbau’s lemma,

hp+q(Ep, Ep−1) =


hp+q(F ×Dp
α, F × ∂Dp

α),
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where F is the fibre, andDp
α are small balls contained in the p-cell eα of B. The

definition of reduced homology and the relation between relative homology and
reduced homology of a cofibre still make sense for a generalized theory,

=


α

hp+q(F ×Dp/F × ∂Dp).

With some thought, one sees this quotient as repeated suspensions,

=


α

hp+q(Σ
pF ).

It follows from excision that the suspension isomorphism extends to generalized
theories,

=


α

hq(F )

= Cp(B;hq(F )).

As before, the differential will be the usual cellular differential and hence we
obtain,

E2
p,q = Hp(B;hq(F )).

Going to the E∞ page, we should obtain the (associated graded) generalized
homology of the total space E. The question of convergence is a bit subtle,
as h∗(F ) and H∗(B) may both be non-trivial in infinitely many degrees. But
if B is a finite CW then we are definitely okay. Of course an analogous idea
holds in cohomology, and the same proof as for Serre gives a multiplication
whenever h∗ is multiplicative (i.e. represented by a ring spectrum).

Theorem 5.32: Atiyah–Hirzebuch Spectral Sequence

Let p : E → B be a homologically simple Serre fibration with a finite
CW base and a fibre F . Let h∗ be an extraordinary homology theory.
Then there is a spectral sequence,

E2
p,q = Hp(B;hq(F )) =⇒ hp+q(E).

And analogously in cohomology,

Ep,q
2 = Hp(B;hq(F )) =⇒ hp+q(E).

In particular, considering the fibration ∗ ↩→ X
id−→ X, one has a spectral

sequence,
E2

p,q = Hp(X;hq(∗)) =⇒ hp+q(X).

If h∗ is a multiplicative cohomology theory, then the cohomological spec-
tral sequences possess a multiplication with the usual properties.
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Remark 5.33. The general spectral sequence is sometimes called the Atiyah–
Hirzebruch–Serre spectral sequence, with the name Atiyah–Hirzebruch spec-
tral sequence being reserved for the special case of a trivial fibration. The case
of a trivial fibration is particularly useful because if we know the cohomology
of a space and the stable homotopy groups h∗(∗) of a generalized cohomol-
ogy theory (like in the case of K-theory) then we can directly compute the
generalized cohomology using our spectral sequence. △

Let us explore a couple properties of this sequence and apply it to a few
examples, beginning with K-theory.

In the case of complex K theory of a space X, remembering K0(∗) = Z and
K1(∗) = 0, the Atiyah–Hirzebruch sequence yields the following E2 page.

0 4

0

−2

2

4

6

H0(X) H1(X) H2(X) H3(X) H4(X)

H0(X) H1(X) H2(X) H3(X) H4(X)

H0(X) H1(X) H2(X) H3(X) H4(X)

H0(X) H1(X) H2(X) H3(X) H4(X)

H0(X) H1(X) H2(X) H3(X) H4(X)

Clearly the differentials on this page are trivial, and so the first possible action
happens on the E3 page.

One can also construct the Atiyah–Hirzebruch spectral sequence using ideas
related to Postnikov towers and it turns out the first differential comes from
a Postnikov k-invariant. In particular, the first differential in an Atiyah–
Hirzebruch spectral sequence must be a stable cohomology operation.

Remark 5.34. One interesting corollary of this is the following. It is not hard
to show that every stable cohomology operation over Q is trivial (i.e. the
cohomology H∗(K(Q, n);Q) is concentrated in degree n). Hence over Q there
can be no non-trivial first differentials. Hence we have,

hq(X)⊗Q =


r+s=q

Hr(X;Q)⊗ hs,

for any homology theory h.
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For the case of complex K-theory, we are looking for an operation H∗(X;Z) →
H∗+3(X;Z). It turns out there is only one such non-trivial operation, and one
can contruct an example where this differential is non trivial. Hence we have
the following.

Proposition 5.35. The first non-trivial differential in the complex K-theory
Atiyah–Hirzebruch spectral sequence is,

d3 = β ◦ Sq2 ◦ r : H∗(X;Z) → H∗+3(X;Z),

where β : H∗(X;Z2) → H∗+1(X;Z) is the Bockstein operation coming from

Z ×2−→ Z → Z2 and r : H∗(X;Z) → H∗(X;Z2) is reduction mod 2.

In the case of real K-theory, the E2 page looks as follows.

0 4

2

0

−2

4

6

8

H0(X) H1(X) H2(X) H3(X) H4(X)

H0(X;Z2) H
1(X;Z2) H

2(X;Z2) H
3(X;Z2) H

4(X;Z2)

H0(X;Z2) H
1(X;Z2) H

2(X;Z2) H
3(X;Z2) H

4(X;Z2)

H0(X;Z2) H
1(X;Z2) H

2(X;Z2) H
3(X;Z2) H

4(X;Z2)

H0(X;Z2) H
1(X;Z2) H

2(X;Z2) H
3(X;Z2) H

4(X;Z2)

H0(X) H1(X) H2(X) H3(X) H4(X)

H0(X) H1(X) H2(X) H3(X) H4(X)

In this case, there can be differentials on the E2 page leaving from the 8kth
and (8k − 1)th rows and they are given by,

d∗,8k
2 = Sq2 ◦ r : E∗,8k

2 = H∗(X;Z) → H∗+2(X;Z2) = E∗+2,8k−1
2

d∗,8k−1
2 = Sq2 : E∗,8k−1

2 = H∗(X;Z2) → H∗+2(X;Z2) = E∗+2,8k−2
2 .

On E3, the first non-trivial differential leaving the (8k + 6)th rows is,

d∗,8k+6
3 = β ◦ Sq2 : E∗,8k+6

3 = H∗(X;Z2) → H∗+3(X;Z) = E∗+3,8k+4
3 .

And finally on E5 the differential leaving the (8k + 4)th rows is,

d∗,8k+4
5 = β ◦ Sq4 ◦ r : E∗,8k+4

5 = H∗(X;Z) → H∗+5(X;Z) = E∗+5,8k
5 .

Example 5.36. Note since every non-trivial differential of Atiyah–Hirzebruch
for complex K-theory is on an odd page, the differentials always move an odd
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horizontal distance. Hence if the cohomology is concentrated in odd or even
degrees, the sequence has to degenerate on the E2 page.

For example, we know the cohomology of CP n and the complex Grassmannians
is contained in purely in even grades. For the case of CP n, we have,

Ep,q
2 = Ep,q

∞ =


Z p, q even and 0 ≤ p ≤ 2n,

0 otherwise.

We have the associated graded to Ki(CP n) is


p E
p,i−p
∞ which is Zn+1 if i

is even and zero otherwise. Recall that a short exact sequence of abelian
groups with final group Z always splits (i.e. Z is projective). Hence there are
no extension problems and the associated graded is isomorphic to the actual
group:

K0(CP n) = Zn+1 and K1(CP n) = 0.

Actually since nothing happened in this sequence, and everything was free,
this isomorphism is multiplicative,

K∗(CP n) = Z[ν, ν−1, x]/(xn+1), where |ν| = |x| = 1.

The element ν is the complex Hopf line bundle generating K∗(pt) and x is
the usual generator of H2(CP n). So we see that K0(CP n) has an explicit
basis given by xiν−i for 0 ≤ i ≤ n. We already computed the K theory of
S2 = CP 1 in example 5.26. By the naturality of the embedding CP 1 ↩→ CP n,
we conclude that xν−1 can be represented by (1−ξ), where ξ is the tautological
line bundle on CP n. Hence,

K0(CP n) = Z[ξ]/(1− ξ)n+1.

Since the first non-trivial differential in our sequence was on the E3 page,
another setting in which everything immediately degenerates is if the homol-
ogy is concentrated in degrees 0, 1, and 2. For example consider the genus g
orientable surface Σg. We see that,

Ep,q
2 = Ep,q

∞ =






Z q even and p = 0, 2,

Z2g q even, p = 1,

0 otherwise.

The associated graded to Ki(Σ2g) is Z2g+2 when i is even and zero otherwise.
Again everything is free and so this gives the K-theory:

K0(Σg) = Z2g+2 and K1(Σg) = 0.

Other examples can be done similarly.

Exercise 5.37. Compute the complex K-theory of RP n and of the complex
Grassmannians CG(n, k). 
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In the case of complex bordism ΩU
∗ , the groups for a point are restricted to even

dimensions like with complex K-theory. We conclude that for spaces with only
non-trivial even homology groups the Atiyah–Hirzebruch spectral sequence
degenerates on the E2 page. Hence we find for example, that additively,

ΩU
∗ (CP n) = ΩU

∗ (pt)[x]/(x
n+1), where |x| = 1.

If we switch from bordism to cobordism, we can make this isomorphism mul-
tiplicative.

Remark 5.38. This is really expressing that KU and ΩU are complex oriented
cohomology theories. These are multiplicative generalized cohomology theories
E∗ so that the map i∗ : E2(CP∞) → E2(S2) induced by inclusion is surjective,

along with a choice of t ∈ E2(CP∞) so that i∗(t) ∈ E2(S2) = E0(∗) is the
unit element (this is something like a first Chern class). Such generalized co-
homology theories are well studied and form the basis for chromatic homotopy
theory. △

For oriented bordism, we know the groups in low dimensions are ΩSO
i (∗) = 0

for i = 1, 2, 3 and Z for i = 0, 4. So for a space X, the beginning of the E2

page of the homological Atiyah–Hirzebruch spectral sequence looks like the
following.

0 2 4

2

0

4

H0(X) H1(X) H2(X) H3(X) H4(X) H5(X)

H0(X) H1(X) H2(X) H3(X) H4(X) H5(X)

d5

Recall from our discussion of edge morphisms in the Serre spectral sequence
(and it extends easily to Atiyah–Hirzebruch), that the map Ωn(pt) → Ωn(X)
should factor through E∞

n,0 by taking the quotient from E2 to E∞ and then
including E∞

n,0 into


p+q=n E
∞
p,q. But we know that Ωn(pt) → Ωn(X) must be

an injection, because there is a right inverse induced from the constant map
X → pt. Hence the quotient map E2

n,0 → E∞
n,0 must be the identity, and so

the maps dr : Er
r,n−r+1 → Er

0,n in the spectral sequence have to be trivial. In

particular, the transgressive map d5 shown above must be trivial. Hence the
contents of the pink squares never participate in any non-trivial differentials
and persist to E∞.
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This tells us the zeroth through third oriented bordism groups of X. Assume
X is connected so that H0(X) = Z. To determine ΩSO

4 (X), we need to solve
the extension problem,

0 → Z → ΩSO
4 (X) → H4(X) → 0.

As just discussed, the first map can be identified via the edge morphism with
ΩSO

4 (pt) → ΩSO
4 (X). But we know this map has a right inverse, and hence

by the splitting lemma the above short exact sequence splits. Actually, the
inverse σ : ΩSO

4 (X) → Z can be taken to be the signature map, which sends
f : M → X to the signature σ(M) (the signature of the quadratic intersection
form H2(M)×H2(M) → Z); Thom showed this is a cobordism invariant.

Hence we conclude,

ΩSO
i (X) = Hi(X) for i = 0, 1, 2, 3 and ΩSO

4 (X) = Z⊕H4(X).

We could try to extend this analysis further, since we know some higher bor-
dism groups of a point, but we would have to deal with non-trivial differen-
tials.

This has beautiful applications to the problem of geometric realization, also
known as Steenrod’s problem, which asks if homology classes of a general space
can be represented by the fundamental class of singular manifolds. These
results are due to Thom [Thom].

One can show that the edge morphism ΩSO
n (X) → Hn(X) is the map sending

a singular manifold f : M → X to the pushforward homology class f∗([M ]) ∈
Hn(X). Since cobordant singular manifolds define homologous cycles, this is
well defined. Since this edge map is a surjection for n ≤ 4, we conclude that
any homology class in Hn(X) is represented by a manifold. For n > 4, there
may be non-trivial differentials leaving the square E∗

n,0 and so we cannot say

if the morphism ΩSO
n (X) → Hn(X) will continue to be surjective. In fact it

will be surjective as long as n ≤ 6. For n ≥ 7 surjectivity fails, for example
Thom discovered a non-geometrically realizable class in L7(3)× L7(3), where
L7(3) is the lens space S7/Z3.

However notice, as we remarked earlier, if we work over Q, the Atiyah–
Hirzeburch spectral sequence has to immediately degenerate. Hence our ra-
tional edge morphism is always surjective, which has the following amazing
upshot.

Proposition 5.39 (Thom). Given a space X, and an integral homology class
α ∈ Hn(X). There is an integer k so that kα is represented by f∗([M ]) for
some oriented singular manifold f : M → X of dimension n.
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In fact this can be strengthened slightly. It happens that the spectral sequence
immediately degenerates modulo odd torsion (for the same reason as unori-
ented bordism below). The proof can be found in [CF, §14] or [R, IV §7].
This implies that the coefficient n in the preceding proposition may always be
taken to be odd.

If we instead consider unoriented bordism, it can be shown that the unoriented
cobordism spectrum is just a direct sum of Eilenberg–MacLane spectra. Since
the Atiyah–Hirzerbuch spectral sequence for ordinary homology always imme-
diately degenerates, the same must be true for unoriented cobordism. Since
Z2 is a vector space, there can be no extension problems and so one has,

ΩO
n (X) =



p+q=n

Hp(X;ΩO
q (pt)).

This gives a complete description of oriented bordism groups. It also means
the edge morphism we just considered is always surjective for ΩO

n . This of
course has the following corollary.

Proposition 5.40 (Thom). Given a space X, and a mod 2 homology class
α ∈ Hn(X;Z2), α is represented by f∗([M ]) for some singular manifold f :
M → X of dimension n.

One final possible application for the Atiyah–Hirzebruch spectral sequence is
to stable homotopy. Suppose there were a space X whose homology groups
and stable homotopy groups we knew or were not too hard to determine. Then
we could apply Atiyah–Hirzebruch:

Hp(X; πst
q ) =⇒ πst

p+q(X)

to possibly determine the stable homotopy groups πst
q of the sphere.

This is actually a promising approach. Kochman is able to compute the first
64 stable homotopy groups of the sphere using this idea and some computer
assistance [K]. The space X he uses is actually not a space but a spectrum,
namely the Brown–Peterson spectrum BP . We will later see that complex
cobordism Ω∗

U is represented by the complex Thom spectra MU . It happens
thatMU when localized at a prime p becomes homotopy equivalent to a wedge
sum of suspensions of spectra; these wedge summands are precisely the BP. It
can be computed that the homotopy of BP are Zp polynomial algebras and the
homology can be computed explicitly as a module over the Steenrod algebra.
This makes these spaces perfect for the above application.

6. Characteristic Classes
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6.1. Vector Bundles and Classifying Spaces.

Definition 6.1: Principal G-Bundles and Vector Bundles

A locally trivial fibration (we will call this a fibre bundle) p : E → B is
a principal G-bundle for a topological group G if there is a free right G
action on E and B = E/G. That is, G acts freely and transitively on
the fibres of p.

A rank n vector bundle is a fibre bundle p : V → B with fibre Rn so
that the bundle has a covering of local trivializations so that overlapping
trivializations differ by continuously varying linear isomorphisms of Rn.
Similarly for complex or quaternionic vector bundles but with Cn or Hn

instead of Rn.

A principal G-bundle can be expressed by local data as follows. Suppose B is
covered by open sets Uα over which the bundle trivializes as p : Uα ×G → Uα

(we will see taking the Uα contractible suffices). Given two overlapping trivial-
izations Uα, Uβ, there should be a transition map ϕαβ : Uα∩Uβ → G so that if
(x, g) and (x, h) represent x ∈ E in the two trivializations, then ϕαβ(x) = g−1h.
For these transition functions to define a prinicipal G-bundle, it is necessary
and sufficient that they satisfy the following cocyle conditions,

ϕβα = ϕ−1
αβ and ϕαβϕβγϕγα = id.

Vector bundles can be similarly defined in terms of transition functions ϕαβ :
Uα ∩ Uβ → GL(Rn).

Remark 6.2. Note that the fibres of G-bundles are G torsors, they are home-
omorphic to G with an action of G acting like left multiplication but there
is no preferred identity element. One way to think of this condition is like
a non-linear version of an affine vector space. Complementarily, the fibres of
a vector space have a preferred zero element, but there is no way to define
an addition action on the vector space. One way to think of this is like an
abstract vector space with no reference to a standard basis or an addition.

If we give either bundle its missing structure: i.e. give the fibres of the principal
G-bundle an identity element or the fibres of a vector bundle an addition action
by Rn, then they become trivial. △

Definition 6.3

A morphism between principal G-bundles P,Q over B is a G-equivariant
map P → Q. A morphism between vector bundles E,E ′ over B is a
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map commuting with the projection to the base which is linear on the
fibres in a local trivialization.

Proposition 6.4. Principal G-bundles have the following properties.

(i) A morphism of principal G-bundles is an isomorphism.

(ii) A principal G-bundle with a section is trivial.

(iii) Every principal G-bundle and every vector bundle over a contractible
paracompact base is trivial.

Proof. (i) Consider a morphism σ : P → Q. If P and Q are trivially
equal to B × G, then the morphism has the form σ(b, g) = (b, gf(b)) for a
map f : B → G. But then right multiplication by f(b)−1 gives an inverse to
σ. If P,Q non-trivial, we know they are locally trivial and hence σ is still an
isomorphism since it is locally.

(ii) Given a section s : B → P of a principal G-bundle P → B, there is a
morphism ϕ : B × G → P given by ϕ(b, g) = gs(b). By (i) this gives an
isomorphism of P to a trivial bundle.

(iii) By Feldbau’s lemma, a principal G-bundle P → B with B contractible
is trivial as a fibration. We need to show this trivialization is G-equivariant.
Subdivide B into contractible pieces over which P trivializes. On each such
piece P possesses a section. Inductively, we can extend our section to each
new local trivialization since each additional trivializable neighbourhood is
contractible (we need paracompactness for this induction). Thus we obtain a
section on all of B and hence P is trivial. For the vector bundle case, look at
the associated frame bundle (defined shortly) which must be trivial. □

We now discuss a couple way to get new bundles from old ones .

Definition 6.5: Pullback Bundles

Let p : E → B be a principal G-bundle or a vector bundle (or any fibre
bundle). And f : B′ → B be a continuous map. The pullback bundle
f ∗E is defined to make the following diagram a pullback square in the
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categorical sense,

f ∗E E

B′ B

f∗p

f

p

f

In terms of universal properties, f ∗E is defined so that any bundle F →
B′′ with a bundle map F → E that factors as B′′ → B′ f−→ B on the

base, must factor through F on the total space. Explicitly, the pullback
is given as f ∗E = {(b′, e)|p(e) = f(b′)} ⊂ B′ ×E. This bundle will be a
principal G-bundle or a vector bundle when p is.

Recall a G-space F is a topological space with a continuous left G-action.

Definition 6.6: Associated Bundle

If F is a G-space and p : E → B is a principal G-bundle, we can form
the associated bundle E ×G F defined as the quotient of E × F by the
G-action g · (e, f) = (xg−1, gf). Categorically, this is defined to make
the following diagram a pushout square,

E ×G F E × F

E × F E ×G× F

ρF

ρE

Here the maps ρE,F denote the action of G on E,F with the identity on
the other factor, and the two maps E × F → E ×G F are the quotient
map. Note E×GF will be a fibre bundle with fibre F . Furthermore it will
be a bundle with structure group G, meaning the transition maps ϕαβ :
Uα ∩ Uβ → Homeo(F ) factor through the G-action G → Homeo(G).

Conversely, suppose X → B is an F -bundle with structure group G. Then
we obtain a principal G-bundle using the transition data Uα ∩ Uβ → G to
determine the local data of the G bundle. If the G-action on F is faithful,
i.e. G → Homeo(F ) has no kernel, then this will be inverse to the associated
bundle construction.

In our settings of interest F will be a vector space with a faithfulG-representation.
Then the associated bundle E×GF will be a vector bundle. Conversely, given
a vector bundle V with a faithful G-representation on the fibre vector space,
we will get a principal G-bundle, which we call the associated frame bundle.
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Because the associated constructions are inverse to each other, classifying vec-
tor bundles with a given faithful G-representation is the same as classifying
principal G-bundles. We will see some examples shortly.

Proposition 6.7. Sections of an associated bundle E×GF are the same thing
as G-equivariant maps E → F .

Proof. A good exercise. □

Consider a bundle E → B with structure group G. Suppose G ⊂ H. It
is always possible to extend our bundle to have structure group H just by
considering the transition functions as living inH. IfH ⊂ G, then the question
of reduction of the structure group to H is more subtle.

More generally, suppose we have some homomorphism ϕ : H → G. We can ask
whether the bundle E → B with structure group G reduces2 to an H-structure
so that the transition maps factor through ϕ. In terms of associated principal
bundles, a principal G-bundle P has a reduction to a principal H-bundle Q if
there is an (iso)morphism, Q×H G → P , where we use ϕ to think of G as an
H-space.

IfH ⊂ G, then the reducibility of structure group of P from G toH is the same
as the fibre bundle P/H being trivial. And a choice of reduction is a choice
of trivialization, or equivalently a choice of section. This is because a section
σ : X → P/H gives a pullback bundle σ∗(P → P/H) which is a reduction of
P to structure group H. Conversely, a choice Q×H G ∼= P gives,

P/H ∼= P ×G (G/H) ∼= Q×H G×G (G/H) ∼= Q×H (G/H) ∼= B ×G/H.

Example 6.8. Let us see some examples of the relationship between vector
bundles and their associated frame bundles.

(i) Consider a rank n real vector bundle E. Using its standard represen-
tation, this has structure group GL(Rn). It has an associated frame
bundle FE which is a principal GL(Rn)-bundle. Explicitly, the fibre
of FE over x consists of linear isomorphisms of Ex. Hence classifying
real vector bundles on X is the same as classifying principal GL(Rn)-
bundles on X. The same analysis works for complex and quaternionic
bundles with GL(Cn) and GL(Hn).

(ii) Consider O(n) with its standard representation. A rank n vector bun-
dle with structure group O(n) is the same thing as a vector bundle

2If ϕ is a surjection rather than injection this is sometimes called a lift instead of
reduction of structure group.
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with a Riemannian metric, since the fact transition maps are isome-
tries means we can extend a metric across trivializations. The associ-
ated frame bundle has fibres consisting of orthogonal transformations
of the fibre.

Any GL(Rn) bundle has a reduction to an O(n) bundle. We can
see this in two ways. Geometrically, assuming X is paracompact,
a partition of unity argument show a vector bundle on E always
inherits a metric. Topologically, O(n) is a deformation retract of
GL(Rn) by Gram–Schmidt; polar decomposition for matrices implies
GL(Rn)/O(n) is the space of positive definite matrices, hence a triv-
ialization is a choice of continuously varying positive definite matrix
(this is just a non-degenerate bilinear form). Since GL(Rn)/O(n) is
contractible, a section of P/O(n), i.e. a metric, always exists. This
means classifying real vector bundles is the same as classifying prin-
cipal O(n)-bundles.

Analogously, having structure group U(n) or Sp(n) means the bundle
is complex with a Hermitian metric or quaternionic with a quater-
nionic Hermitian metric respectively. By the same argument as above,
GL(Cn) bundles andGL(Hn) bundles always have a reduction to U(n)
and Sp(n) bundles. Hence classifying complex (resp. quaternionic)
vector bundles is the same as classifying principal U(n)-bundles (resp.
Sp(n)-bundles).

(iii) Given a real vector bundle, we can ask if it has a reduction of struc-
ture group to SL(Rn). Or equivalently by above a reduction to SO(n).
This is the same as the bundle being oriented, and a choice of trivial-
ization is an orientation. To see this note if F is the associated O(n)
frame bundle, then F/SO(N) is a Z2-bundle measuring the sign of
the determinant of a choice of orthonormal basis for each fibre of the
bundle. A section of this quotient bundle must be constant, i.e. we
need a consistent orientation for the fibres of our space. So classifying
oriented vector bundles is the same as classifying principal SO(n)-
bundles. Note U(n) ⊂ SO(2n), hence every complex vector bundles
has a relaxation of its structure group to an underlying oriented real
bundle.

The reduction SU(n) ⊂ U(n) does not have as obvious a geometric
interpretation. One way to express it is that a complex vector bun-
dle E reduces to structure group SU(n) if and only if its complex
determinant line bundle Λtop

C E is trivial, and a choice of reduction
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is a choice of trivialization. This is analogous to the fact a real ori-
entation is a trivialization of the real determinant line bundle. Note
Sp(n) ⊂ SU(n) so every quaternionic vector bundle relaxes to a com-
plex vector with a trivial determinant bundle, and even more generally
to an oriented real bundle.

(iv) Consider an oriented real bundle E with structure group SO(n). Re-
call that for n ≥ 3, SO(n) had a simply connected double cover
Spin(n). We can ask about a lift of the structure group via the cov-
ering Spin(n) → SO(n). If such a lift of the associated frame bundle
exists, we say E is spin and a choice of lift is a spin structure. If the
tangent bundle of an oriented manifold M is spin, we say M is spin.
Suppose P is a principal Spin(n)-bundle representing a spin struc-
ture on some vector bundle or manifold. Given some representation
of Spin(n) on a vector space V (there are several such representations
we might care about), the associated bundle P ×Spin(n) V is called a
spinor bundle. These are of much interest in mathematical physics
because sections of spinor bundles correspond to classical fields rep-
resenting fermionic particles.

(v) The group Spin(n) has a central extension to the group Spinc(n) =
Spin(n)×Z2 U(1), which can be thought of as a complex Spin group.
There is an obvious map Spinc(n) → SO(n). If the associated frame
bundle of an oriented vector bundle E admits a lift with respect to this
map, a choice of such lift is called a spinc structure on E. These are
mostly of interest because they allow for many of the same construc-
tions as spin structures, and many more spaces admit spinc structures
on their tangent bundle than spin structures.



Associated to any topological group G, there is an important space that will
help us classify principal G-bundles and hence vector bundles with structure
group G.

Definition 6.9: Classifying Space

Given a topological group G, the classifying space BG of G is the space
uniquely defined up to weak homotopy equivalence, so that there is a
weakly contractible space EG and a principal G-bundle EG → BG
called the universal bundle of G.
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The fact that classifying spaces are unique will follow shortly from our central
theorem. But we can prove they always exist in a fairly explicit way.

Theorem 6.10: Milnor’s Construction

For any topological group G, there is a classifying space BG.

Proof. Take EG to be the infinite join of copies of G (i.e. the colimit of
the join of n copies of G),

EG = G ∗G ∗G ∗ · · · .
A more intuitive way of writing this is that EG consists of infinite vectors
(t1g1, t2g2, . . .) where ti ∈ [0, 1], gi ∈ G, only finitely many of the ti are non-
zero, and the ti sum to one (note we are also identifying entries 0gi = 0gi).
The group G has a continuous free action on EG by right multiplication on
each entry of our infinite vector. Set BG = EG/G. By construction, this
is a principal G-bundle (in fact it is trivial, since picking the representative
(t1e, t2g2, · · · ) defines a section).

Note EG is contractible. Given a spheroid Sn → EG, it must land in some
finite join G ∗ · · · ∗G. But then it must be contract inside the next join since
(A, 0) is always contractible inside A ∗B. □

If EG → BG is a universal bundle and H ⊂ G is a subgroup, then we can
consider first the quotient of EG by H and then by G/H:

EG

EG/H

BG

H

G

G/H

We conclude that BH = EG/H and we obtain a fibration,

G/H ↩→ BH → BG.

It is also clear, using products of universal bundles that,

B(G1 ×G2) = BG1 × BG2.

Example 6.11. We list several classifying spaces of interest.

(1) If G = Z2, then S∞ → RP∞ is a principal Z2 bundle with contractible
total space. So BZ2 = RP∞.
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(2) If G = Z, then exp(2πi−) : R → S1 is a principal Z-bundle. So
BZ = S1.

(3) More generally, whenever G is discrete BG = K(G, 1).

(4) For G = O(n), the universal bundle is V (∞, n) → G(∞, n). This
bundle is given by sending an orthonormal n-frame in R∞ to the
subspace it spans. Note that V (∞, 1) = S∞ is contractible, and the
fibration,

V (∞, n− 1) ↩→ V (∞, n) → S∞,

shows inductively by the homotopy long exact sequence that V (∞, n)
is always weakly contractible (and contractible by Whitehead). Hence
BO(n) = G(∞, n) and EO(n) = V (∞, n).

For analogous reasons, BU(n) = CG(∞, n) and BSp(n) = HG(∞, n),
and EU(n) = CV (∞, n) and ESp(n) = HV (∞, n). Of particular
interest is that BU(1) = CP∞. Using the fact about classifying spaces
of products, BT n = (CP∞)n.

(5) For G = SO(n), note this is a subgroup of O(n). Hence,

BSO(n) = V (∞, n)/SO(n) = G+(∞, n).

We also obtain a fibration O(n)/SO(n) → G+(∞, n) → G(∞, n)
which is just the usual double cover. Analogously one has BSU(n) =
CV (∞, n)/SU(n).

Consider a discrete group G and a nice enough space X, say a CW complex. A
path connected principal G-bundle P on X is a connected covering space of X.
The G-action on the fibres are the deck transformations of the covering and
the fact the G-action is transitive on fibres, means that P is a normal covering.
Conversely, any normal covering of X with deck transformation group G is a
connected principal G-bundle on X and an isomorphism of normal coverings
gives an isomorphism of bundles and vice versa. Since the covering is normal,
isomorphism classes of coverings of X with deck transformation group G are
in bijection with groups H so that π1(X)/G ∼= H. This is the same as an
exact sequence,

0 → H → π1(X) → G → 0.

Up to isomorphism class of H, it is enough that we just know the surjective
map π1(X) → G. We conclude connected principal G-bundles are classified
by surjective homomorphisms π1(X) → G.

If we generalize to consider principal G-bundles P that are not connected,
then we know each path component is a regular covering of X for a subgroup
G′ ⊂ G. Moreover, the set of path components will have the structure of
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a G/G′ torsor. Thus, we find principal G-bundles are classified by arbitrary
homomorphisms ϕ : π1(X) → G; the map π1(X) → im(ϕ) determines a
connected bundle and the inclusion im(ϕ) → G describes the torsor structure
of the set of path components.

To reiterate, we have found for G discrete,

{Principal G-bundles on X}/ ∼ ←→ Hom(π1(X), G).

We can make this characterization purely in terms of X instead of its fun-
damental group. Using the representability of cohomology and the universal
coefficient theorem (these will both work fine for G non-abelian in rank one)
along with Hurewicz,

[X,K(G, 1)] = H1(X;G) = Hom(H1(X), G) = Hom(π1(X), G).

Since K(G, 1) = BG, we conclude,

{Principal G-bundles on X}/ ∼
∼=−→ [X,BG].

We can actually make this isomorphic explicit. We see that tracing through
the definitions, a principal bundle P on X is determined from the map f :
X → BG by pulling back the universal bundle: P = f ∗EG.

This wonderful result, that principal G bundles for G discrete are represented
by maps to BG, generalizes verbatim to arbitrary topological groups. The
classifying spaces BG are so named because they classify isomorphism classes
of bundles. That is, BG is a representing object for the functor,

PBundG : CWhTopop → Set,

taking a CW complex X to the set of isomorphism classes of principal G-
bundles on X.

Theorem 6.12: The Classification of Principal Bundles

Let PBundG(X) denote the equivalence classes of principal G-bundles
on a CW complex X. Then there is a correspondence,

PBundG(X) ∼= [X,BG],

given by sending f : X → BG to the pullback bundle f ∗EG.

Lemma 6.13. Suppose p : E → B is a principal G-bundle and B′ is a CW
complex. If two maps g, h : B′ → B are homotopic, then the pullback bundles
g∗E and h∗E are equivalent.

Proof. Let F : B′ × [0, 1] → B be a homotopy between g and h. There
is a pullback bundle E = F ∗E defined over B′ × [0, 1]. It suffices to show
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E is equivalent to h∗E × [0, 1], or equivalently to construct a morphism E →
h∗E× [0, 1]. This is the same thing as finding a section of E×G (h

∗E× [0, 1]) →
B′× [0, 1]. On the zero skeleton of B, this bundle is defined over a [0, 1], hence
it is trivial and must possess a section. Now inductively, since this bundle is in
particular a Serre fibration, we can extend this section over increasing skeleta
of B′ to obtain a section and hence a morphism E → h∗E × [0, 1]. □

Proof. (of Theorem 6.12) The above lemma shows the correspondence
in the theorem statement is a well defined map from [X,BG] to PBundG(X).
We wish to show it is a bijection.

We begin with surjectivity. Given a principal G-bundle P → B, consider the
associated bundle P ×G EG → B. The fibre of this bundle is EG, which
is weakly contractible, and hence this bundle has a section (by obstruction
theory). Such a section defines a G-equivariant map P → EG. Since this is G-
equivariant, we may pass to the quotient spaces to obtain a map f : B → BG.
By universal properties, f ∗EG = P .

Now we show injectivity. Suppose f0, f1 : B → BG are two maps so that
f ∗
0EG and f ∗

1EG are isomorphic. Let P = (f ∗
0EG) × [0, 1] → B × [0, 1].

There is an associated bundle Q = P ×G EG → B × [0, 1]. The G-equivariant

bundle maps f ∗
0EG → EG and f ∗

0EG
∼=−→ f ∗

1EG → EG define two sections
of (f ∗

0EG) ×G EG → B and hence a section of Q over B × {0} ∪ B × {1}.
Since Q has weakly contractible fibre, this section extends to one over all of
B× [0, 1] (by obstruction theory). This then gives a G-equivariant bundle map
P → EG. We may pass to the quotient to obtain a map B × [0, 1] → BG
which is a homotopy between f0 and f1. □
Corollary 6.14. The space BG is unique up to weak homotopy equivalence.

Proof. Suppose we have another model for a universal bundle EG → BG.

By Theorem 6.12, there is a map f : BG → BG so that f ∗EG = EG. Let

F : EG → EG be the induced map on total spaces. We thus have a morphism
of fibrations,

G EG BG

G EG BG.

id F f

Note that id : G → G clearly induces an isomorphism on homotopy groups.

And F does as well since EG,EG are contractible. But then by the five
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lemma applied to the homotopy long exact sequences of these fibration, f must
also induce isomorphisms of homotopy groups. Hence f is a weak homotopy

equivalence of BG and BG. □

One can also show on general abstract nonsense grounds that any space rep-
resenting the functor PBundG must be weak homotopy equivalent to BG, and
hence is the base of a G-bundle with contractible total space.

Example 6.15. This is a very powerful result and we can make preliminary
classifications of some low dimensional bundles using it.

(1) Consider the set of rank one real vector bundles on X. By above, this
is the same as classifying principal O(1) = Z2 bundles on X. Note
BZ2 = RP∞ = K(Z2, 1). So,

PBundO(1)(X) ∼= [X,BZ2] ∼= [X,RP∞] ∼= H1(X;Z2).

So real line bundles are classified by elements of H1(X;Z2). We will
see shortly that the cohomology class corresponding to a line bundle E
under this classification is called the first Stiefel-Whitney class w1(E).

In the case of X = S1, H1(S1;Z2) = Z2. The two isomorphism
classes of line bundles on S1 are the trivial bundle and the Möbius
strip (which can’t be trivial since it is non-orientable). By naturality,
we conclude that for any connected CW complex X and a line bundle
E → X, the classifying cohomology class w1(E) evaluated on a 1-cell
e1 of X gives 0 or 1 ∈ Z2 if E is the trivial bundle or the Möbius strip
respectively when pulled back to e1 ⊔ e0.

(2) Now consider rank one complex vector bundles on X or equivalently
principal U(1)-bundles. Note BU(1) = CP∞ = K(Z, 2). So,

PBundU(1)(X) ∼= [X,BU(1)] ∼= [X,CP∞] ∼= H2(X;Z).

Thus complex line bundles are classified by elements ofH2(X;Z). The
cohomology class corresponding to a complex line bundle E under this
classification is called the first Chern class c1(E).

For X = S2, H2(S2;Z) = Z. These bundles are classified by their
degree: S2 = CP 1 has tautological line bundle O(−1), its dual O(1),
and a Z’s worth of bundles O(±k) = O(±1)⊗k.

(3)

Exercise 6.16. Classify principal SL(2,C)-bundles on CP 2. 
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Suppose one has a map of topological groups f : G → H. Consider the
associated bundle EG ×G H, where we let G act on H via f . This is a
principal H-bundle over BG and so by Theorem 6.12, it must be induced
by a unique homotopy class of map Bf : BG → BH. This map can also
be recovered as follows. Given a principal G-bundle P on X, we obtain an
associated principal H-bundle P×GH on X. This gives a map PBundG(X) →
PBundH(X) for anyX, i.e. a natural transformation PBundG → PBundH . By
the Yoneda lemma, this corresponds to a map BG → BH which must agree
with Bf . It is clear this map is functorial in the appropriate senses. Hence the
“classifying operation” B(·) defines a functor from topological groups TopGp
to hTop.

Example 6.17. Consider the usual short exact sequence of a subgroup H ⊂
G → G/H. Functorially, we get a fibration,

BH → BG → B(G/H).

This fits in with a previously obtained map to give a fibration sequence,

G/H → BH → BG → B(G/H).

We have proved that ΩB(G/H) ∼= G/H and so this fibre sequence is nothing
but a portion of the Puppe sequence for BH → BG. △

6.2. The Cohomology of Classifying Spaces. We saw in Example
6.15 that we could classify line bundles using cohomology. While this is too
strong to hope for in general, we may reasonably conclude that homotopy
classes of maps [X,BG] and hence G-bundles can be distinguished through
invariants with values in cohomology classes. This is precisely the idea of
characteristic classes.

Definition 6.18: Characteristic Classes

A characteristic class c of G-bundles over a coefficient group F is an
assignment of a cohomology class c(E) ∈ H∗(X;F ) to every principal
G-bundle E on every space X which is natural with respect to pullbacks.
That is for f : X → Y and a bundle E on Y ,

c(f ∗E) = f ∗c(E).

More succinctly, a characteristic class is a natural transformation,

c : PBundG → H∗(−;F ).

We will usually consider characteristic classes for vector bundles which
we take to be the characteristic class of their associated frame bundle.
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Note that a characteristic class is uniquely determined by its value on the
universal bundle EG, since every bundle is the pullback of EG and using
naturality. And moreover, any cohomology class of BG defines a characteristic
class c(E) by looking at its pullback under the defining map X → BG of a
bundle E → X. Hence (this is just the Yoneda lemma) characteristic classes
of G-bundles are the same thing as cohomology classes of BG.

So, to understand characteristic classes on real/complex/oriented vector bun-
dles, we will want to understand the cohomology ofBO(n), BU(n) andBSO(n).
We will obtain the cohomology of these spaces, and hence a list of important
characteristic classes, from spectral sequences.

Remark 6.19. The preceding definition could be replaced with asking for a
natural transformation PBundG → E∗, where E is some generalized cohomol-
ogy theory. This will give us characteristic classes in a generalized cohomology
theory and by Yoneda they are determined by E∗(BG). These are of interest in
many situations, particularly forK-theory. Also well studied are characteristic
classes in the equivariant cohomology of an equivariant bundle. △

Also note that whenever we have a map G → H, and hence a map BG → BH,
this gives a way to pullback characteristic classes ofH-bundles to characteristic
classes of G-bundle corresponding to a pullback of bundles. Hence whenever
we have a geometric way to turn one bundle into another, we will get some
relation between characteristic classes; we will use this idea several times.

Now we get to work computing the cohomology of our classifying spaces.

Homology of BU(n): Note that the torus T n is a subgroup of U(n) by con-
sidering unitary matrices which are diagonal. Thus we get a fibration,

U(n)/T n ↩→ BT n → BU(n).

Note that U(n)/T n is the manifold of complete flags in Cn. This has a
cell structure with only even dimensional cells by the standard Bruhat
description. BU(n) is the infinite dimensional complex Grassmanni-
ans and using the Schubert cell decomposition in the direct limit,
again the cells are all even. Consider the associated cohomological
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spectral sequence on the E2 page.

H∗(BU(n))

∗ ∗ ∗

∗ ∗ ∗

Note the only non-trivial entries are in the green squares, since the
cellular chain groups and hence cohomology groups of BU(n) and
U(n)/T n are only non-trivial in even degrees. But then we see that
all differentials are trivial and so E2 = E∞ is the associated graded
of the cohomology of BT n. In particular, the natural edge morphism
given by pullback under the fibration,

π∗ : H∗(BU(n)) → H∗(BT n),

is an injection.

Note that BT n = (BS1)n = (CP∞)n. Its cohomology is the free
polynomial algebra generated by elements x1, . . . , xn each of degree
two corresponding to each copy of CP∞ in (CP∞)n. We claim that
π∗ lands in the subalgebra of Z[x1, . . . , xn] generated by symmetric
polynomials. To see this let σ ∈ Sn act on (CP∞)n by permutation
of factors. By naturality, the map π : BT n → BU(n) must pull back
EU(n) to the ET n. Let ξ be the associated Cn bundle to EU(n)
and η the complex line bundle associated to S∞ → CP∞. We have a
diagram of the above form,

n η = π∗ξ ξ

BT n BU(n)

BT n.

π

σ π

This should commute up to homotopy, because the permutation σ
induces an isomorphism of the vector bundles π∗ξ lying above (it
just shuffles the copies of η). Thus given α ∈ H∗(BU(n)), we have
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π∗α = σ∗π∗α. Since clearly σ∗(xσ(i)) = xi, we conclude π∗ is an
injection into the space of symmetric polynomials of the xi. In fact
it has to be an isomorphism onto this subalgebra. This just follows
from cell counting. We know dimH i(BU(n)) is the number of Young
Tableaux diagrams with i squares in an “∞ × n grid”. It is a basic
combinatorially exercise to see this is also the dimension of degree i
symmetric polynomials in n variables. Note the map π∗ is also a ring
map. Thus we conclude as rings,

H∗(BU(n)) ∼= Z[σ1(x), . . . , σn(x)] where |σi| = 2i.

Here σi(x) is the ith elementary symmetric polynomial in x1, . . . , xn.
It is customary to write ci for σi(x); this is called the ith universal
Chern class. The corresponding characteristic class ci(E) for a com-
plex vector bundle E is called the ith Chern class of E. The elemen-
tary symmetric polynomials and thus the classes ci can be expressed
in terms of the xi using the following simple formula,

(1 + x1) · · · (1 + xn) = 1 + c1 + · · ·+ cn := c ∈ H∗(BU(n)),

where ci is the homogeneous part of degree 2i. This element c in
the cohomology ring (and its pullback via any classifying map) is
called the total Chern class. By naturality, the inclusion BU(n) ↩→
BU(n+1) induces a pullback map which is the identity on the classes
ci for i ≤ n and sends cn+1 to zero. In particular, the first Chern
class c1 can clearly be seen to agree with the characteristic class for
complex line bundles we defined before under the same name.

Homology of BSp(n): Exactly the same analysis goes through for the quater-
nionic case. Let H∗(B(S3)n) = H∗((HP∞)n) = Z[y1, . . . , yn] where
|yi| = 4. We obtain an injection,

H∗(BSp(n)) → H∗((HP∞)n),

which is an isomorphism onto symmetric polynomials of the yi. So if
we let,

(1 + y1) · · · (1 + yn) = 1 + p1 + · · ·+ pn,

where pi is the homogeneous part of degree 4i, we find,

H∗(BSp(n)) ∼= Z[p1, . . . , pn] where |pi| = 4i.

The element pi is called the ith universal Pontryagin class and for a
quaternionic vector bundle E it corresponds to a characteristic class
pi(E) called ith Pontryagin class of E.
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Homology of BO(n) over Z2: The integral homology of O(n) is more com-
plicated, but we can work modulo 2 and obtain a very similar analysis.

Let H∗(B(Z2)
n;Z2) = H∗((RP∞)n) = Z2[t1, . . . , ti] where |ti| = 1.

We can consider the usual map induced by inclusion,

H∗(BO(n);Z2) → H∗(BZn
2 ;Z2).

We may consider the fibration O(n)/Zn
2 → BZn

2 → BO(n) and the
associated spectral sequence (it is slightly subtle to show this fibra-
tion is homologically simple, but we will omit the details). Over Z2

we know the dimension of the homology of all these spaces (by cell
counts) and we deduce that the spectral sequence must immediately
degenerate (otherwise H∗(BZn

2 ;Z2) would not have enough genera-
tors). Hence the map above is an injection and by the same argument
as above, using the commutative diagram and a cell count, it defines
an isomorphism onto the subalgebra of symmetric polynomials.

So letting,

(1 + t1) · · · (1 + tn) = 1 + w1 + · · ·+ wn,

where wi is the homogeneous part of degree i, we find,

H∗(BO(n);Z2) ∼= Z2[w1, . . . , wn] where |wi| = i.

The element wi is called the ith universal Stiefel–Whitney class and
for a real vector bundle E it corresponds to a characteristic class
wi(E) called ith Stiefel–Whitney class of E.

Homology of BSO(n) over Q: We need a certain lemma first. Recall a
largest abelian subgroup of a compact connected Lie group G is nec-
essarily isomorphic to T n for some n and is called the maximal torus.
There is then an exact sequence,

1 → T n → NG(T
n) → W → 1,

defining a finite group W known as the Weyl group of G.

Proposition 6.20. For a compact connected Lie group G with max-
imal torus T and Weyl group W ,

H∗(BG;Q) ∼= H∗(BT ;Q)W ,

where H∗(·)W denotes the W -invariant subalgebra under W ’s action
induced by left multiplication on T ⊂ G.

Proof. (Sketch) We proceed in a few steps.
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(1) Let p : X → X be a normal covering map with the structure of a
connected principal π-bundle for π a finite discrete group. Then,
by the map lifting lemma, there is an isomorphism of singular

chain groups C∗( X;Q)π ∼= C∗(X;Q). Passing to homology,

H∗(X;Q) = H∗( X;Q)π.

(2) The quotient G/T is a “generalized flag manifold,” and there is
always a generalized Bruhat partition allowing us to realize G/T
as a cell complex with |W | cells of only even dimension. We have,
by (1),

H∗(G/NG(T );Q) ∼= H∗(G/T ;Q)W

=⇒ χ(G/NG(T )) = χ(G/T )/|W |
= 1.

But G/NG(T ) has only homology in even degrees (since G/T
does). Thus G/NG(T ) must have the rational homology of a
point.

(3) We have a pair of fibrations,

BT = EG/T
W−→ EG/NG(T ) = BNG(T )

G/NG(T )−−−−−→ BG.

The second map has rationally contractible fibre, so the Serre
spectral sequence impliesH∗(BG;Q) = H∗(BNG(T );Q). Apply-
ing (1) to the first map, gives H∗(BNG(T );Q) = H∗(BT ;Q)W .

□
We can apply this proposition to our special orthogonal groups. We
need to split into cases based on parity. Let’s begin with the odd case
of BSO(2n + 1). Let Rθ be the 2 × 2 rotation matrix by angle θ.
Then, the maximal torus of SO(2n+ 1) is,

T =










Rθ1
. . .

Rθn

1



 : θ1, . . . θn ∈ S1





.

The Weyl group consists of transformations permuting the 2×2 blocks
and possibly changing some by a sign. This is the symmetry group of
an n-dimensional cube W = Sn ⋊ Zn

2 . By our above proposition, we
know that,

H∗(BSO(2n+ 1);Q) = H∗(BT ;Q)W = Q[x1, . . . , xn]
W ,
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for |xi| = 2i. Note that W acts on Z[x1, . . . , xn] by permuting the
xi and changing them by a sign. In order that a polynomial in
Z[x1, . . . , xn] be invariant under a change of any xi by a sign it must be
a polynomial in the squares x2

1, . . . , x
2
n. Hence, H∗(BSO(2n + 1);Q)

is the algebra of symmetric rational polynomials in x2
1, . . . , x

2
n. Let pi

denote the ith symmetric polynomial function of the xi, so that,

(1 + x2
1) · · · (1 + x2

n) = 1 + p1 + · · ·+ pn,

where pi is the homogeneous part of degree 4i. Hence,

H∗(BSO(2n+ 1);Q) = Q[p1, . . . , pn] where |pi| = 4i.

Now we deal with the even case BSO(2n). The maximal torus is
then,

T =









Rθ1

. . .
Rθn



 : θ1, . . . θn ∈ S1




 .

The Weyl group W consists of transformations permuting 2×2 blocks
with sign changes as before, with the new restriction that the total
number of sign changes must be even. Let P be the convex hull of
2n−1 vertices of an n-dimensional cubes which pairwise do not share
an edge. W is the symmetry group of P , isomorphic to Sn ⋊ Zn−1

2 .
Again,

H∗(BSO(2n);Q) = H∗(BT ;Q)W = Q[x1, . . . , xn]
W ,

for |xi| = 2i. All the symmetric polynomials in the x2
i will be in the

cohomology as before. Additionally, since any element of W acts by
an even number of sign changes on the xi, the element x1 · · · xn is
also in the cohomology. By a dimension count, this generator along
with the symmetric polynomials gives the entire cohomology. Let pi
denote the ith elementary polynomial in xi’s as in the odd case. Let
e = x1 · · · xn. We conclude,

H∗(BSO(2n);Q) = Q[p1, . . . , pn, e]/(pn − e2) where |pi| = 4i, |e| = 2n.

For even and odd SO groups, the element pi is called the ith universal
Pontryagin class and for an oriented vector bundle E it corresponds
to a characteristic class pi(E) called ith Pontryagin class of E. The
element e in the cohomology of BSO(2n) is called the universal Euler
class.

Note we have already defined the Euler class for an oriented bundle as an
element of the integral cohomology class. We will later show that this Euler
class is the old Euler class reduced over Q. The fact there is no Euler class

176



in the rational cohomology of BSO(2n + 1) tells us the Euler class is torsion
for odd rank bundles (in fact we will show later it is always 2-torsion in odd
dimensions).

Note also that we have defined Pontryagin classes as integral classes of quater-
nionic bundles and rational classes of oriented real bundles. To distinguish
the real and quaternionic cases, we will call the Pontryagin classes for BSp
quaternionic Pontryagin classes. They are sometimes also called symplectic
classes.

To make matters more confusing, the usual definition of Pontryagin classes is
as integral classes of any bundle. More precisely, given a real vector bundle
E → X, we define the ith Pontryagin class of E to be pi(E) = (−1)ic2i(CE) ∈
H4i(X;Z), where CE denotes the complexification of the real bundle E. From
a classifying space perspective, there is a map O(n) → U(n) sending an n ×
n orthogonal matrix A to the same matrix thought of as unitary (i.e. the
complexification of the linear map). This gives a map f : BO(n) → BU(n).
The pullback of the universal Chern class c2i by f multiplied by (−1)i defines
an element of the 4ith cohomology group of BO(n) which will be called the
ith universal Pontryagin class pi and corresponds to the ith Pontryagin class
of real bundles.

We will show that under pullback by the double cover map BSO(n) → BO(n)
induced by inclusion the class pi reduced overQ will coincide with the universal
Pontryagin class for oriented bundles defined above. Our argument above
show that modulo torsion, the Pontryagin classes and Euler class generate the
homology of BSO(n) (note this is not true over Z, see the remark below).

We summarize our findings in the following definition.

Definition 6.21: Characteristic Classes

Let E → X be a real rank n vector bundle. To it we can associate,

Stiefel–Whitney classes: wi(E) ∈ H i(X;Z2),

Pontryagin classes: pi(E) ∈ H4i(X;Z).
If E is oriented we can also associate the

Euler class: e(E) ∈ Hn(X;Z).
If E is a complex bundle we furthermore can associate,

Chern classes: ci(E) ∈ H2i(X;Z2).
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Finally, if E is a quaternionic bundle we associate,

quaternionic Pontryagin classes: pi(E) ∈ H4i(X;Z).

Remark 6.22. One may reasonably complain that for real and real oriented
bundles we only classified characteristic classes over Z2 and Q respectively.
In fact, there is no real content in passing to working over Z. Firstly, our
description of the generators of H∗(BSO(n);Q) continues to hold if we pass
to Z[1/2]. Also,

H∗(BSO(n);Z2) = Z2[w2, . . . , wn],

(we will see later that w1 vanishes iff a bundle is orientable).

Let β : H i(X;Z2) → H i+1(X;Z) denote the Bockstein homomorphism associ-

ated to Z ×2−→ Z → Z2. We define the (i + 1)st integral Stiefel–Whitney class
of a real bundle E → X as,

Wi+1(E) = β(wi(E)) ∈ H i+1(X;Z).

These characteristic classes correspond to universal elements Wi ∈ H i(BO;Z)
obtained by applying β to the cohomology of BO. More generally, given a
product wi1 · · ·wik living in H∗(BO(n);Z2), we can apply β to it to obtain an
integral cohomology element. Under pullback by the map induced by inclusion
BSO → BO, the images under β of universal elements may also be thought
of as classes in the integral homology of BSO.

It happens that H∗(BSO(n);Z) is generated by the universal Pontryagin
classes pi for i ≤ (n − 1)/2, the universal Euler class e, and the Bock-
stein homomorphism of a product of even degree universal Stiefel–Whitney
classes: β(w2i1 · · ·w2ik) for 0 < i1 < · · · < ik ≤ (n − 1)/2. Similarly
H∗(BO(x);Z) is generated by the universal Pontryagin classes pi for i ≤ n/2,
and the Bockstein homomorphism of a product of even degree universal Stiefel–
Whitney classes possibly along with w1: β(wε

1w2i1 · · ·w2ik) for ε ∈ {0, 1},
0 < i1 < · · · < ik ≤ n/2. These algebra are not free on the given generators
and a complete set of relations can be given explicitly, we will see some of the
relations later.

We will not need these facts and so not prove them. The arguments are
not so complicated and can be found in a short paper of Brown Jr. [B].
For our purposes, it is enough to say that if one understands the relevant
elements in Definition 6.21 and one can describe the cohomology ring and
Bockstein homomorphism β of the base, then one knows everything about the
characteristic classes of the vector bundle. △
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To make computations with characteristic classes it is highly useful to know
their algebraic and geometric properties. In fact one often introduces the
classes axiomatically as uniquely satisfying some list of properties, as in [MS].
We will discuss these properties/axioms in due time, as well as geometric
constructions of the characteristic classes as first obstructions to extending
sections. Quickly, we discuss one important property shared by most of the
characteristic classes.

We say a characteristic class c for G-bundles is stable if c(V ⊕ T ) = c(V )
for any vector bundle V and any trivial rank one bundle T in the G-bundle
sense. Note that the maps induced by inclusion BG(n) ↩→ BG(n + 1), for
G = O, SO,U, Sp induce a map from rank n G-bundles to rank (n + 1) G-
bundles given by summing with a rank one trivial G-bundle. Thus for a
characteristic class c ∈ H∗(BG(n)) to be stable is the same as for it to be a
pullback of an element in c ∈ H∗(BG(∞)).

Note that our description of the cohomology of BO(n), BSO(n), BU(n) and
BSp(n) extends easily to the classifying spaces of the corresponding infinite
dimensional groups BO,BSO,BU,BSp. And the pullback maps on cohomol-
ogy are the obvious inclusions (since we know the Schubert cell decomposition
respects these inclusions). Thus we have proved the following corollary.

Proposition 6.23. The Stiefel–Whitney, Pontryagin, Chern, and quater-
nionic Pontryagin classes are all stable.

In contrast, recall from Corollary 4.51 that the Euler class is unstable. This
should be unsurprising: we know if E → X is rank n that e(E) ∈ Hn(X)
and e(E ⊕ R) ∈ Hn+1(X), so these two cannot be the same whenever e(E) is
non-zero. This should not necessarily be seen as a deficit of the Euler class;
it allows us to distinguish non-isomorphic but stably isomorphic bundles. For
example TS2 is stably trivial after direct summing with the trivial normal
bundle of the embedding S2 ⊂ R3. But TS2 is non-trivial as we saw before
because 2 = χ(S2) = 〈e(TS2), [S2]〉.

6.3. Characteristic Classes and First Obstructions. Let us recall
from our discussion of obstruction theory that if one has a homotopically
simple bundle E → B over a CW base with k-connected fibre F , then one
obtains a unique cohomology class C(E) ∈ Hk+2(B; πk(F )) representing any
attempt to extend a section of the (k+1)-skeleton of B to the (k+2)-skeleton.
This class is natural with respect to pullbacks, hence a functorial association
of a vector bundle ξ on B to such a fibre bundle defines a characteristic class
for ξ.
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For example, we saw before that to an oriented rank n vector bundle ξ on B,
we can associate the first obstruction C(Sξ) ∈ Hn(B) of the sphere bundle Sξ.
We called this the Euler class e(ξ) of ξ and showed it can be recovered as the
restriction of the Thom class tξ to the base, or equivalently in the smooth case
as Poincaré dual to the fundamental class of the zero set of a generic section
of ξ. We will show below that this agrees with the Euler class as defined above
in the cohomology of BSO(n).

Stiefel–Whitney and Chern Classes as Obstructions. Let ξ → B be a com-
plex vector bundle of rank n. To it, we can associate the bundle Fn−m+1(ξ) of
(n−m + 1) frames of ξ which is a fibre bundle with fibre CV (n, n−m + 1).
Consider the sequence of fibrations for n > m,

CV (n− 1, n−m) ↩→ CV (n, n−m+ 1) → S2n−1

CV (n− 2, n−m− 1) ↩→ CV (n− 1, n−m) → S2n−3

...

CV (m, 1) ↩→ CV (m+ 1, 2) → S2m+1.

Note that CV (m, 1) = S2m−1. Recursively applying the homotopy long exact
sequence to these fibrations we conclude that CV (n, n −m + 1) is (2m − 2)-
connected and that π2m−1(CV (n − m + 1)) = Z. We thus obtain a first
obstruction to the existence of a (n−m+ 1)-frame of ξ over the 2m-skeleton
of B,

cm(ξ) := C(Fn−m+1(ξ)) ∈ H2m(B;Z).

We show soon this agrees with the mth Chern class.

We point out two special cases. For m = 1, we are studying n-frames, i.e.
bases of the fibre. So, c1(ξ) measures the obstruction to the existence of
a trivialization of the bundle over the 2-skeleton. From this we deduce for
example that any bundle ξ on a 2 dimensional complex with c1(ξ) = 0 is
trivial.

For m = n, we are studying 1-frames, i.e. non-vanishing sections. So, cn(ξ)
measures the obstruction to the existence of a non-vanishing section of ξ over
the n-skeleton. But this obstruction class is already familiar to us, which
implies the following important corollary.

Theorem 6.24

Let ξ → X be a complex rank n vector bundle, then cn(ξ) = e(ξR),
where ξR denotes the underlying oriented real bundle.
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Note that if we are dealing with a line bundle ξ, there is one Chern class
c1(ξ) measuring the first obstruction to defining a section of ξ over the two
skeleton of the base. But note since the structure group of ξ is U(1), which
has trivial higher homotopy groups, there are no further obstructions. Thus
a trivialization over the two-skeleton extends to one on the entire base. And
hence c1(ξ) = 0 implies the bundle trivializes. This reproduces our earlier
result that complex line bundles are classified by c1.

The case for quaternionic bundles is exactly analogous. We redefine pm(ξ) for
a quaternionic rank n bundle ξ → B as the first obstruction to the existence
of a quaternionic (n−m+ 1)-frame of ξ over the 2m-skeleton of B.

Now consider ξ → B a rank n real vector bundle. To it we associate the bundle
Fn−m+1(ξ) of n−m+ 1 frame of ξ which is a fibre bundle with fibre V (n, n−
m+ 1). Aw with the complex case, we have a sequence of fibrations,

V (n− 1, n−m) ↩→ V (n, n−m+ 1) → Sn−1

V (n− 2, n−m− 1) ↩→ V (n− 1, n−m) → Sn−2

...

V (m, 1) ↩→ V (m+ 1, 2) → Sm.

Note that V (m, 1) = Sm−1. We conclude recursively from the homotopy long
exact sequences of the fibrations that V (n, n − m + 1) is m − 2 connected.
Furthermore from the last exact sequence, which is a Gysin sequence,

0 → πm(S
m) = Z ×χ(Sm)−−−−→ Z = πm−1(V (m, 1)) → πm−1(V (m+1, 2)) → 0 = πm−1(S

m).

So we conclude,

πm−1(V (n, n−m+ 1)) =


Z2 m < n even or m = 1,

Z m > 1 odd or m = n.

The bundle Fn−m+1 may not be homotopically simple, and the obstruction
class may have twisted coefficients whenever πm−1 = Z, but we will be okay
if we work over Z2. We thus obtain a first obstruction to the existence of a
(n−m+ 1) frame of ξ over the m-skeleton of B,

wm(ξ) := C(Fn−m+1(ξ)) ∈ Hm(B;Z2).

We will show this agrees with the mth Stiefel–Whitney class.

For m = n, wn(ξ) is the first obstruction to a 1-frame over the n-skeleton of
B. Hence we have the following as with the complex case.

181



Proposition 6.25. Let ξ → X be a real rank n vector bundle, then wn(ξ) =
e(ξ) (mod 2). Here we define e(ξ) in the unoriented case as the restriction of
the mod 2 Thom class to the base X.

For m = 1, w1(ξ) is the first obstruction to an n-frame, i.e. a trivialization,
over the 1-skeleton of B.

Proving An Equivalence. Let us prove that the obstruction theoretic def-
initions of our characteristic classes agree with the previous cohomological
definitions.

Note that by naturality of first obstructions it suffices to show that the ob-
struction class and cohomology class agree for the universal bundle EG → BG.
Actually to make things simpler we will use a version of the splitting princi-
ple, which we explain in generality later, that allows us to reduce to a sum of
tautological bundles on BT , for T the maximal torus of G.

To see what we mean, let’s begin with the Stiefel–Whitney classes. Recall we
had a fibration Bi : (RP∞)n → BO(n) induced by the inclusion i : Zn

2 → O(n).
The pullback of the universal bundle EO(n) by Bi can be seen to be a direct
sum of copies of the tautological line bundle ξ1 on each copy of RP∞. This is
because (Bi)∗EO(n) is the fibration V (∞, n) → (RP∞)n sending an orthonor-
mal n-frame (v1, . . . , vn) to the lines span(v1), . . . , span(vn) ∈ (RP∞)n.

As we showed before H∗((RP∞)n;Z2) = Z2[x1, . . . , xn], H∗(BO(n);Z2) =
Z2[w1, . . . , wn] and the pullback (Bi)∗ is injective on cohomology sending wi

to the ith symmetric polynomial in the xi. Because this pullback is injective
if the obstruction class definition of wi(ξ

1 ⊕ · · ·⊕ ξ1) agrees with the cohomo-
logical class σi(x1, . . . , xn), then we will know that the obstruction theory and
cohomological definitions of Stiefel–Whitney classes agree.

To understand wm(ξ
1 ⊕ · · · ⊕ ξ1), lets evaluate it on an element of homology

[RP ℓ1 × · · ·× RP ℓn ] with


ℓi = m. We claim that,


wm(ξ

1 ⊕ · · ·⊕ ξ1), [RP ℓ1 × · · ·× RP ℓn ]

=


1 (mod 2) ℓi ≤ 1 ∀i,
0 else.

To see this note if some ℓi > 1, because


ℓj = m, there must be at least
n − m + 1 of the ℓj which are zero. But the direct summand of the bundle
ξ1 ⊕ · · ·⊕ ξ1 trivializes on [RP ℓ1 × · · ·×RP ℓn ] for each factor with ℓj = 0. In
particular if some ℓi > 1, we may find an (n−m+ 1) frame of the bundle on
[RP ℓ1 × · · ·×RP ℓn ] and hence the obstruction wm(ξ

1 ⊕ · · ·⊕ ξ1) must vanish
on this class, as claimed. Conversely, if ℓi ≤ 1 for all i, then the bundle will
look like (ξ1)⊕m ⊕ (R)⊕(n−m) on [(RP 1)m × {pt}n−m]. Note wm((ξ

1)⊕m) =
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e(ξ⊕m) = 1 (mod 2) since this is a direct sum of copies of Möbius strips. Thus
(ξ1)⊕m has no non-vanishing section and (ξ1)⊕m ⊕ (R)⊕(n−m) does not have a
(n −m + 1) frame on [(RP 1)m × {pt}n−m] and so the obstruction class must
be the non-trivial element of Z2 on this class.

Note that the cohomology of (RP∞)n is given by,

〈xi1
1 · · · xin

n , [RP ℓ1 × · · ·× RP ℓn ]〉 = δi1,ℓ1 · · · δin,ℓn (mod 2).

Hence we have,

wm(ξ
1 ⊕ · · ·⊕ ξ1) =



i1<···<im

xi1 · · · xim = σm(x1, . . . , xn).

Hence the obstruction theoretic Stiefel–Whitney class agrees with the coho-
mological definition.

Now we move onto the complex/Chern case. As with above, we have a fibra-
tion Bi : (CP∞)n → BU(n) induced by the inclusion i : T n → U(n). The
pullback of the universal bundle EU(n) by Bi is the direct sum of copies of
the tautological complex line bundle ξ1 on each copy of CP∞. This is because
(Bi)∗EU(n) is the fibration CV (∞, n) → (CP∞)n sending an orthonormal
n-frame (v1, . . . , vn) to the complex lines span(v1), . . . , span(vn) ∈ (CP∞)n.
Because the induced map (Bi)∗ is injective on cohomology, it will suffice to
show ci(ξ

1⊕· · ·⊕ξ1) defined obstruction theoretically agrees with σi(y1, . . . , yn)
where H∗(BU(n)) = Z[y1, . . . , yn]. We claim for


ℓj = m,


cm(ξ

1 ⊕ · · ·⊕ ξ1), [CP ℓ1 × · · ·× CP ℓn ]

=


(−1)m ℓi ≤ 1 ∀i,
0 else.

To see this, if some ℓi > 1, then as before at least n − m + 1 of the ℓj must
be zero. Then the direct summand of the bundle ξ1 ⊕ · · · ⊕ ξ1 trivializes
on [CP ℓ1 × · · · × CP ℓn ] for each factor with ℓj = 0 and we may find an
(n−m+1) frame of the bundle on [CP ℓ1×· · ·×CP ℓn ] and hence the obstruction
cm(ξ

1 ⊕ · · ·⊕ ξ1) must vanish on this class.

If all ℓi ≤ 1, then the bundle will look like (ξ1)⊕m ⊕ (C)⊕(n−m) on [(CP 1)m ×
{pt}n−m]. Note that ξ1 → CP 1 is the degree −1 bundle so that c1(ξ

1) = −1
(the fact that c1 defined cohomologically and obstruction-theoretically for a
line bundle on S2 can be prove easily directly). If one takes a direct sum of
these bundles, the obstruction class will multiply so that

cm((ξ

1)⊕m ⊕ (C)⊕(n−m)), [(CP 1)m × {pt}n−m]

=


cm((ξ

1)⊕m), [(CP 1)m]


=

c1(ξ

1), [CP 1]
m

= (−1)m.
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Hence as for the real case we have,

cm(ξ
1 ⊕ · · ·⊕ ξ1) =



i1<···<im

yi1 · · · yim = σm(y1, . . . , yn).

So the obstruction theory and cohomological Chern classes agree. The quater-
nionic case is identical and we omit it.

Lastly, we should check that the Pontryagin classes as defined cohomologically
in H∗(BSO(n);Q) agree with their definition as pi(ξ) = (−1)ic2i(Cξ).

There is a pullback map H∗(BSO(n)) → H∗(BT ⌊n/2⌋) = Z[x1, . . . , x⌊n/2⌋]
which is injective. Using our splitting principle it is enough to show the uni-
versal class pi pulled back to BT ⌊n/2⌋ is σi(x

2
1, . . . , x

2
i ) and we should also show

the universal Euler class e pulled back to BT ⌊n/2⌋ is x1 · · · xn.

The above pullback corresponds to a map BT ⌊n/2⌋ → BSO(n) induced by
inclusion of the maximal torus of SO(n). The pullback of the universal bundle
ESO(n) under this map to a bundle on (CP∞)⌊n/2⌋ is a direct sum of ⌊n/2⌋
oriented 2-plane bundles given as ξ1R for ξ1 the tautological complex line bundle
on CP∞. Note that the complexification of ξ1R is ξ1 ⊕ (ξ1)∗, where V ∗ denotes
the complex dual bundle (in general C(VR) = V ⊕ V ∗ for any complex bundle
V ). Hence we compute,

pm((ξ
1
R)

⊕n) = (−1)m[c((ξ1 ⊕ (ξ1)∗)⊕ · · ·⊕ (ξ1 ⊕ (ξ1)∗))]2m,

where [·]2m denotes the part of degree 2m. As we will show, total Chern classes
are multiplicative under direct summing,

= (−1)m[c(ξ1)c((ξ1)∗) · · · c(ξ1)c((ξ1)∗)]2m.

We have suppressed that each ξ1 comes from a different copy of CP∞ in the
base. By above, we know ξ1 over the ith CP∞ will have c(ξ1) = 1 + xi. Since
taking the complex dual multiplies the degree by minus one, c((ξ1)∗) = 1−xi.
Hence,

= (−1)m[(1− x2
1) · · · (1− x2

n)]2m

= σm(x
2
1, . . . , x

2
n).

The fact our result holds for this bundle on the maximal torus implies it for
every other bundle. For a complex rank n bundle, we know e = c2n. We
immediately see that

e((ξ1)⊕n) = cn((ξ
1)⊕n) = σn(x1, . . . , xn) = x1 . . . xn.

Again by our splitting principle, the Euler class is as claimed.
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Geometric Interpretations of Characteristic Classes. The presentation of
characteristic classes as geometric obstructions is an important perspective on
the meaning and utility of them for classification problems. We now present
some specific examples of how characteristic classes can be interpreted geo-
metrically.

Theorem 6.26

Given a real rank n bundle ξ and a complex rank n bundle η, one has

w1(ξ) = w1(det ξ) and c1(η) = c1(detCη),

where det ξ = Λnξ and detC η = Λn
Cη. In particular, w1(ξ) vanishes if

and only if ξ is orientable (reduces to structure group SO(n)) and c1
vanishes if and only if η reduces to structure group SU(n).

Proof. We know w1(ξ) is the first obstruction for a section of the orthog-
onal n-frame bundle of ξ. But note this n-frame bundle is isomorphic to det ξ
by sending a frame (v1, . . . , vn) to v1∧ · · ·∧vn. So w1(ξ) is the first obstruction
to finding a section of the line bundle det ξ. But that is nothing but e(det ξ)
(mod 2) which equals w1(det ξ). The same analysis holds for c1 noting that
the unitary n frame bundle of η is isomorphic to detC η.

We have w1(ξ) vanishes if and only if w1(det ξ) = 0, if and only if det ξ is
trivial, if and only if a global orientation of ξ exists. The same analysis holds
for c1.

Note one can also see the orientation condition more directly, as we proved
many eons ago. An orientation is a reduction of structure group via a lift of
classifying map X → BO(n) for the map BSO(n) → BO(n). But this fits into
a fibration Z2 → BSO(n) → BO(n). So by obstruction theory, since Z2 has no
higher homotopy groups, the first obstruction to a lift (which is w1(ξ)) is the
only obstruction. And w1(ξ) = 0 if and only if such a lift exists. The same goes
for the complex case vis à vis the fibration U(1) → BSU(n) → BU(n). □
Proposition 6.27. If a rank n real bundle ξ admits m linearly independent
sections, then wn(ξ) = wn−1(ξ) = · · · = wn−m+1(ξ) = 0. If a rank n complex
bundle η admits m linearly independent sections, then wn(η) = wn−1(η) =
· · · = wn−m+1(η) = 0.

Proof. A collection of m linearly independent sections provides an m-
frame of ξ over the total base space. And so the obstruction classes related
to 1, 2, · · · ,m-frames, i.e. wn, wn−1, . . . , wn−m+1, must all vanish. The same
holds for the complex case. □
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Recall a spin structure on an oriented bundle E → X given by a classifying
map X → BSO(n) is given by a lift to X → BSpin(n). A spinc structure is
a lift to X → BSpinc(n).

Theorem 6.28

A rank n oriented bundle E → X has a spin structure if and only if
w2(E) = 0. If E is spin, the set of spin structures is an affine space
modelled on H1(X;Z2).

Proof. We have a fibration Z2 ↩→ BSpin(n) → BSO(n) and we are
looking for a lift X → BSO(n) to X → BSpin(n). Since the higher homotopy
groups of Z2 are trivial, the only obstruction to a lift is the first obstruction,
which is an element ofH2(X;Z2). This obstruction must define a characteristic
class (non-trivial since there are non-spin bundles) and so must be w2. Hence
a lift exists iff w2(E) = 0.

The different possible lifts to a map X → BSpin(n) are parameterized by
difference cochains. Again looking at the homotopy groups of Z2, the only
non-vanishing difference cochain lives in H1(X;Z2) checking if two maps X →
BSpin(n) are homotopic relative to X → BSO(n) on the 1-skeleton. □

Theorem 6.29

A rank n oriented bundle E → X has a spinc structure if and only if
w2(E) is the reduction mod 2 of an integral class. If E is spinc, the set
of spinc structures is an affine space modelled on H2(X;Z2).

Proof. We have a fibration U(1) ↩→ BSpinc(n) → BSO(n) and we are
looking for a lift X → BSO(n) to X → BSpinc(n). Studying the homotopy
groups of U(1), the only obstruction is an element of H3(X;Z). This must be
a characteristic class and so by the classification which we stated but did not
prove, it must be of the form aW3(E) for integer a. In fact W3(E) is 2-torsion
since 2β(w2) = β(2w2) = 0. And since the obstruction class is non-trivial
(since there are non-spinc bundles) we conclude the first and only obstruction
is W3(E). Recall W3 comes from the Bockstein exact sequence,

H2(X;Z) r−→ H2(X;Z2)
β−→ H3(X;Z),

as W3 = β(w2). Since this is exact, W3 = 0 if and only w2 is in the image of
r, i.e. the reduction mod 2 of an integral class.
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Remark 6.30. One way to interpret this is that w2 ∈ H2(X;Z2) measures
the obstruction to being a spin bundle. And we can obtain spinc bundle if and
only if there is a complex line bundle γ with first Chern class c1(γ) ∈ H2(X;Z)
so r(c1(γ)) = w2. So that adding the complex line bundles “cancels out” or
mends the failure of local Spin(n) charts to patch together. △

Again analyzing the homotopy of U(1), the different lifts to a map X →
BSpinc(n) are parameterized by difference cochains, and the only non-vanishing
ones live in H2(X;Z), checking if two maps X → BSpinc(n) are homotopic
relative to X → BSO(n) on the 2-skeleton. □
Remark 6.31. One can show for every oriented manifold of dimension less
than or equal to four, the second Stiefel–Whitney class of the tangent bundle
is the mod 2 reduction of an integral class and so every oriented manifold of
dimension four or less is spinc. This is clear in dimensions one and two since
W3 ∈ H3(X) = 0. If X is three dimensional, then H3(x) = 0 or Z and has
no two-torsion, so again W3 = 0. The case of dimension four is slightly more
tricky, proofs can easily be found online.

Note that SO(n) is the identity component of O(n), and Spin(n) → SO(n) is
the universal covering of SO(n). We can continue this to form the Whitehead
tower for O(n),

· · · → FiveBrane(n) → String(n) → Spin(n) → SO(n) → O(n).

The two connected and three connected coverings of O(n) turn out to be
topological groups called the string group and five-brane group respectively.
Unsurprisingly, these are of interest in string theory. A lift of a bundle classified
by X → BO(n) via the map BString(n) → BO(n) is called a string structure
and a further lift via the map BFiveBrane(n) → BO(n) is called a five-brane
structure. It turns out these higher lifts are also classified by characteristic
classes. More precisely, a spin bundle E has a string structure if and only if
1
2
p1(E) = 0 and a string bundle E has a five-brane structure if and only if

1
6
p2(E) = 0. One may climb even further up the Whitehead tower similarly if

they are so inclined (I’ll stick to climbing at Benchmark).

6.4. Properties of Characteristic Classes and Computations. We
now move towards some important computations of characteristic classes. We
begin with one final definition of Stiefel–Whitney classes and show that they
are in fact homotopical invariants.

Axiomatic Treatment of Stiefel–Whitney Classes. Let us see how computa-
tions of Stiefel–Whitney classes can be made from a few simple axioms.
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Theorem 6.32

There exists characteristic classes wi(ξ) ∈ H i(X;Z2) for i ≥ 0 associated
to real vector bundles ξ → X which are uniquely determined by the
following properties:

Dimension: w0(ξ) = 1 and wi(ξ) = 0 for i greater than the rank of ξ.

Non-Triviality: If γ1 is the tautological line bundle on RP 1 then
w1(γ

1) ∕= 0.

Whitney Product Formula: Given bundles ξ, η, one has,

wi(ξ ⊕ η) =
i

j=0

wj(ξ) ⌣ wi−j(η).

Proof. We begin with uniqueness; suppose wi are characteristic classes
satisfying the axioms above. Let H∗(RP 1;Z2) = Z2[a]/(a

2). We must have by
the first two axioms that the total Stiefel–Whitney class of tautological bundle
γ1 is w(γ1) = 1 + a.

Let ξ1 be the tautological line bundle on RP∞. Note the standard embedding
i : RP 1 → RP∞ gives γ1 as the pullback of ξ1. Since H∗(RP∞;Z2) = Z2[b]
and i∗(b) = a, we must have by naturality that w(ξ1) = 1 + b.

Now consider the Cartesian product ζ = ξ1 × · · ·× ξ1 over (RP∞)n. We have
H∗((RP∞)n;Z2) = Z2[b1, . . . , bn] so that the ith inclusion ji : RP∞ → (RP∞)n

has j∗i (bk) = δi,k b. By the Whitney product formula, and naturality with
respect to the inclusion of RP∞ factors,

w(ζ) = (1 + b1) · · · (1 + bn).

Since the map Bi : (RP∞)n → BO(n) induces an injective pullback map in
cohomology, we deduce that,

w(EO(n)) = 1 + w1 + · · ·+ wn,

where H∗(BO(n);Z2) = Z2[w1, . . . , wn] and (Bi)∗wi = σi(b1, . . . , bn). But if
we know the characteristic class on the universal bundle we know it on all other
bundles by naturality and the fact maps to BO(n) classifies vector bundles.
So wi are unique.

Now we prove existence. We have already given some equivalent definitions
of the Stiefel–Whitney class which we wish to show obey these axioms. The
dimension axiom is really a matter of definition (since we only defined wi(ξ)
for 1 ≤ i ≤ rk(ξ)). The non-triviality axiom follows from the fact γ1 is
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the pullback of EO(1) under the inclusion RP 1 ↩→ RP∞ = BO(1). We
know what this maps does on cohomology; it will send w1 to the generator of
H1(RP 1;Z2). The Whitney product formula can be deduced as follows. Given
bundles ξ and η on X classified by maps X → BO(n) and X → BO(m), the
bundle ξ ⊕ η is classified by the map X → B(O(n) × O(m)) → BO(n ×m),
where the first map combines the above two classifying maps and the second
is the classified functor applied to the inclusion O(n) × O(m) → O(n + m)
of block diagonal matrices. Our usual map (RP∞)n+m → BO(n + m) must
factor through B(O(n) × O(m)) via the map above. It follows immediately
from the combinatorics of elementary symmetric functions that the Whitney
relations hold between the generators of the homology of BO(n+m), BO(n)
and BO(m). By naturality it holds when pulled back to X as well. Thus all
the axioms are satisfied and the Stiefel–Whitney classes as previously defined
are the unique classes given by the above axioms.

Not contenting ourselves with this, we give a separate definition of the Stiefel–
Whitney classes, which will also satisfy the axioms and hence agree with our
previous definitions. Given a rank n real vector bundle ξ → X let tξ ∈
Hn(ξ, ξ \X;Z2) be the unoriented Thom class. Recall cupping with the Thom
class defines an isomorphism,

Φ : H i(X;Z2)
∼=−→ Hn+i(ξ, ξ \X;Z2).

Definition 6.33

The ith Stiefel–Whitney class of a rank n bundle ξ → X is given by,

wi(ξ) = Φ−1Sqi(tξ) = Φ−1SqiΦ(1).

The fact this is really a characteristic class, i.e. it satisfies naturality, is imme-
diate from the fact the maps involved are natural. Let us show the axioms hold.
The dimension axiom is clear from the definition of the Steenrod squares. The
Whitney product formula follows from Cartan’s identity for Steenrod squares
and the fact the Thom isomorphism distributes over a product of bundles.
For the non-triviality axiom, note that the total space of γ1 is a Möbius strip
M which is homeomorphic to RP 2 \ D2 for an embedded disk D2. By exci-
sion, H i(M, ∂M ;Z2) ∼= H i(RP 2, D2;Z2) ∼= H i(RP 2;Z2) for i > 0. The Thom
class tγ1 certainly cannot be zero by Thom isomorphism, so under the above
identification it must correspond to the generator a ∈ H1(RP 2;Z2). But then
Sq1(a) = a2. This is non-zero in H2(RP 2;Z2). And so Sq1(tγ1) ∕= 0. Since Φ
is an isomorphism, w1(γ

1) = Φ−1Sq1(tγ1) ∕= 0, as desired. □
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Wu Formula. In the above proof we gave a new construction of Stiefel–
Whitney classes as wi(ξ) = Φ−1SqiΦ(1). We can refine this construction for
the case of tangent bundles as follows.

Definition 6.34

Let M be a smooth closed n-manifold. The ith Wu class νi ∈ H i(M ;Z2)
is uniquely defined so that,

νi ⌣ x = Sqi(x) for all x ∈ Hn−i(M ;Z2).

Note that Sqi ∈ Hom(Hn−i(M ;Z2),Z2) ∼= Hn−i(M ;Z2). So by Poincaré
duality the Wu class is well defined.

With this definition, we obtain the following important result.

Theorem 6.35: Wu Formula

For a closed smooth n-manifold M , the Stiefel–Whitney classes of its
tangent bundle are given by

wi(TM) =
i

j=0

Sqi−j(νj).

The proof, following [MS, §11], is a little long and will require a couple lemmas.
First we need to define a new operation in (co)homology.

Definition 6.36

Given two spaces X, Y , there is an operation called the slant product
defined as the composite,

/ : H∗(X×Y )⊗H∗(Y )
Künneth−−−−−→ H∗(X)⊗H∗(Y )⊗H∗(Y )

id⊗〈,〉−−−→ H∗(X).

This satisfies the identities (a × b)/β = a〈b, β〉 and [(a × 1) ⌣ p]/β =
a ⌣ (p/β).

Let t∆ denote the Z2 Thom class of the normal bundle to the diagonal embed-
ding ∆ : M → M2. By excision and then restriction we obtain from t∆ a class
u ∈ Hn(M ×M ;Z2). It follows from local computations on a slice {x} ×M
that u/[M ] = 1 and that (a× 1) ⌣ u = (1× a) ⌣ u.

190



Lemma 6.37. For any homogeneous basis b1, . . . , br of H∗(M ;Z2) there is a
dual basis c1, . . . , cr so that 〈bi ⌣ cj〉 = δi,j. In this case, one has,

u =


i

(−1)|bi|bi × ci.

Proof. By the Künneth formula we know that u is a sum of products u =
i bi × ei for bi, ei ∈ H∗(M ;Z2) of complimentary dimensions. We compute

for arbitrary a,

[(1× a) ⌣ u]/[M ] = [(a× 1) ⌣ u]/[M ]

= a ⌣ u/[M ]

= a.

We can plug the expansion of u in the product basis into the original expres-
sion,

a =


j

(−1)|a|·|bj |(bj × (a ⌣ ej))/[M ]

=


j

(−1)|a|·|bj |bj〈a ⌣ ej, [M ]〉

Taking bi = a, we conclude that ci = (−1)|bi|ei satisfies the lemma. □

Lemma 6.38. For a closed smooth n-manifold M , one has,

wi(TM) = Sqi(u)/[M ].

Proof. Note that the Stiefel–Whitney class wi(TM) is equivalently the
ith Stiefel–Whitney class of the normal bundle to the embedding ∆ : M →
M ×M . From our formula for Stiefel–Whitney classes we have,

wi(TM) ⌣ t∆ = Sqi(t∆).

Following through the isomorphism to H∗(M2,M2 \ ∆;Z2) and then the re-
striction to H∗(M2;Z2), this identity becomes,

(wi(TM)× 1) ⌣ u = Sqi(u).

Taking the slant product with [M ], this becomes,

wi(TM) = Sqi(u)/[M ].

□
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Proof. (of Theorem 6.35) Pick a homogeneous basis b1, . . . , br ofH
∗(M ;Z2).

By Lemma 6.37 we may find a dual basis c1, . . . , cr. Let ν = 1 + ν1 + · · ·+ νn
be the total Wu class. Similarly define the total Steenrod square Sq = 1 +
Sq1 + · · ·+ Sqn. We must have,

ν =


i

bi〈ν ⌣ ci, [M ]〉.

By definition of the Wu classes,

=


i

bi〈Sq(ci), [M ]〉.

Taking the total steenrod square of both sides,

Sq(ν) =


i

Sq(bi)〈Sq(ci), [M ]〉

=


i

[Sq(bi)× Sq(ci)]/[M ].

By Lemma 6.37,

= Sq(u)/[M ].

By Lemma 6.38,

= w(TM).

□

Corollary 6.39. If f : M → N is a continuous map of closed n manifolds
which is an isomorphism on Z2-homology, then TM and TN have the same
Stiefel–Whitney classes.

Proof. The Wu classes and Steenrods squares are defined intrinsically
from the structure of the Z2 cohomology. The Wu formula shows that this
suffices to recover the Stiefel–Whitney classes. □

This is a surprising result, because defining the tangent bundle explicitly re-
quires knowing the smooth structure. Nevertheless, we learn for example that
if a topological manifold M admits many distinct or “exotic” smooth struc-
tures, all its smooth structures must have the same Stiefel–Whitney classes
on TM . The Wu formula also has some nice geometric consequences, like the
following.

Proposition 6.40 (Stiefel). Every closed orientable three-manifold is paral-
lelizable
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Proof. Let M be a closed oriented three-manifold. Because our manifold
is orientable, a 2-frame of the tangent bundle can always be extended to a
3-frame, i.e. a trivialization. Thus it suffices to construct a section of the
2-frame bundle F2 on M ; this is a fibre bundle with fibre V (3, 2) ∼= RP 3. Note
that π1(RP 3) = Z2 and π2(RP 3) = π2(S

3) = 0.

The first obstruction to finding a section of F2 on the 2-skeleton is by definition
the second Stiefel–Whitney class w2(TM) ∈ H2(M ;Z2). If w2(TM) = 0, the
next obstruction to extending a section to the 3-skeleton lives in the group
H3(M ; π2(V (3, 2))) = 0. Since M is three dimensional, this is the last ob-
struction. Thus it suffices to show the first obstruction w2(TM) = 0.

By the Wu formula, w1(TM) = ν1 and since M is orientable ν1 = 0. Recall
ν2 is defined so that ν2 ⌣ x = Sq2(x) for any x ∈ H1(M ;Z2). But Sq2 :
H1(M ;Z2) → H3(M ;Z2) is axiomatically the zero operation. So, ν2 = 0.
Then,

w2(TM) = Sq1(ν1) + Sq0(ν2) = ν2
1 + ν2 = 0.

□

There is another result also called the Wu formula to compute the Steenrod
squares of Stiefel–Whitney classes.

Theorem 6.41: Wu Formula for Stiefel–Whitney Classes of
Steenrod Squares

For any bundle, the Steenrod squares of the Stiefel–Whitney classes obey
the formula,

Sqi(wj) =
i

k=0


j + k − i− 1

k


wi−kwj+k.

Proof. Let x be the generator of H1(RP∞;Z2). We must have Sq(x) =
x + x2. From the Cartan formula we obtain, Sq(xj) = (x + x2)j and so
Sqi(xj) =


j
i


xj+1.

By linearity and the Cartan formula, we can extend to determine the action
of Sq on the cohomology of (RP∞)n. This determines the action of Sq on
the cohomology of BO(n) using our usual splitting principle argument and we
should obtain the formula above. And then by naturality, this determines the
action of Sq on the Stiefel–Whitney classes of any bundle. □

193



Splitting Principle and Other Properties. We have informally invoked the
splitting principle several times. Let us be a bit more formal about what
is going on and use it to describe how characteristic classes behave under
direct sums and tensor products. We will then describe a few more important
properties.

Let us deal with all cases simultaneously; so let G denote O(n), U(n) or Sp(n)
and T the maximal torus ofG. For theO(n) case, Z2 coefficients in cohomology
are to be understood. As we have stated many times before Bi : BT → BG is
a fibration with injective pullback in cohomology. Suppose E → X is a bundle
induced by a map g : X → BG, we can pull back the above fibration along
g.

f ∗E Y BT

E X BG

f Bi

g

We thus obtain a space Y and a G/T fibre bundle f : Y → X so the above
commutes. Moreover, we can pullback E → X to obtain a bundle f ∗E. Note
because the classifying map f → BG factors through BT , the bundle f ∗E
must be a direct sum of n line bundles.

Recall that we had an isomorphism,

H∗(BT ) ∼= H∗(BG)⊗H∗(G/T ),

since the Serre spectral sequence of the fibration collapsed immediately.

Using the morphism of spectral sequences induced by g, the spectral sequence
associated to f must also collapse:

H∗(Y ) ∼= H∗(X)⊗H∗(G/T ),

and moreover the pullback f ∗ : H∗(X) → H∗(Y ) is the edge morphism x →
x ⊗ 1. In particular, the pullback is injective. We have thus proved the
following.

Theorem 6.42: Generalized Splitting Principle

Given a G-bundle E → X, there is a bundle f : Y → X with fibre G/T
so that f ∗E has structure group T and f ∗ is injective on cohomology.

One of the upshots of this, is that if we can prove some algebraic fact about
the characteristic classes of the pullback bundle with reduced structure group
T , it must hold for the original bundle in the cohomology of X. In particular,
we deduce that to show an algebraic relation in terms of the Stiefel–Whitney,
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Chern, or quaternionic Pontryagin classes holds for a general bundle it will
suffice to do so for a direct sum of line bundles. Some more general examples
of the splitting principle can be found here in a note of May.

Let us now use this to study the behaviour of characteristic classes under direct
sums.

Theorem 6.43: Whitney Sum Formula

Given two bundles ξ, η, the total characteristic classes of their direct
sum obey a product formula. So if they are real bundles,

w(ξ ⊕ η) = w(ξ) ⌣ w(η).

If they are oriented,

e(ξ ⊕ η) = e(ξ) ⌣ e(η).

If they are complex,

c(ξ ⊕ η) = c(ξ) ⌣ c(η).

The same holds for Pontryagin classes modulo 2,

2p(ξ ⊕ η) = 2p(ξ) ⌣ p(η)

Proof. We have already proved this for Stiefel–Whitney classes, essen-
tially using the splitting principle and the fact (BT )n = B(T n) with the expect
isomorphism in cohomology. Exactly the same idea holds for Chern classes.
It also holds for Pontryagin classes provided we work in a ring with 1/2.

Here’s an alternate proof for Pontryagin classes. Note first for a real bundle
that the odd Chern classes of Cξ are 2-torsion; we will prove this below in
Corollary 6.49. We have,

2pk(ξ ⊕ η) = (−1)k2 · c2k(C(ξ ⊕ η))

= (−1)k


i≤2k

2 · ci(Cξ) ⌣ c2k−i(Cη).

Ignoring the odd Chern classes, which disappear under 2-torsion,

= (−1)k


i≤k

2 · c2i(Cξ) ⌣ c2k−2i(Cη)

= (−1)k


i≤k

2(−1)ipi(ξ) ⌣ (−1)k−ipk−i(η)

= 2


i≤k

pi(ξ) ⌣ pk−i(η)
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For the Euler case, note that one can study the Thom class of the product
bundle ξ × η → B2 and it will be the cross product of the Thom classes of
the two individual bundles by a local calculation. Restricting to the base and
then pulling back by the diagonal embedding ∆ : B → B2 recovers on one
hand the Euler class of ξ ⊕ η and on the other hand the cup product of e(ξ)
and e(η). □

Note the following important corollary of this. Elements in the ring of Z or
Z2 power series are invertible if and only if their degree zero term is one. This
is a simple exercise that can be proved inductively, or by construction a germ
of the reciprocal of the power series at zero using Taylor series. Since the
total Stiefel–Whitney and Chern classes have this form, w(ξ) and c(ξ) are
invertible in the cohomology ring. This means that if we have a bundle
η with simple characteristic classes and so that the sum ξ ⊕ η has simple
characteristic classes then we can invert the characteristic classes of η and use
the Whitney sum formula to find the characteristic classes of ξ.

We will apply this later to the case where ξ = TM is the tangent bundle of a
manifold M and η = νM is the normal bundle to an embedding into Euclidean
space Rn. Almost by definition, TM ⊕ νM = TRn|M , the latter of which is
a trivial bundle and hence has total Stiefel Whitney class w = 1. We thus
obtain the following useful result.

Proposition 6.44 (Whitney Duality Formula). If M is a smooth manifold
and f : M → Rn is a smooth embedding with normal bundle νM then,

w(TM) = w(νM)−1.

Note that although the same Whiteny sum formula holds for the Euler class,
the Euler class will not be a unit in the cohomology ring and may in fact be
a zero divisor. So we cannot usually solve for the Euler class of a summand
just using the sum formula.

As with the direct sum, we can perform similar splitting principle analysis for
the tensor product of two bundles, but the result will not be as clean. We
state it here just for reference.

Theorem 6.45: Characteristic Classes of Tensor Products

For ξ, η real bundles of ranks n and m,

w(ξ ⊗ η) = pn,m(w1(ξ), . . . , wn(ξ), w1(η), . . . , wm(η)).

And if they are complex bundles,

c(ξ ⊗ η) = pn,m(c1(ξ), . . . , cn(ξ), c1(η), . . . , cm(η)).
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Here pn,m is the unique polynomial so that if σi and σ′
i are the elemen-

tary symmetric polynomials in the variables t1, . . . , tn and s1, . . . , sm
respectively then,

pn,m(σ1, . . . , σn, σ
′
1, . . . σ

′
m) =

n

i=1

m

j=1

(1 + ti + sj).

In particular, if the bundles are real,

w1(ξ ⊗ η) = mw1(ξ) + nw1(η),

and if they are complex,

c1(ξ ⊗ η) = mc1(ξ) + nc1(η).

There is another equivalent way to find the classes of a tensor product. We
will just look at the complex case, which is more commonly studied.

Definition 6.46: Chern Character

Suppose ξ = L1 ⊕ · · ·⊕ Ln is a direct sum of complex line bundles. We
define its Chern character to be the power series in the cohomology ring,

ch(ξ) := ec1(L1) + · · ·+ ec1(Ln).

By the splitting principle, this definition extends to an arbitrary complex
vector bundle. Explicitly the first few terms of the Chern character are
given by,

ch(ξ) = rk + c1 +
1

2
(c21 − c2) +

1

6
(c31 − 3c1c2 + 3c3) + · · · .

It satisfies the formulae,

ch(ξ ⊕ η) = ch(ξ) + ch(η),

ch(ξ ⊗ η) = ch(ξ)ch(η).

Using this definition, we see that,

ch(ξ ⊗ η) = (rk(ξ) + c1(ξ) +
1

2
(c21(ξ)− c2(ξ)) + · · · )

· (rk(η) + c1(η) +
1

2
(c21(η)− c2(η)) + · · · )

= rk(ξ)rk(η) + rk(η)c1(ξ) + rk(ξ)c1(η) + c1(ξ)c1(η)

+
rk(ξ)

2
(c21(η)− c2(η)) +

rk(η)

2
(c21(ξ)− c2(ξ)) + · · · .
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From this we recover our formula for the first Chern class above. We also
obtain the identity,

c1(ξ⊗η)2−c2(ξ⊗η) = 2c1(ξ)c1(η)+rk(ξ)

c21(η)− c2(η)


+rk(η)


c21(ξ)− c2(ξ)


.

Since we know c1(ξ ⊗ η), this tells us c2. In the abstract this computation is
a little crazy, but for concrete ξ and η it may not be so bad.

The Chern character is important for the following K-theory result. Note that
the properties of the Chern character and the stability of characteristic classes
means it defines a ring homomorphism,

chQ : K0(X)⊗Q → Heven(X;Q).

Using stability under suspension of homology and K-theory, this extends in a
natural way to a Z2-graded ring homomorphism,

chQ : K∗(X)⊗Q → H∗(X;Q).

Theorem 6.47

For X a finite CW complex, the Chern character induces a rational
isomorphism,

chQ : K∗(X)⊗Q ∼= H∗(X;Q).

Proof. One can check by naturality and looking at the universal case
of BU(1) that the Chern character is the edge morphism in the Atiyah–
Hirzebruch spectral sequence for the K-theory of X. As we have discussed
before, there are no non-trivial stable cohomology operations on rational ho-
mology, and hence the spectral sequence must immediately degenerate. Since
K∗(pt) ⊗ Q = Q in degree zero, we conclude the edge map is an isomor-
phism. □

We now discuss elementary transformations of bundles.

Theorem 6.48

If ξ is a real bundle with dual ξ∗, then ξ and ξ∗ have the same charac-
teristic classes.

If ξ is an oriented bundle, and −ξ is the same bundle with opposite
orientation, then e(−ξ) = −e(ξ).

If ξ is a complex bundle with dual ξ∗ and the bundle ξ is the same
underlying bundle as ξ equipped with the opposite complex structure,
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then,
ci(ξ) = ci(ξ

∗) = (−1)ici(ξ).

Proof. Picking a metric on a real bundle ξ gives a canonical identifica-
tion of ξ and ξ∗. So these bundles are isomorphic and hence have the same
characteristic classes.

Now suppose ξ is oriented. Note that if we reverse the orientation of ξ, this
by definition will reverse the sign of the fundamental class of the fibres in the
Thom space of ξ. Hence the Thom class, which is defined to restrict to the
fundamental class of each fibre, will satisfy t−ξ = −tξ. Since the Euler class is
the restriction of the Thom class to the base we conclude e(−ξ) = −e(ξ). As
an alternate proof, note that the Euler classes of ξ and −ξ are both defined as
the primary obstruction in Hn(X; πn−1(S

n−1)) to the existence of a section of
the underlying unoriented bundle. Changing the orientation simply changes
the fibrewise identification of πn−1(S

n−1) with Z by a sign, and so will change
the Euler class by a sign.

Lastly, let ξ be complex. Note that a choice of Hermitian metric gives a
canonical isomorphism of ξ∗ and ξ. Hence it will suffice to relate c(ξ) and
c(ξ). Note that if ξ is a complex line bundle, then c1(ξ) = e(ξ). If we use
the conjugate bundle ξ, it will be the same underlying real bundle but with
opposite orientation (since an old R-basis v, iv for a fibre of ξ becomes v,−iv
under conjugation). By the Euler computation above we know,

c1(ξ) = e(ξ) = −e(ξ) = −c1(ξ).

Now suppose ξ = L1 ⊕ · · · ⊕ Ln is a direct sum of complex line bundles. We
have,

c(ξ) =
n

i=1

(1 + c1(Li))

=
n

i=1

(1− c1(Li))

= 1− c1(ξ) + c2(ξ)− · · · ± cn(ξ).

We deduce the result from the splitting principle. □
Corollary 6.49. If ξ is an orientable odd dimensional bundle, then e(ξ) is
2-torsion.

If η is a complex bundle which is self-dual (for example if η is the complexifi-
cation of a real bundle) than its odd Chern classes are 2-torsion.
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Proof. If ξ is any bundle, there is an isomorphism given by multiplica-
tion by minus one on the fibres: (p, v) → (p,−v). If ξ has odd rank and is
orientable, this isomorphism will reverse the orientation. Thus, ξ = −ξ and
so e(ξ) = e(−ξ) = −e(ξ). So 2e(ξ) = 0. The same argument works for odd
Chern classes in the self-dual case. □

Computations for Smooth Manifolds. We will not do very many computa-
tions, but the canonical example is to find the Stiefel–Whitney classes of the
tangent bundle of RP n and the Chern class of the tangent bundle of CP n.
We should note the convention that we refer to the characteristic classes of a
manifold to mean the characteristic classes of its tangent bundle. In this case
we write w(M) in place of w(TM).

Let us write the homology of RP n as Z[a]/(an+1) and the homology of CP n

as Z[x]/(xn+1) where |a| = 1 and x is Poincaré dual to [CP n−1].

Theorem 6.50

The total Stiefel–Whitney class of RP n is,

w(RP n) = (1 + a)n+1.

The total Chern classes of CP n is,

c(CP n) = (1 + x)n+1

Proof. We claim the tangent bundle T = TRP n is isomorphic to the
bundle Hom(L,Rn+1/L), where L is the tautological line bundle on RP n and
Rn+1 is a trivial bundle.

By lifting to Sn, we see that over a point ℓ ∈ RP n intersecting x,−x on
the unit circle, the fibre of T consists of pairs {(x, v), (−x,−v)} for a choice
of v ∈ Rn+1 so that x · v = 0, i.e. v ∈ ℓ⊥. On the other hand, over ℓ,
the fibre of Hom(L,Rn+1/L) is given by the space of linear maps from the
one-dimensional vector space ℓ to the vector space Rn+1/ℓ. Considering the
standard metric on Rn+1 (and hence on Rn+1), we may identify Rn+1/ℓ with
ℓ⊥ ⊂ Rn+1. Thus our fibre over ℓ is Hom(ℓ, ℓ⊥). Since ℓ is one-dimensional,
the elements ϕ ∈ Hom(ℓ, ℓ⊥) are in one to one correspondence with pairs
{(x, v), (−x,−v)} above via ϕ → {(x,ϕ(x)), (−x,−ϕ(x))}. This fives the
desired isomorphism.

We now use this to find the Stiefel-Whitney classes. Note that we have
Hom(L,L) = R since the identity map provides a non-vanishing section of
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the line bundle Hom(L,L). We then compute,

T ⊕ R = Hom(L,Rn+1/L)⊕ Hom(L,L).

We obviously have an equality,

= Hom(L, (Rn+1/L)⊕ L)

= Hom(L,Rn+1)

=
n+1

i=1

Hom(L,R)

Since L is isomorphic to its dual,

=
n+1

i=1

L.

We claim the line bundle L has total Stiefel-Whitney class w(L) = 1+a. To see
this, note that the embedding i : RP 1 → RP n gives the Möbius bundle M over
the circle as the pullback i∗L. By naturality, we have w1(M) = i∗w1(L). By
the non-triviality axiom of the Stiefel-Whitney classes we know that w1(M) =
1 + i∗a and so w(L) = 1 + a.

Since the Stiefel-Whitney classes are stable,

w(RP n) = w(T ⊕ R)

= w


n+1

i=1

L


.

By the properties of Stiefel-Whitney classes under direct sum,

= w(L)n+1

= (1 + a)n+1.

The proof in the Chern case is essentially identical. We obtain as above, as
identification

TCP n ⊕ C =
n+1

i=1

Hom(γ,C) =
n+1

i=1

γ,

where γ is the tautological line bundle on CP n. Let x = −c1(γ) ∈ H2(CP n).
We have,

c(CP n) = c(γ)n+1 = (1 + x)n+1.

To determine x, we note,

e(CP n) = cn(CP n) = (n+ 1)xn.

We have,
χ(CP n) = 〈e(CP n), [CP n]〉 = (n+ 1)〈xn, [CP n]〉.

201



But the Euler characteristic of CP n is n+ 1, so 〈xn,CP n〉 = 1, meaning that
x is the compatibly oriented generator of H1(CP n), i.e. the Poincaré dual of
[CP n−1]. □
Corollary 6.51. RP 2r cannot be immersed in RN for N < 2r+1 − 1.

Proof. Note if n = 2r, then w(RP n) = 1 + a + an. If f : RP n → RN is
an immersion with normal bundle ν, the Whitney duality formula implies

w(ν) = w(RP n)−1 = 1 + a+ a2 + · · ·+ an−1.

But note the rank of ν is N −n, and since wn−1(ν) ∕= 0 we must have N −n ≥
n− 1, or equivalently N ≥ 2r+1 − 1. □
Remark 6.52. Note the Whitney immersion theorem says any compact n > 1
manifold can be immersed in R2n−1. This result is proved optimal in certain
dimensions by the spaces RP 2r . △

Here is one more theoretical result.

Theorem 6.53

Compact non-orientable surfaces cannot be smoothly embedded in R3.

Proof. Let Σ be a compact non-orientable surface and let f : Σ → R3 be
a smooth embedding with normal bundle ν. We have, by Whitney duality,

w(Σ) = w(ν)−1 = 1 + w1(ν).

Since Σ is non-orientable, w1(Σ) ∕= 0 and so w1(ν) ∕= 0 as well. This implies ν
is a trivial line bundle. As we discussed previously, the Euler class of a normal
bundle to an embedding measures the self-intersection of a surface. Hence, for
w1(ν) ∕= 0 we must have that the (un-oriented) self intersection number of Σ
inside of R3 is non-zero. But this is clearly not true. If we perturb the image
of Σ inside of R3 to Σ′, then we may “drag” Σ′ away from Σ and off to infinity.
This will provide a null cobordism of Σ ∩ Σ′. Hence w1(ν) = 0. □

Characteristic Numbers of Smooth Manifolds. From the characteristic classes
of a smooth manifold, we can extract certain numerical invariants. These allow
for direct comparisons of characteristic classes.

Definition 6.54: Characteristic Numbers

Let M be a closed n-manifold with Z2 fundamental class [M ]. Let
r1, r2, . . . , rn be a sequence of non-negative integers so that r1 + 2r2 +
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· · ·+ nrn = n. Then we define a Stiefel–Whitney number of M ,

wr1,...,rn(M) = 〈w1(M)r1 · · ·wn(M)rn , [M ]〉 ∈ Z2.

If M is a closed oriented 4n-manifold with oriented fundamental class
[M ], and r1, r2, . . . , rn a sequence of non-negative integers so that r1 +
2r2 + · · ·+ nrn = n then we define a Pontryagin number of M ,

pr1,...,rn(M) = 〈p1(M)r1 · · · pn(M)rn , [M ]〉 ∈ Z.
If M is a closed almost complex 2n-manifold with fundamental class
[M ], and r1, r2, . . . , rn a sequence of non-negative integers so that r1 +
2r2 + · · ·+ nrn = n then we define a Chern number of M ,

cr1,...,rn(M) = 〈c1(M)r1 · · · cn(M)rn , [M ]〉 ∈ Z.

Example 6.55. Consider an odd projective space RP 2n−1. Then w(RP 2n−1) =
(1 + a)2n = (1 + a2)n. In particular, wi(RP 2n−1) = 0 for n odd. But every
Stiefel–Whitney number wr1,...,r2n−1(RP 2n−1) must have some ri ∕= 0 for i odd.
Hence all the Stiefel–Whitney numbers of RP 2n−1 vanish. 

One major use of characteristic numbers is as bordism invariants. Consider
the following proposition.

Proposition 6.56. If a compact n-manifold M is null-bordant, then its Stiefel–
Whitney numbers all vanish.

Proof. Suppose M = ∂W . By the tubular neighbourhood theorem,
TW |M decomposes as a direct sum of TM and a trivial line bundle. Thus
under the inclusion i : M ↩→ W , i∗w(W ) = w(M).

Note that the Z2 fundamental class [M ] is the boundary (in the LES of a pair)
of the relative fundamental class [W,M ]. We have,

wr1,...,rj(M) = 〈i∗wr1,...,rj(W ), ∂[M,W ]〉 = 〈wr1,...,rj(W ), i∗∂[M,W ]〉 = 0,

since i∗∂ = 0 is the composition of consecutive maps in the LES of a pair. □

This result extends to other characteristic numbers. And remarkably, the
converse is also true. The proof of this is closely linked to the computation of
the cobordism rings which we discussed earlier.

Theorem 6.57: Milnor, Novikov, Thom, Wall

Two compact n-manifolds are cobordant if and only if their Stiefel–
Whitney numbers agree.
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Two compact oriented n-manifolds are oriented cobordant if and only if
their Stiefel–Whitney numbers and Pontryagin numbers agree.

Two compact stably almost complex n-manifolds are complex cobordant
if and only if their Chern numbers agree.

6.5. Thom Spectra and Pontryagin–Thom. Earlier we described a
generalized homology theory based on singular manifolds up to cobordism
called the bordism groups. By Brown representability, we know the bordism
groups must be representable, i.e. the groups are given by homotopy classes
of maps into some sequence of spaces. A very nice geometric model for these
spaces and a proof they reproduce the bordism groups is due to Pontryagin
and Thom and goes by the name of the Pontryagin–Thom construction.

Definition 6.58: Thom Spectrum

Let νn → BO(n) be the tautological bundle, i.e. the associated bundle of
the universal bundle EO(n) → BO(n). Define MO(n) to be the Thom
space Tνn. Note that the map induced by inclusion BO(n) → BO(n+1)
induces a map νn⊕R → νn+1 and thus a map on the corresponding Thom
spaces. The Thom space of νn ⊕ R is the same thing as the suspension
of Tνn. Hence we have a map,

ΣMO(n) → MO(n+ 1).

The sequence of spaces {MO(n)}n∈N along with these suspension maps
is called the unoriented Thom spectrum.

If ν+
n is the tautological bundle on BSO(n) then MSO(n) = Tν+

n . If
νC
n is the tautological bundle on BU(n) then MU(n) = TνC

n . We get
corresponding suspension maps,

ΣMSO(n) → MSO(n+ 1)

Σ2MU(n) → MU(n+ 1).

These are called the oriented Thom spectrum and complex Thom
spectrum respectively. For any sufficiently nice topological group G
(Sp(n), SU(n), Spin(n) etc.) we have a corresponding G-structure
Thom spectrum MG defined analogously.

There is a multiplicative structure on the Thom spectra. Consider the
map BO(n)×BO(m) → BO(n+m) obtained by applying the classifying
functor to the inclusion of block diagonal orthogonal matrices. This
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classifies a map of vector bundles νn ⊕ νm → νn+m. Taking the Thom
space of both sides produces a map,

MO(n) ∧MO(m) → MO(n+m).

Analogous constructions will work for any Thom spectrum MG(n).

Now suppose we have some singular compact q-manifold f : M q → X. By
Whitney embedding, we can find an embedding i : M q ↩→ Rn+q. By compact-
ifying the codomain, we can turn this into an embedding into Sn+q. Let νi be
the normal bundle of the embedding, which we identify with a tubular neigh-
bourhood of i(M q) ⊂ Sn+q. We now have the “Pontryagin–Thom collapse
map.” This is defined as,

PT : Sn+q → Sn+q/(Sn+q \ νi) → Tνi,

where the first map is the quotient identifying the complement of the tubular
neighbourhood to a point and the second is an identification of this compact-
ified tubular neighbourhood with the Thom space of the bundle. We may
extend the map f : M q → X to the normal bundle constantly on the fibres.
We thus obtain a smash product,

f ∧ PT : Sn+q → X+ ∧ Tνi.

The normal bundle νi is classified by some map M → BO(n). Looking at the
map on total spaces and taking Thom spaces yields a map of Tνi → MO(n).
Composing with the map above defines a map,

PTf : Sn+q → X+ ∧MO(n).

There was a choice made in constructing this map beyond just what f was;
namely, the embedding we used and its dimension. Recall the fact that stably,
all embeddings are isotopic. To see this, given embedddings i1, i2 : M ↩→
Rn1,n2 , we can stabilize to embeddings i1, i2 : M ↩→ Rn1+n2 and then there is
an isotopy,

Υ(x, t) = i1(x)t+ (1− t)i2(x).

If we stabilize the embedding i : M q ↩→ Rn+q we chose earlier, the map PTf

is suspended to the map,

ΣPTf : Sn+q+1 → X+ ∧MO(n+ 1).

If we have two embeddings, stabilized to be isotopic, the isotopy will define a
homotopy of the two versions of the map PTf . Thus taking the colimit under
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stabilization and considering the map only up to homotopy, our map PTf will
be a canonical element independent of embedding,

[Σ∞PTf ] ∈ lim
n→∞

[Sn+q, X+ ∧MO(n)].

Here the colimit is defined over the maps,

[Sn+q, X+∧MO(n)]
Σ−→ [Sn+q+1, X+∧ΣMO(n)] → [Sn+q+1, X+∧MO(n+1)],

where the second map comes from the Thom spectrum map.

Note that if the map f : M → X is cobordant to another map g : N → X,
then this cobordism will define a homotopy between the classes [Σ∞PTf ] and
[Σ∞PTg]. Hence this Pontryagin–Thom map descends to a map,

PT : ΩO
q (X) → lim

n→∞
[Sn+q, X+ ∧MO(n)].

Actually this is a group homomorphism. Here the group structure on the right
comes from the co-H-space structure on Sn+q which is compatible with the
diagram in the colimit. To see this, if we take the cobordism class of two
singular manifolds f, g, the corresponding collapse map PTf,g up to homotopy
is given by gluing the domains of the collapse maps PTf and PTg under the
co-H-space map Sn+q → Sn+q ∨ Sn+q. It is thus immediate that the PT map
respects group structures.

We now construct a candidate inverse to this map. Suppose we have some map
f : Sn+q → X+ ∧MO(n). Compose with projection to obtain a map Sn+q →
MO(n). Up to homotopy this map can be made to land in γr

n ⊂ MO(n),
where γr

n is the tautological n-plane bundle on G(r, n) for sufficiently large r.
By the Thom transversality theorem, we may homotope f to obtain a smooth
map Sn+q → γr

n which is transverse to the zero section. Hence the preimage of
the zero locus will be a smooth compact q-manifold M q naturally embedded
in Rn+q ⊂ Sn+q. Restricting f and projecting to X then defines a singular q-
manifold PT−1

f : M q → X. Note that if we take a homotopy of our map f to a

map g, it will induce a cobordism between PT−1
f and PT−1

g by looking (after a

homotopy of homotopies) at the zero locus of the induced map Sn+q×I → γR
n .

And we may freely stabilize the map f to a map Sn+q+1 → X+∧MO(n+1) and
we will obtain the same q-manifold M q (up to cobordism) but now embedded
in Rn+q+1. We conclude there is a reverse map,

PT−1 : lim
n→∞

[Sn+q, X+ ∧MO(n)] → ΩO
q (X).

If we have two f : Sn+q → X+ ∧MO(n), g : Sn+r → X+ ∧MO(n), then the
combined map f ∨ g with have (up to bordism) PT−1

f∨g = PT−1
f ⊔ PT−1

g for
obvious reasons. Hence this inverse is also a group homomorphism.
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Let us show these are indeed inverses. If f : M q → X is a singular manifold,
then PTf is a map Sn+q → X+ ∧MO(n). If we take the preimage of the zero
section in MO(n) under this map, we reobtain M q → X. So, PT−1 ◦PT = id.
To conclude these are inverse isomorphisms, it will be enough to show PT−1

is injective. Suppose we have f : Sn+q → X+ ∧MO(n) so that M q = PT−1
f

is null-cobordant. After increasing the dimension n and stabilizing our map,
we may assume M q ⊂ Sn+q bounds a manifold W q+1 which is embedded in
Dn+q+1. As before f is homotopic after projection to a map g : Sn+q →
Tγr

n Let U = g−1(γr
n), which can be taken after homotopy to be a tubular

neighbourhood of M q in Sn+q so that g : U → γr
n is a map of total spaces

of vector bundles. This can be extended by a relative tubular neighbourhood
theorem to a define a map from a tubular neighbourhood V of W to γr

n which
is also a map of total space of vector bundles. We can then extend this to
a map g : Dn+1 → Tγr

n by setting it equal to ∞ outside W and then to a

map G : Dn+1 → X+ ∧ MO(n). Then G by its construction provides a null
homotopy of f .

We could have done much the same construction for more complicated G-
structures. In the forward direction the stable G-structure on the normal
bundle of the singular manifold provides a map to MG(n) instead of MO(n).
And conversely, taking the zero locus of a map into Sn+q → X+MG(n) would
endow the resulting manifold M ⊂ Sn+q with a G-structure on its normal
bundle coming from an identification with a tubular neighbourhood of the zero
section of EG(n). We have thus proved the following fundamental result.

Theorem 6.59: Pontryagin–Thom Construction

There is an isomorphism,

ΩO
q (X) = lim

n→∞
[Sn+q, X+ ∧MO(n)].

Similarly, there are isomorphisms,

ΩSO
q (X) = lim

n→∞
[Sn+q, X+ ∧MSO(n)],

ΩU
q (X) = lim

n→∞
[S2n+q, X+ ∧MU(n)].

Analogous results hold for any nice topological group G (e.g. G =
Sp, Spin, SU, etc.).

In the case where X is a point, we obtain the n-dimensional bordism ring.
And in fact we can recover the ring structure from this construction. Using
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the multiplication maps we defined for MO, there is a natural map,

[Sn+q,MO(n)]× [Sm+r,MO(m)]
∧−→ [Sn+q ∧ Sm+r,MO(n) ∧MO(m)]

→ [Sn+m+q+r,MO(n+m)].

We claim this coincides with the multiplication in ΩO
∗ given by Cartesian prod-

uct. Indeed, if we have two manifolds N,M , embedded into Sn+q and Sm+r

respectively, then the product N ×M can be embedded into Sn+q+m+r. The
normal bundle νN×M of this embedding is the direct sum of the two normal
bundles νN , νM . And so the Pontryagin–Thom collapse map sends Sn+q+m+r

to TνN×M and then to MO(n + m) precisely via the Thom multiplication
map MO(n)×MO(m) → MO(n +m) induced by the classifying space map
corresponding to direct summing vector bundles. Thus we see we have a ring
isomorphism. Of course the same holds for the homology of a point in any
other Thom spectrum MG.

Dual to our generalized homology theory is a generalized cohomology theory,
the cobordism groups. Using the Pontryagin–Thom construction, these can
be defined by,

Ωn
O(X) = lim

n→∞
[ΣnX,MO(n+ q)],

Ωn
SO(X) = lim

n→∞
[ΣnX,MSO(n+ q)],

Ωn
U(X) = lim

n→∞
[Σ2nX,MU(n+ q)],

and analogously for other G-structures. Note that there is always a graded ring
map on the cobordism groups using our smash map on the Thom spectra.

In the case where X is a closed k-manifold, there is a generalized Poincaré
duality for cobordism giving,

ΩO
n (X) = Ωk−n

O (X),

and analogously for oriented and complex cobordism if X is oriented or has
a stable almost complex structure. The multiplication on cohomology then
becomes a map in homology analogous to the intersection product,

ΩO
n (X)× ΩO

m(X) → ΩO
m+n−k(X).

This map agrees with the multiplication we described earlier coming from
looking generically at the preimage of the diagonal under the product of two
singular manifolds in X.

Thom spectra are actually quite general phenomena and we describe now how a
Thom-like construction recovers a familiar generalized homology theory.
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Definition 6.60

A normal framing of an embedding i : Mn ↩→ Rn+m of an n-manifold is
an isomorphism of the normal bundle νi with a trivial rank m bundle.

A stable normal framing of a n-manifold M is an isomorphism class
of normal framings up to homotopy of framings and stabilization. I.e.
given two embeddings i : M → Rn+a and j : M → Rn+b with normal
framings, we identify their framings if νi⊕Rk ∼= Ra+k and νj⊕Rℓ ∼= Rb+ℓ

are homotopic for some k and ℓ. A manifold is called stably framed if it
is equipped with a choice of stable normal framing.

We may define the framed bordism groups of a space X,

Ωfr
n(X) = {stably framed singular n-manifold}/{stably framed bordism}.

That is, we consider singular n-manifoldsM → X withM stably framed
and we identify two such maps if there is a stably framed singular (n+1)-
manifold with boundary W → X which restricts to the two singular
manifolds with their given framings on the boundary.

Note that not all manifolds possess a normal framing. By the Whitney duality
formula one needs all the characteristic classes of the manifold to vanish, in
particular M should be orientable and spin.

Now consider the analogous Pontryagin–Thom construction for the framed
bordism group. If we begin with a stably framed singular q-manifold f :
M q → X and a choice of embedding i : M q → Rn+q with a normal framing
νi ∼= Rn , we obtain a Pontryagin–Thom collapse map,

PTf : Sn+q → X+ ∧ Tνi

Because we have a preferred trivialization of νi, we have an isomorphism νi →
M×Rn. Taking the Thom space, this becomes an isomorphism Tνi → Sn∧M+.
We may compose the above map with this one and project out the factor of
M to get the following,

PTf : Sn+q → X+ ∧ Sn = ΣnX.

In the same manner as we showed before, up to bordisms of f and a different
choice of normal framing in the same stable normal framing class, the homo-
topy class of the stabilized version of PTf will not change. I.e. we obtain a
well defined element of,

lim
n→∞

[Sn+q,ΣnX] = lim
n→∞

πn+q(Σ
nX) = πst

q (X).
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Further, we can show this map is a homomorphism and we may obtain by the
same procedure an inverse map. Hence one has the following result.

Theorem 6.61

There is an isomorphism,

Ωfr
n(X) = πst

n (X).

Stably framed bordism defines the same generalized homology theory as
stable homotopy.

In general, understanding bordism groups is difficult so this is not an effective
method for computing homotopy groups. Nevertheless, it does suggest deeper
connections between cobordism theory and stable homotopy theory that allow
for theoretical studies.

Let us at least see these two groups agree for X = pt in low dimensions. A
normal framing of a connected 0-manifold, i.e. a point, is just an element of
GLn(R). Up to homotopy, there are two such stable normal framings given by
the determinant of the framing of the point. A line segment is a cobordism be-
tween a pair of points with opposite framings. Hence Ωfr

0 (pt) = πst
0 = Z count-

ing the number of positively framed minus negatively framed points.

There are four stable normal framings of a circle. This can be seen from
the fact [S1, GL(R∞)] = π1(GL(R∞)) = Z2 × Z2. There are two positively
oriented framings, one coming from the standard embedding i : S1 ↩→ R2 and
the other coming from the left invariant framing of S1 as a Lie group. The
second framing is equivalently associated to the embedding j : S1 ↩→ R3 as a
figure-eight. There are two negatively-oriented framings given by multiplying
these two framings by a sign.

The stable framing from i is clearly null-bordant. And the stable framing from
j is 2-torsion in the bordism group using a cylinder bordism. Also multiple
copies of the circle are always bordant to a single copy using a pair of pants
with many leg holes. We conclude that the framed bordism group consists of
two elements: the identity element associated to i and the non-trivial element
associated to the Lie framing or j. Hence, Ωfr

1 (pt) = πst
1 = Z2.
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Thanks for reading!
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