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1. Introduction

The Yang-Mills equations are an important class of non-linear PDEs in physics and
geometry. The instantons or anti-self dual connections are a special family of minimal
energy four-dimensional solutions which Simon Donaldson used to prove many novel
results in the classification of smooth four-manifolds (see [6] for a broad summary of the
achievements of mathematical gauge theory).

In 1977, Atiyah, Drinfield, Hitchin, and Manin classified all SU(2) ASD-connections on
R4 and S4 in terms of simple linear-algebraic data [3]. This well-known classification is
now referred to as the ADHM construction. We will recount their construction and the
algebro-geometric ingredients that go into proving their classification is complete.

Our account will largely follow that of a lecture series by Atiyah [2] and in parts a note by
Donaldson [7]. Both are based on the original account of Atiyah, Drinfield, Hitchin, and
Manin, using twistor theory, the Ward correspondence, and algebro-geometric results of
Horrocks and Barth. Other approaches to the same result exist; see [8, chapter 3] for a
different proof.
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2. Preliminaries

We will assume the reader is familiar with the formulation of the Yang-Mills equations,
an account of which can be read in [8, chapter 2]. Recall our basic setup is a vector
bundle E with structure group G, a (matrix) Lie group, over X, a four-dimensional
Riemannian manifold. A connection A on this bundle is represented by a covariant
derivative operator ∇A which locally has components,

∇µ = ∂µ + Aµ,

where Aµ is matrix-valued. The curvature FA of the connection locally has compo-
nents,

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

The curvature FA = Fµν dx
µ ∧ dxν is globally a two-form with values in the adjoint

bundle gE. The metric on X along with the Killing form on g = Lie(G) determines
a Hodge-star operator ⋆ : Ω2

X(gE) → Ω2
X(gE) and so we may define the anti-self dual

(ASD) equations for our connection A as,

⋆FA = −FA.

Solutions of this equation are called instantons (we will sometimes be imprecise about
distinguishing self dual and anti-self dual solutions, as they are interchanged by switching
orientations). On S4, instantons are the absolute minima of the Dirichlet energy, ∥FA∥2L2 ;
their value on this functional will be 8π2c2(E), where c2(E) ∈ Z is the second Chern
class of the bundle evaluted on [S4] ∈ H4(S

4;Z). We will speak of k-instanons on S4

to refer to instantons defined on the bundle E with c2(E) = k (note the value of the
second Chern class totally determines the isomorphism class of the bundle).

Uhlenbeck’s removable singularities theorem (see [12]) implies that instantons on S4 cor-
respond to finite energy instantons on R4 via stereographic projection (or in the inverse
direction, via conformal compactification). On R4, one may think of the k-instantons as
those consisting of k localized particles (or solitons in PDE terminology).

An early explicit solution due to Belavin, Polyakov, Schwartz, and Tyupkin in 1975 was
the BPST instanton, a one-instanton in the SU(2)-theory [5]. Explicitly this is given
by,

Aµ(x) =
2xν

x2 + λ2
ηµν and Fµν(x) =

4λ2

(x2 + λ2)2
ηµν ,

where λ ∈ R+ is the scale, parameterizing how localized the curvature is at zero. This was
extended by ’t Hooft in 1976 to a 5N -parameter family of SU(2) N -instantons. The 5N
parameters are N scales λi ∈ R+ and N centres xi ∈ R4 which describe the localization
and location of the N instantons [13, p. 87]. This was slightly extended to an explicit
family of 5N + 4 solutions, but the Atiyah-Singer index theorem implies the space of
solutions should actually have dimension 8N−3 [13]. This larger family and its analogue
for other structure groups is what was classified in the ADHM construction.

Thus, the problem we address in the remainder of this document is to completely classify
the k-instantons on a SU(2) bundle over S4 for k ≥ 1 (or more generally bundles for
other classical Lie groups).
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Let us quickly summarize our path to a solution. We will first explain how twistor
theory allowed Ward to express instantons on S4 as equivalent to certain complex-
geometric data. Then we discuss the work of Horrocks, who constructs certain such
bundles using linear-algebraic data. Then, we summarize how one proves using some
technical tools of algebraic geometry that Horrocks’ construction is exhaustive and so
classifies all instantons.

3. Penrose’s Twistor Theory and the Ward Correspondence

We begin by re-expressing the problem of classifying instantons in terms of finding
certain holomorphic vector bundles. This is known as the Ward correspondence, which
we establish by way of ideas from twistor theory.

3.1. Twistor Geometry. Twistor theory, as developed by Roger Penrose, is a method
of studying four-dimensional physical theories by converting problems to complex pro-
jective space (called twistor space in the physicst theory). See Chapter 7 of [9] for an
introduction to the subject.

For our context, we use twistor theory to export the instanton problem from S4 to CP 3

in the following manner. Consider homogeneous coordinates [z1 : z2 : z3 : z4] for CP 3.
Identifying C ⊂ H in the usual way, we may define a map,

CP 3 → HP 1 by [z1 : z2 : z3 : z4] 7→ [z1 + jz2 : z3 + jz4].

One can easily see this is well-defined and each point of HP 1 has preimage CP 1. We
have a diffeomorphism HP 1 ∼= S4. Hence the map defines a fibre bundle π : CP 3 → S4

with fibres CP 1, which we call the real lines of CP 3.

Identifying C4 with H2, there is an anti-holomorphic map σ given by left multiplication
by j. On the projectivization, this defines an involution given by, σ([z1 : z2 : z3 : z4]) =
[−z2 : z1 : −z4 : z3]. This map preserves the fibration π and acts on the fibres S1 by the
antipodal map. We call σ a real structure, hence the term real lines for the preserved
fibres.

Given a holomorphic vector bundle E → CP 3, suppose we have a linear isomorphism
σ : E → E∗ covering σ on CP 3. If σ2 = 1, we say E has a real structure, if σ2 = −1, we
say E has a symplectic structure. We then have the following.

Theorem 3.1 (Ward Correspondence [4]). Instantons on S4 with structure group SU(2)
are in correspondence with rank 2 holomorphic vector bundles E → CP 3 which are
trivial when restricted to any real line and are equipped with a symplectic structure.
Gauge transformations of the instantons correspond to σ-preserving isomorphisms of
holomorphic vector bundles.

This result is helpful because it moves us away from having to consider some of the
difficulties of Yang-Mills theory. Instead, we require ideas from the classification of
holomorphic vector bundles. This is a natural and well-studied (but still challenging)
theory through which we will proceed. Some comments are warranted here.
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Remark 3.2. There are analogous versions of this result for any compact structure group.
Note SU(2) ∼= Sp(1). To extend the construction to groups Sp(n) we consider rank n
holomorphic bundles E instead, with the same conditions imposed. To consider the
groups O(n), we require a rank n holomorphic bundle with a real, as opposed to sym-
plectic, structure [3]. Any compact Lie group has a faithful real orthogonal representa-
tion and so we may represent instantons for any such group by placing restrictions on
the holomorphic bundles of the orthogonal theory [3].

Remark 3.3. The algebraic 2-dimensional bundles on CP 1 can always be described
(uniquely) as direct sums of two line bundles (see section 4.1 below). For a given holo-
morphic vector bundle E → CP 3, an embedded CP 1 ⊂ CP 3 will be called a jumping
line if the two line bundles constituting the restriction of E to CP 1 are both the trivial
line bundle. The condition that our bundles are trivial on real lines is equivalent to the
fact the real lines are not jumping lines for E. It also implies that the first Chern class
c1(E) = 0. By semi-continuity we also deduce that E restricted to a generic CP 1 in
CP 3 is trivial [4, p. 119].

3.2. Explaining the Ward Correspondence. Let us now establish how instantons
can be related to these complex bundles, following the approach of [7]. Given a complex
three-manifold Z, we can consider submanifolds which are “lines” (embedded copies of
CP 1). Some complex geometry implies that the moduli space M of lines in Z is a
four-dimensional complex manifold with a natural holomorphic conformal structure [7,
pp. 4]. Given p ∈ Z, let Σp be the submanifold of lines in M which intersect p. Then
Σp will be isotropic with respect to the conformal structure, i.e. the restriction to TΣp

of the conformal structure is zero [7, p. 4].

Given a non-degenerate quadratic form on C4, we may decompose Λ2C4 into self-dual
and anti-self-dual parts with respect to the form and the induced Hodge-star operator.
One can check that a 2-form will be self dual or anti-self dual if and only if it vanishes
on all isotropic subspaces of C4 [7, p. 5]. We conclude by looking at the tangent spaces
of M that a connection A on a bundle over M will have a self-dual or anti-self dual
curvature 2-form precisely when the curvature vanishes when restricted to any Σp. That
is, the instantons of M are the connections which are flat on each Σp.

We now want to show how such connections correspond to holomorphic vector bundles.
Given a holomorphic vector bundle E → Z which is trivial on lines L ⊂ Z, we may
define a vector bundle E → M whose fibre over L are the holomorphic sections of E|L.
We explain later in Lemma 5.2 how sheaf cohomology implies that a trivialization of E
over L extends to one over the first formal neighbourhood L(1) defined as OZ/I2

L, the
sheaf of functions on Z quotiented by the square of the vanishing ideal of L. This gives
a connection on E . For any Σp, we may trivialize E|Σp by evaluating sections at p; this
trivialization respects the connection on E and so our connection is flat on submanifolds
Σp. By above, we conclude that E → Z determines an instanton on M.

On the other hand, given an instanton A on a bundle E → M, we can define a homolo-
morphic bundle E → Z whose fibre over p is the space sections of E|Σp whose covariant
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derivative vanishes. Given a line L ⊂ Z and p ∈ L, we can use the fact the covariant
derivative vanishes on Σp for these sections to canonically identify the fibre Ep with Eq

for any other q ∈ L via parallel transport. Hence E is trivial on lines.

This establishes the complex Ward correspondence: that instantons onM are equivalent
to holomorphic vector bundles E → Z, trivial on lines.

We can simplify things by supposing Z is equipped with an anti-holomorphic involution
σ. The lines of Z preserved by σ gives a real manifold M ⊂ M; M is called the
complexification of M . Assume σ has no fixed points when restricted to a point of M ;
then it defines a Riemannian conformal structure on M . By the same manner as above,
we get a correspondence of instantons on M to holomorphic vector bundles E → Z
which are trivial restricted to the lines of M , subject to the condition that E has a
linear involution E → E∗ which squares to minus one. We require this extra condition,
which we call the “reality condition,” so that the structure group of the instanton is
SU(2) and not its complexification SL(2,C) [4, p. 119].

Now we can complete the proof of the theorem. Taking Z = CP 3 with real structure
σ considered before, its moduli space of lines is the complex Grassmannians GrC(2, 4)
which is defined by a quadric equation in CP 5. This space is a complexification of S4

which parameterizes the real lines fixed by σ [7, p. 5]. We conclude that instantons
on S4 are in correspondence with holomorphic vector bundles over CP 3, trivial on real
lines, and equipped with a symplectic structure. This is what we claimed above.

4. Horrocks’ Construction: The Data of the ADHM theory

We now give an algebraic method, due to Horrocks, to construct certain holomorphic
vector bundles satisfying the criteria of our Ward correspondence.

4.1. Bundles on Projective Space. First we need some preliminaries. On any pro-
jective space CP n there is a tautological line bundle defined as,

O(−1) = {(ℓ, z) ∈ CP n × Cn+1 : [z] = ℓ}.
We denote, for p ∈ Z, the −pth tensor power of this complex line bundle as O(p) (we
have O(1) = O(−1)∗ is the inverse of O(−1) under ⊗ and O(0) is trivial). It is a general
fact that vector bundles on CP 1 are all isomorphic to a direct sum of bundles O(pi) [7,
p. 4]. Also, any line bundle on CP n is isomorphic to some O(p) [10].

For p > 0, a global holomorphic section of O(p) is given by a homogeneous polynomial
of degree p. For p < 0, local holomorphic sections of O(p) are given by certain rational
functions and there are no non-zero global holomorphic sections [2, pp. 60].

4.2. The Construction. Fix k ∈ N. We begin with some necessary data for the
construction.

Data 4.1. We suppose we have the following structures:

• Complex vector spaces V and W of dimensions 2k + 2 and k respectively.

• An non-degenerate skew-symmetric form on V .
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• Anti-linear maps σ : W → W and σ : V → V with σ2 = 1 on W and σ2 = −1
on V . We require σ on V be compatible with the skew form on V :

(σv1, σv2) = (v1, v2).

We also ask the induced Hermitian form on V :

⟨u, v⟩ = (u, σv)

be positive.

• A family of linear maps A(z) : W → V depending linearly on z ∈ C4.

The last datum means we can write A(z) =
∑

iAizi for fixed maps Ai : V → W . We
impose the following condition:

Data 4.2. The image space Uz = A(z)W ⊂ V is k-dimensional (i.e. full rank) and
isotropic with respect to the form on V for all z ̸= 0.

We can define then for each z ̸= 0 the quotient space Ez = U◦
z /Uz, where U◦

z is the
annihilator of Uz with respect to the skew form. Note Ez = Eλz for λ ∈ C× and the
condition 4.2 implies that Ez is of dimension two for any non-zero z. Since Ez depends
algebraically on z, we obtain an algebraic vector bundle E → CP 3 of rank two whose
fibre over [z] is Ez. The skew form on V induces one on E, and so E has structure group
SL(2,C).

Since Uz is k-dimensional for non-zero z, the image of a basis vector of W under A(z)
determines a bundle isomorphic to O(1) and so U is isomorphic to O(−1)⊕k. We claim
for x, y ∈ CP 3 that Ux ∩ Uy = 0. If not, a vector in Ux ∩ Uy would give a non-zero
holomorphic section for the restriction of U to the line joining x and y. But since U is a
sum of line bundles, such a section would give a non-zero section of O(−1), which does
not exist as we stated above.

We now are interested in the jumping lines of E, i.e. lines ℓ for which E|ℓ is non-trivial.
We claim these jumping lines are those connecting points x, y ∈ CP 3 with U◦

x ∩Uy ̸= 0.
Suppose we have a line ℓ so that any two points x, y ∈ CP 3 it connects satisfy U◦

x∩Uy = 0.
Fix such a pair x, y. Then for any z ∈ ℓ we have,

U◦
x ∩ U◦

y ∩ Uz = 0.

Since R = U◦
x ∩ U◦

y is two dimensional and contained in U◦
z , we see that U◦

z = R ⊕ Uz.

Hence we may trivialize E|ℓ = R. Conversely, if ℓ joins some pair x, y ∈ CP 2 so that
U◦
x ∩ Uy ̸= 0, we have U◦

x ∩ U◦
y ∩ Uy ̸= 0 and so contains a vector v. Since Ux ∩ Uy = 0

by our argument above, v /∈ Ux and so can be used to define an algebraic section of E|ℓ
zero at y but not x. This means E|ℓ is not trivial.

We now focus on the reality conditions to reduce the structure group to SU(2) and make
one final assumption on A(z). Recall our data from 4.1 gave linear maps σ on V and
W , compatible with the skew form on V .
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Data 4.3. The map A(z) is compatible with our three σ maps:

σ(A(z)w) = A(σz)(σw) ∀ z ∈ C4, w ∈ W.

Here, σ represents both the linear maps on V and W as well as the map we have previ-
ously consider on C4 ∼= H2 given by left multiplication by j; which is which is clear from
context.

From the compatibility condition we clearly infer that Uσz = σ(Uz) and U◦
z = U⊥

σz, where
⊥ is orthogonal complement with respect to the positive Hermitian form on V . We can
thus form a orthogonal decomposition,

(4.1) V = Uz ⊕ (U◦
z ∩ U◦

σz)⊕ Uσz.

Note the middle term depends only on the point x ∈ S4 which parameterizes the real
line containing z and σz in the fibration of CP 3; as such we denote U◦

z ∩U◦
σz as Rx.

Since U◦
z = U⊥

σz, we have U◦
z ∩ Uσz = 0. So, the real line connecting z and σz is not a

jumping line for E. Any real line is of this form and so E is trivial when restricted to
the real lines. Furthermore, the map σ on V descends to a map σ on E with σ2 = −1
via the fact Uσz = σ(Uz). So, E has a symplectic structure.

From Ward’s theorem, we can conclude that E corresponds to an instanton on S4.
We can go further and make this explicit. The construction above determined a vector
bundle R → S4 with fibre Rx over x ∈ S4. R is clearly realized as a subbundle of S4×V .
We can then give R a connection ∇ induced by orthogonal projection π. Namely, if ι
is the inclusion R ↪→ S4 × V and d is the flat connection on S4 × V , we let ∇ act on a
section s by,

∇s = π ◦ d ◦ ι(s).
One has that this connection is anti-self dual and defines a k-instanton (recall k =
dim(W )) [3].

Our claim is that we have now found all SU(2) instantons on S4.

Theorem 4.4 (The ADHM Construction [3]). The data of 4.1,4.2, and 4.3 considered
up to isomorphism (i.e. a transformation A(z) 7→ PA(z)Q for P ∈ Sp(k + 1), Q ∈
GL(k,R)) is in correspondence with a gauge equivalence class of SU(2) k-instantons on
S4 via the procedure outlined above.

The remainder of this essay will outline how one proves this correspondence via algebro-
geometric methods.

Remark 4.5. As with our previous work, this generalizes to other compact Lie groups.
For the larger groups Sp(n), we would instead take V to have dimension 2k + 2n. If we
were dealing with orthogonal groups O(n), we would take V to be 2k + 2n dimensional
with a symmetric instead of skew form, and take W to be symplectic: σ2 = −1 (this
corresponds to a real instead of symplectic structure on the corresponding holomorphic
bundle over CP 3). We can treat SU(n) ⊂ O(2n) by asking all our data be compatible
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with an orthogonal matrix J such that J2 = 1. Other matrix subgroups of the orthogonal
group are handled similarly by adding additional structure.

Remark 4.6. The condition from 4.2 that Uz be isotropic is equivalent to the equation,

A(z)⊺JA(z) = 0 for all z ̸= 0,

where J is the matrix of the skew form. This can be solved as certain quadratic equations
for the coefficients of A1, . . . , A4. The full-rank condition from 4.2 can also be phrased
as some algebraic equation for the determinant of minors of A. The reality condition
4.3 is also straightforward. We thus see that all the data of the ADHM construction can
be made explicit and algebraic. In [2, V.III] a nice rephrasing of the conditions is given
in terms of quaternions.

In [3], the ’t Hooft solutions discussed earlier are explicitly given in terms of the ADHM
construction. Consider a k-instanton with scales λi ∈ R+ and centres yi ∈ R4, i =
1, . . . , k. We may interpret each yi as a quaternion and z ∈ C4 as a quaternion pair
(p, q) ∈ H2. Then using quaternion multiplication, we can write A(z) as the (k + 1)× k
quaternion matrix,

A(z) =


λ1p λ2p · · · λkp

y1p− q 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 ykp− q

 .

If the ADHM data is given in terms of quaternions, then the connection potential Aµ

can be recovered algebraically from the quaternion matrix form of A(z) [3].

5. Proving the Construction

We now embark on a sketch of the proof of theorem 4.4. This will involve some important
ideas from algebraic geometry that allow us to show that a certain class of bundles are
classified by the ADHM construction and that all instantons belong to this class.

5.1. A Non-Technical Discussion of Sheaf Cohomology. The proof will require
techniques from sheaf cohomology which we only somewhat explain. These groups are,
for us, defined for the sheaf of algebraic/holomorphic/smooth sections of a vector bun-
dle.

Let E → X be such a bundle, and E its sheaf of sections. Then Γ : E → Γ(X,E)
is a functor from sheaves of abelian groups to abelian groups defined by considering
the global sections of E . This is left exact and so has right derived functors for i ∈ N
determining the sheaf cohomology groups H i(X, E) [10, p. 207]. We will also denote the
groups H i(X,E) or simply H i(E) if the context makes their meaning clear. One should
think of these groups as measuring the failure to extend local sections of the sheaf; this
is motivated by the fact that H i(X, E) is zero for all positive integers i when E is flabby
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(e.g. the sheaf of smooth sections of a smooth bundle) [10, p. 208]. Also useful to note
is that a short exact sequence of sheaves on X,

0 → A → B → C → 0,

induces a long exact sequence of sheaf cohomology groups,

· · · → H i−1(X, C) → H i(X,A) → H i(X,B) → H i(X, C) → · · ·
by standard homological algebra [10, p. 203].

We give something more explicit for the zeroth and first groups, which will be of primary
interest. From the definition, one finds that H0(X, E) is simply the group of global
sections of E [2, p. 66]. We will define the first group via Čech cohomology. Consider a
compact complex manifold X with a finite cover of open sets {Uα}. We define the space
of 1-cochains to be the space of collections of sections gαβ of E on each Uα ∩ Uβ. The
sections gαβ form a 1-cocyle if, for any Uγ, we may write

gαβ = gαγ + gγβ.

The sections form a 1-coboundary if there is a collection of sections hα on the open
sets Uα so that gαβ = hα − hβ on any Uα ∩ Uβ. The quotient of the co-cyles by the
co-boundaries defines an abelian group H1(X, E , {Uα}). For sufficiently small and well-
chosen sets in the covering (e.g. consider taking a direct limit), this will be independent
of the cover and reproduce the first sheaf cohomology group H1(X, E) [2, p. 66].

We also give explicitly the sheaf cohomology of our line bundles on CP 1:

H1(CP 1,O(−m)) ∼=

{
Cm−1 m > 1,

0 m ≤ 1,

which can be computed from the Čech definition above [2, p. 65].

Lastly, we state for completeness a foundational theorem in our cohomology theory. We
will not apply this directly, but it is needed for some of the details we skip in proving
theorem 5.5.

Theorem 5.1 (Serre Duality [10, Corollary 7.7]). Let X be an n-dimensional compact
complex manifold and E a holomorphic vector bundle over X. Let ωX denote the space
of sections of the canonical line bundle Ωn

X , i.e. the top power of the cotangent bundle.
Then for each 0 ≤ i ≤ n, there is a canonical isomorphism,

H i(X, E) ∼= Hn−i(X,ωX ⊗ E∗)∗.

5.2. Computing Some Cohomology Groups. Given some holomorphic vector bun-
dle E → CP n let E(p) denote the bundle E ⊗ O(p), where O(p) → CP n is a tensor
power of our tautological bundle as before.

Suppose we begin with an SU(2) instanton on a bundle F over S4. We then obtain,
via the Ward correspondence, a rank 2 holomorphic vector bundle E → CP 3 which is
trivial on real lines and carries a symplectic strucuture. We want to show that this data
implies the sheaf cohomology group H1(CP 3, E(−2)) = 0.
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First we need a lemma, which we have already used in section three.

Lemma 5.2. If a holomorphic vector bundle E → CP 3 is trivial along a projective line
L, then it is also trivial along its first formal neighbourhood L(1).

Our proof follows [2, pp. 71–72]. Let O the sheaf of holomorphic functions on CP 3 and
J be the vanishing ideal of L. We have an exact sequence of sheaves defined by taking
a quotient,

0 → J /J 2 → O/J 2 → O/J → 0.

We can clearly identity O/J with the holomorphic functions of our line L. Similarly,
O/J 2 is identified with holomorphic functions on L(1), i.e. first order Taylor approxima-
tions to functions on L. The sheaf J /J 2 is the space of these first order Taylor terms,
or more formally, the conormal bundle N∗ of L ⊂ CP 3. One can check that the normal
bundle decomposes into a direct sum of two copies of the tautological bundle and so
N∗ = O(1)⊕O(1). We know that O(1) has no global sections and vanishing first sheaf
cohomology, so we infer that,

H0(N∗) = H1(N∗) = 0.

Tensoring the above sequence with E gives an exact sequence,

0 → E|L ⊗N∗ → E|L(1)
→ E|L → 0.

Since E|L is trivial, its sheaf cohomology vanishes, hence,

H0(N∗ ⊗ E|L) = H1(N∗ ⊗ E|L) = 0.

From the above exact sequence, we obtain an exact sequence,

0 →
��������:0
H0(N∗ ⊗ E|L) → H0(E|L(1)

) → H0(E|L) →��������:0
H1(N∗ ⊗ E|L) → · · · .

This establishes an isomorphism of the zeroth cohomologies of E|L(1)
and E|L, i.e. there

is an isomorphism between the global sections of the two bundles. Hence, a global
trivialization of E|L induces a global trivialization of E|L(1)

.

We come to the question of computing H1(CP 3, E(−2)). The following construction
again comes from twistor theory. Suppose we have a element Φ ∈ H1(CP 3, E(−2)). We
have a fibre bundle CP 3 → S4 parameterizing the real lines of CP 3. Given x ∈ S4, we
obtain a corresponding real line Lx ⊂ CP 3. We may restrict E(−2) to this line and
obtain a corresponding restriction,

φx ∈ H1(Lx, E(−2)|Lx)
∼= Fx ⊗H1(Lx,O(−2)),

where the isomorphism follows from the triviality of E|Lx (recall here F → S4 is
the instanton bundle associated to E). As we stated earlier, the cohomology group
H1(CP 1,O(−2)) is one-dimensional and so, varying x, defines some line bundle W → S4

with fibreWx = H1(Lx,O(−2)) (one can identifyW with a 1/4-density bundle [2, p. 70]).
Thus, we may associate to Φ a section ϕ of F ⊗W over S4.

It is a consequence of twistor theory that one should be able to associate the sections
ϕ originating from a cohomology element Φ with the solutions of certain differential
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equations on F ⊗ W . For example, if we had instead taken E(−3) to begin with, we
would obtain sections solving the Dirac equation in a suitable background [2, p. 73].
Identifying and proving a correspondence is rather technical. One uses machinery of
sheaf cohomology and is able to make computations about φ and its derivatives using
the spaces Fx ⊗H1(Lx,O(−2)) and Fx,(1) ⊗H1(Lx,(1),O(−2)) (here is where we use the
triviality of E on the first formal neighbourhood of the line). One obtains:

Theorem 5.3 (Hitchin [11, 3.1]). The map,

H1(CP 3, E(−2)) → Γ(S4, F ⊗W )

sending Φ to ϕ, is an isomorphism onto the space of solutions to a Laplace equation on
S4, (

∇∗∇+
1

6
R

)
ϕ = 0,

where ∇ is the covariant derivative on F and R is the (constant positive) scalar curvature
of S4.

Note then that if ϕ solves the above Laplace equation globally on S4, we conclude,

0 =

∫
S4

〈(
∇∗∇+

R

6

)
ϕ, ϕ

〉
=

∫
S4

⟨∇ϕ,∇ϕ⟩+ R

6
⟨ϕ, ϕ⟩ ≥ 0,

where the inequality follows from R > 0 on the sphere. We get equality on the right
only when ϕ vanishes. We conclude the only global solution is zero and so we finally
obtain that:

H1(CP 3, E(−2)) = 0.

Remark 5.4. It is important to note that the statement H1(CP 3, E(−2)) = 0 is not
true for a general vector bundle on CP 3. To prove this correspondence with our twistor
method requires using the fact E comes from a unitary bundle F on S4 [2, p. 74].

5.3. Barth’s Criterion. We have arrived at the final important ingredient of the
ADHM construction. We rely critically on the following result of Barth and Huleck.

Theorem 5.5. Let E → CP 3 be a symplectic vector bundle satisfying the following:

(1) There is a line ℓ ⊂ CP 3 so that E|ℓ is trivial.

(2) The cohomology group H1(CP 3, E(−2)) = 0.

Under these conditions, E arises via Horrocks’ construction from a triple (A(z),W, V )
unique up to isomorphism.

We will not prove the full theorem, but will discuss the idea with some details skipped.
First we construct a certain diagram from the data of Horrocks. Abusing notation,
let V,W denote the trivial bundles on CP 3 with fibre the vector spaces V and W
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respectively. Since A(z) depends linearly on z, we can use the tautological bundle
O(−1) to interpret A as a bundle homomorphism,

A : W (−1) → V,

where the map A[z] for [z] ∈ CP 3 is given by A(w, ℓ) = A(ℓ)w for ℓ ∈ [z] ⊂ C4

and w ∈ W[z]. Note the bundle U → CP 3 with fibres our image spaces Uz is then
isomorphic via A to W (−1). Dualizing this gives an isomorphism V/U◦ ∼= W ∗(1). Set
Q = V/U,Q∗ = U◦. Recall also we had E as a quotient U◦/U . We thus obtain the
following diagram of interlacing short exact sequences.

(5.1)

0 0

0 W (−1) Q∗ E 0

0 W (−1) V Q 0

W ∗(1) W ∗(1)

0 0

A

A∗

Note the skew forms give identifications V ∼= V ∗, E ∼= E∗ and so this diagram is self-dual
under reflection through the diagonal. The data of this diagram is called a monad and
goes back to the original construction of Horrocks [7, p. 6].

The proof of Barth’s criterion then amounts to reconstructing (5.1) from only a sym-
plectic bundle E → CP 3 satisfying our constructions.

Let us take such a bundle E. Define W ∗ = H1(CP 3, E(−1)). It is a general fact that
the holomorphic vectors D with subbundle D1 and quotient D2 = D/D1, i.e. bundles
D fitting in the exact sequence,

0 → D1 → D → D2 → 0,

are canonically classified by elements of H1(D∗
2 ⊗ D1) [2, p. 67]. Thus the identity

element,

1 ∈ End(W ) ∼= W ⊗W ∗ ∼= H1(W ⊗ E(−1)),

defines an exact sequence (after tensoring with O(1)),

0 → E → Q → W ∗(1) → 0.

This is the second column of (5.1). Dualizing defines the first row of (5.1) and in
particular our space W . Some constructions with homology [2, p. 88] allow us to repeat
the idea we used to product Q to determine V via a compatible exact sequence,

0 → Q∗ → V → W ∗(1) → 0.
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In this step we use the homology condition on E. After dualizing this, we have re-
constructed all of (5.1). Some further work shows that the bundle V we have built is
trivial (so we obtain our vector space V ) and that the induced isomorphism V ∼= V ∗

from dualizing (5.1) is skew [2, pp. 88–89]. In this step we use the triviality of E on
some line. This gives us the full data of the monad, and in particular the original map
A(z) : V → W . The reconstruction of Horrocks’ data was all canonical, which implies
uniqueness.

With more work, one can also reconstruct V more explicitly as,

V ∼= H1(E ⊗ Ω1
CP 3).

The map A’s dual can be found explicitly from the cohomology exact sequence associated
to the dual of the exact Euler sequence on CP 3 [2, pp. 91–92].

5.4. Completing the Construction. We now finally put the pieces together of the
ADHM theory.

Consider the complete data of the ADHM construction: the triplet (A(z), V,W ) and the
actions σ on V and W . We know these give us a unique SU(2)-instanton on S4 and we
want to show this gives all instantons.

We know by the Ward correspondence that every instanton corresponds uniquely to
a holomorphic rank 2 vector bundle E → CP 3 which has a symplectic structure and
is trivial on real lines. With twistor theory we showed that any such E must satisfy
H2(CP 3, E(−2)) = 0. Combining this with the fact that E is trivial on real lines, in
particular trivial on some line ℓ ⊂ CP 3, we see that E meets Barth’s criterion and so
corresponds to a triple (A(z),W, V ). We just need to construct the maps σ on V,W to
show E comes from the ADHM construction.

The symplectic structure means that E carries a linear isomorphism σ : E → E∗ with
σ2 = −1. This will then induce a map on V . Pulling back E by σ∗ and using the
uniqueness of Barth’s criterion, we conclude σ acts in the desired way on V with respect
to the skew form. The condition of data 4.3 then implies the action of σ on W .

All that remains is to show the induced Hermitian form on V of data 4.1 is positive. For
[z] ∈ CP 3, recall from 4.1 we have an orthogonal decomposition,

V = Uz ⊕ Ez ⊕ Uσz,

and compatability conditions imply U⊥
σz = U◦

z = Uz ⊕Ez. We know the form is positive
on Ez by definition. We know σ(Uz) = Uσz and so the form will have the same sign on
Uz and Uσz. If it were negative on these two spaces, each Ez would lie in the positive
cone of the form. Using the trivialization of V , we could deform the bundle E to a
fixed positive subspace [2, p. 90]. This contradicts the fact that E is not topologically
trivial which is implied by c2(E) ̸= 0. Hence our induced Hermitian form is definite as
claimed.

We conclude that the ADHM data precisely characterizes the SU(2) instantons on S4

and we have completed the construction.

13



Remark 5.6. As we have remarked before, all of this theory can be applied to other
compact structure groups. We just need to show compatibility with the maps σ and any
extra structures we use; everything is similar to our reasoning above.

6. Conclusion

The ADHM construction is important to differential geometry, where for example it
plays a role in Donaldson theory for the classification of four-manifolds (see [8]). It
also has significance in physics, where classical Euclidean instantons describe tunneling
between vacuum states in the quantized Minkowski theory (see [1]).

Beyond its applications, the ADHM theory is a wonderfully elegant classification of an
important class of solutions of the Yang-Mills equations. Despite the seeming simplicity,
there is a vast amount of interesting and deep mathematics underlying the original two-
page paper of Atiyah, Drinfield, Hitchin, and Manin, which we have explored only some
of.

The merits of the construction are well expressed by a quote of Simon Donaldson [7,
p. 4], which we conclude with.

“The ADHM work is significant as one of the first applications of sophis-
ticated modern geometry to physics, playing a large part in opening up a
dialogue which has of course flourished mightility in the near half century
since.”
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