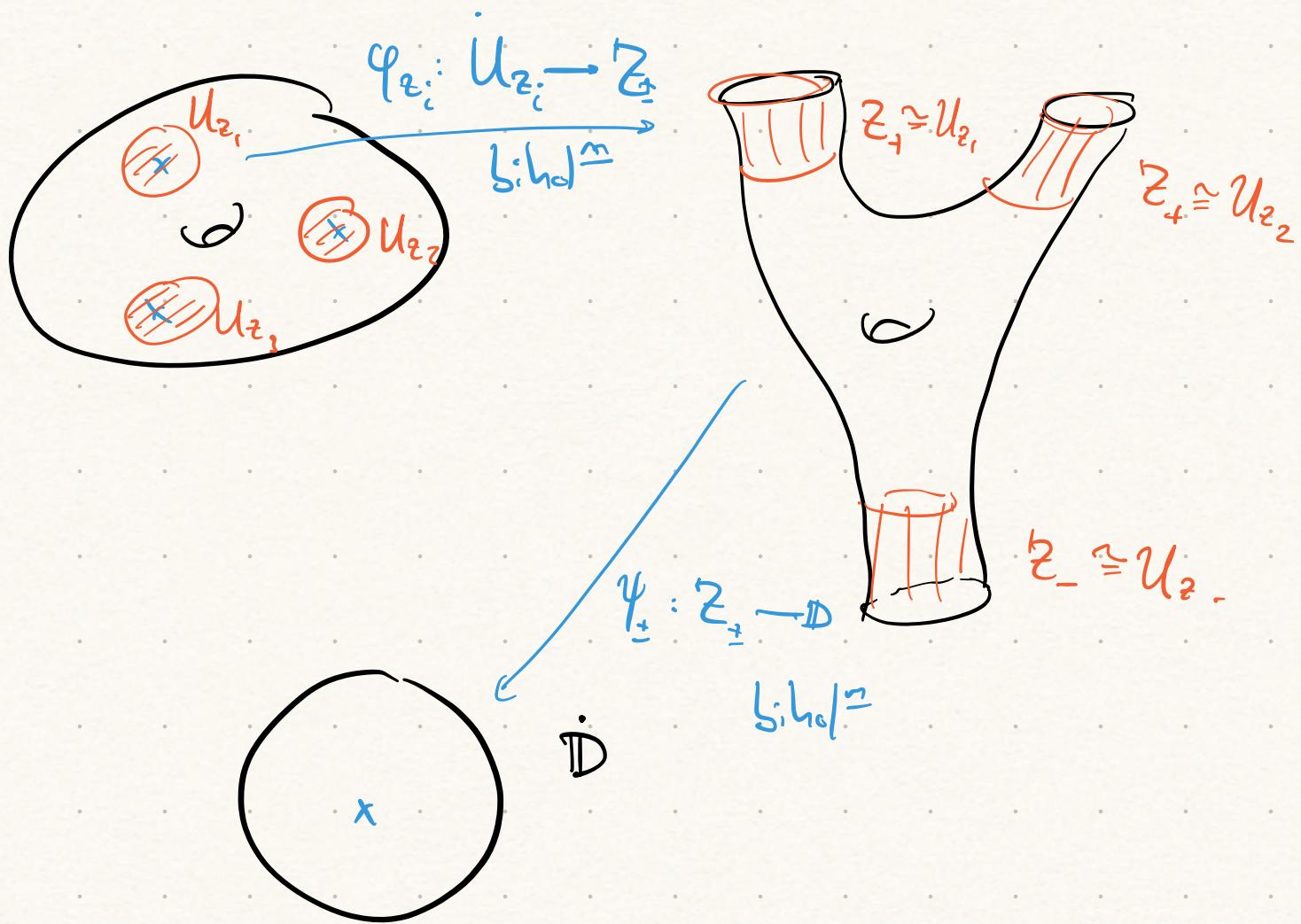


Cauchy - Riemann type operators in SFT

Setup:

> Punctures $T^\pm \subset \Sigma$



Choose φ_{z_i} s.t. $\psi_\pm \circ \varphi_{z_i} : U_{z_i} \rightarrow \mathbb{D}$
 extends holomorphically to a map

$U_z \rightarrow \mathbb{D}$ with $z \mapsto 0$.

Defⁿ :

$(E, J) \rightarrow (\bar{z}, j)$ a rank n \mathbb{C} -u.s.

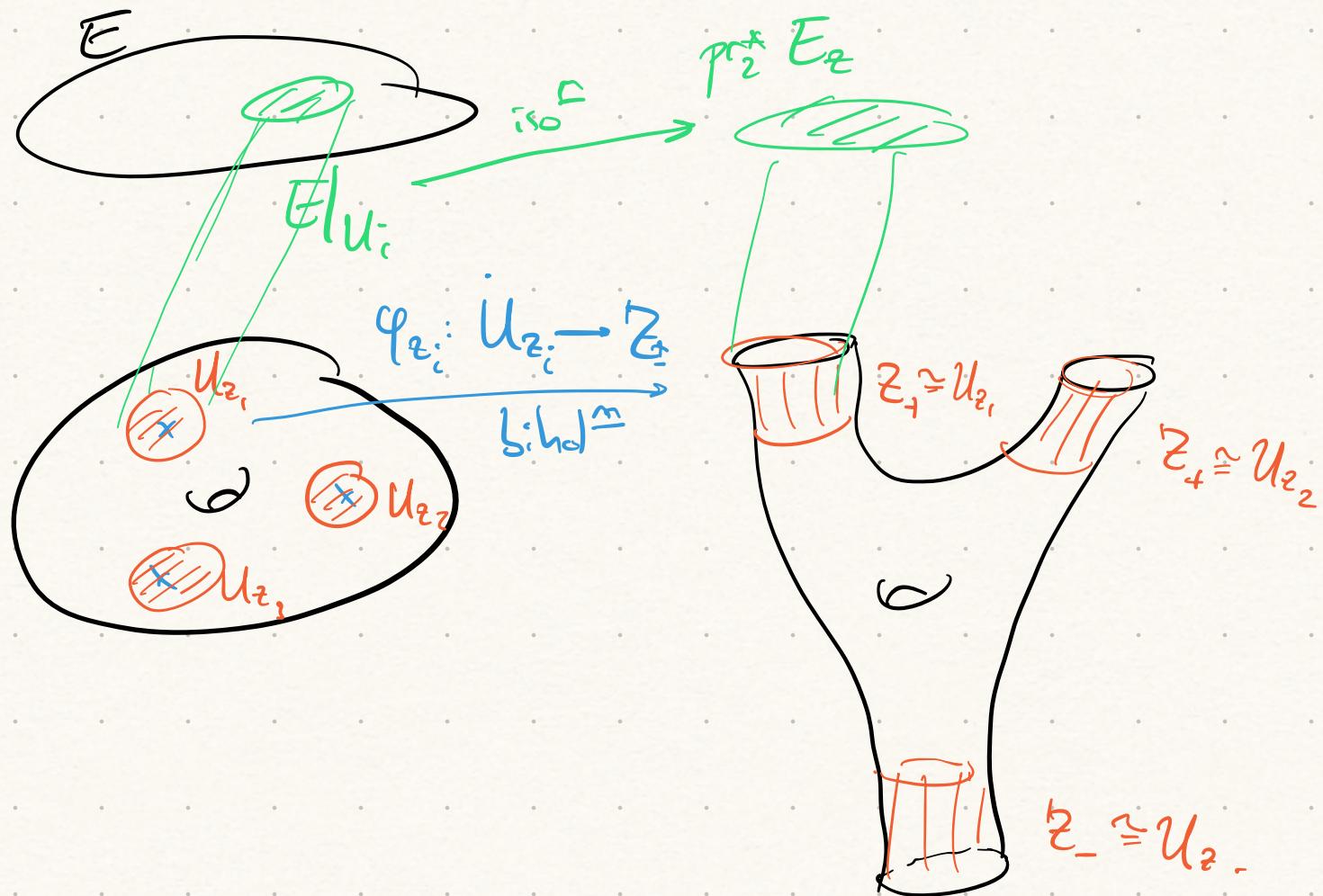
An asymptotically Hermitian structure on E

is the following: \hookrightarrow $\text{Cell}(E, J)$ asymptotically Hermitian

$\forall z \in \Gamma^\pm$ a choice of rank n \mathbb{C} -u.s.

$(E_z, J_z, \omega_z) \rightarrow S'$ with
choice of \mathbb{C} -u.s. iso $^\Gamma$'s

$$E|_{U_z} \rightarrow \text{pr}_2^* E_z.$$



> A unitary trivialisation τ of (E_z, J_z, ω_z) , i.e.
choose of iso^n

$$E_z \underset{\tau}{\cong} S^1 \times \mathbb{R}^{2n}.$$

induces trivializat τ $\tau: E|_{U_z} \rightarrow \mathbb{C}_z \times \mathbb{R}^{2n}$.

identifies J with $J_0 = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$

call this asymptotic trivialisation
of $E|_{U_z}$ near z .

Def: Cauchy - Riemann type operator

> Assume $E \rightarrow \Sigma$ is of class C^{m+1}

$m \in \mathbb{N} \cup \{\infty\}$. A Cauchy - Riemann type operator
of class C^m on \bar{E} is a first-order
differential operator

$$D: C^{m+1}(\bar{\Sigma}, \bar{E}) \rightarrow C^m(\bar{\Sigma}, \underbrace{A^{0,1} T^* \bar{\Sigma} \otimes E}_{\text{call } F})$$

s.t. $D = \bar{\partial} + S$ in local trivialisations
and the zeroth order term S is of class C^m .

> Now need some kind of conditions if we have asymptotic Hermitian structures at punctures:

Using the asymptotic trivialisation τ of $E|_{U_2}$, we also get trivialisation of $F|_{U_2} \rightarrow \mathbb{Z}_\pm \times \mathbb{R}^{2n}$

$$\lambda \mapsto \tau(\lambda(\gamma_s))$$

in $[0, \infty)$ coordinates.

As λ is \mathbb{C} -affilinear, this also determines $\lambda(\gamma_e)$

In this trivialisation $D: \mathcal{P}(\dot{\Sigma}, E) \rightarrow \mathcal{P}(\Lambda^0, T^* \dot{\Sigma} \otimes E)$

over U_2 is a linear map on $C^\infty(\mathbb{Z}_\pm, \mathbb{R}^{2n})$

of the form

$$\in \mathcal{P}(E|_{U_2})$$

$$D\gamma(s, t) = \bar{\partial}\gamma(s, t) + S(s, t)\gamma(s, t) \quad (1)$$

(where $\bar{\partial} = \partial_s + J_0 \partial_t$ and $S \in C^\infty(\mathbb{Z}_\pm, \text{End}(\mathbb{R}^{2n}))$.)

> Recall Hessian: $\gamma: S \rightarrow Y$ a closed Reeb orbit. Then asymptotic operator associated to γ / Hessian of γ $A_\gamma: \mathcal{P}(\gamma^* \xi) \rightarrow \mathcal{P}(\gamma^* \xi)$ is given by

$$\underline{A}_z \gamma = -J(\nabla_t \gamma - T \cdot \nabla_y R_x).$$

→ In general, let $E \rightarrow \mathbb{Z}$ an asymptotically Hermitian, with \underline{A}_z asymptotic operators on (E_z, J_z, ω_z) , and D C.R. type operator of class C^m on E . D is C^m -asymptotic to \underline{A}_z if D is of the form (1) with respect to an asymptotic trivialisation near z with

$$\|S - S_\infty\|_{C^k(\mathbb{Z}_+^R)} = \max_{|\beta| \leq k} \sup_{x \in \mathbb{Z}_+^R} |\partial^\beta(S - S_\infty)|$$

Here $S_\infty(s, t) := S_\infty(t)$ is a C^m -smooth loop of symmetric matrices s.t. in the corresponding unitary trivialisation of (E_z, J_z, ω_z) as

$$\underline{A}_z = -J_0 \partial_t - S_\infty.$$

$$E_z \stackrel{\cong}{\rightarrow} S' \times \mathbb{R}^n.$$

Thⁿ (G.S. Wendl): *asymptotically Hermitian*
 $\Rightarrow (\mathcal{E}, \mathcal{J})$ a.H. of class C^{m+1}

$(\dot{\Sigma}, j)$, A_z nondegenerate asymptotic operators
 on $(\mathcal{E}_z, \mathcal{J}_z, \omega_z)$ $\forall z \in P$

D a linear C.R. type operator of class C^m ,
 that is C^m -asymptotic to A_z $\forall z$.
 Then $\forall k \in \{1, \dots, m+1\}$ $\rho \in (1, \infty)$

$$D: W^{k, \rho}(\dot{\Sigma}, \mathcal{E}) \rightarrow W^{k-1, \rho}(F) \\ = W^{k-1, \rho}(\dot{\Sigma}, \Lambda^{0,1} T^* \dot{\Sigma} \otimes \mathcal{E})$$

is Fredholm. Also, $\text{ind } D$ and $\ker D$ are
 independent of k and ρ .

i.e. Space of C^m sections whose derivatives
 up to order m decay exponentially
 fast to 0 on cylindrical ends.

Thⁿ: (index formula) (Schwarz '95)

\Rightarrow in some setting

$$\text{ind } D = n \chi(\dot{\Sigma}) + 2 C_1^T(\mathcal{E}) + \sum_{z \in P^+} \mu_{cz}^T(A_z)$$

$\hookrightarrow 2-2g-\# \text{ punctures}$

$= \text{rank}_C E$

$$- \sum_{z \in \Gamma} \mu_{Cz}^\tau (A_z)$$

Note :

- Nondegeneracy of A_z is required for Fredholm property: if D was Fredholm but A_z degenerate for some z , D can be perturbed to make A_z nondegenerate with ≥ 2 possible values of $\mu_{Cz}^\tau (A_z)$
- two different Fredholm indices for small perturbations $\Rightarrow D$ cannot be Fredholm.
- Doesn't happen on closed surfaces: difference of any two CR type operators is order zero, which is compact as inclusion $W^{k,1}(\bar{E}) \hookrightarrow W^{k-1,1}(\bar{E})$ is compact.
- In our case \sum is not compact and so inclusion $W^{k,1}(\bar{E}) \hookrightarrow W^{k-1,1}(\bar{E})$ is not compact. \therefore zeroth order terms can affect Fredholm property and index.

Compact oriented
surface with boundary

Def:

> The relative first Chern number of $(E, J) \rightarrow S$ in the trivialisation τ of $E|_{\partial S}$ is the unique integer $c_1^\tau(E) \in \mathbb{Z}$ s.t.

i) If $(E, J) \rightarrow S$ is a line bundle, $c_1^\tau(E)$ is the signed count of zeroes of a

generic section $\gamma \in \Gamma(E)$ that is a non-zero constant at ∂S w.r.t. τ .

ii) If (E_i, J_i) has trivialisation τ_i over ∂S ,
 $c_1^{\tau_i \oplus \tau_i}(E \oplus E_i) = c_1^\tau(E) + c_1^{\tau_i}(E_i)$.

Facts:

Given distinct choices of asymptotic trivializations τ_1, τ_2 for a.H. E of rank n ,

$$c_1^{\tau_2}(E) = c_1^{\tau_2}(E) - \underbrace{\deg(\tau_2 \circ \tau_1^{-1})}_{\in \mathbb{Z}}$$

Sum over all partners of winding numbers of the derivatives of the transition maps $S^1 \rightarrow U(n)$

$$\mu_{C_2}^{\tau_2}(A_z) = \mu_{C_2}^{\tau_1}(A_t) + 2 \deg(\tau_2 \circ \tau_1^{-1}).$$

$\hookrightarrow \tau_1 \circ \tau_1^{-1}(t, w) = (t, g(t)w)$

circle \hookrightarrow
 vector in E_z .

∴ RHS of index form is independent of τ .