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SEF'T is an infinite-dimensional analogue of Morse theory where the Morse critical
points are replaced with closed nondegenerate Reeb orbits. To each closed orbit we will
assign a self-adjoint differential operator along the contact bundle, and this operator will
play the role of the Hessian. Before we construct these operators in the SF'T case, we
will briefly revisit an anlogous construction in Hamiltonian Floer theory.

All of the material below taken from Wendl’s lecture notes [1].

1 Review of the “Hessian” in Hamiltonian Floer theory

The action functional for a time-dependent Hamiltonian H = {H; : M — R};cs1 on a
symplectic manifold (M?",w) is a functional Ay : C2,, (S', M) — R. Ap assigns to a
contractible loop v € C . (S*, M) the value

contr

A (y) = —/D2 Fw + . H(y(t)) dt, (1.0.1)

where 7 : D — M is a disc with 7(e*™*) = ~(t). The tangent space to a contractible loop

is T,C% . (S', M) := T'(y*T'M). The variation of the action functional is then given by
ddun = [ Wl = X)) dr (10.2)
s

where X, is the Hamiltonian vector field associated to H;, and n € I'(y*T'M). The critical
points of Ay are then precisely the contractible orbits of X; with period 1. Choosing a
family of w-compatible almost complex structures J = {J;, € J(M,w}ies1, we can define
an L%inner product on I'(y*T'M) by setting

e = | lalt). T (0) . (103

for n,n € T'(v*T'M). We may then express the variation of the action functional by the
formula

dAr(v)n = (J(¥ — Xe(7)), n) L2 (1.0.4)

Mirroring the definition of the gradient on Riemannian manifolds, we define the unregu-
larised gradient of Ag by

grad Ag () = Ji(¥ — Xi(y)) e T(v*TM). (1.0.5)



Using this definition, critical points of Ay are precisely loops that satisfy grad Ay () = 0.
Now assume that v € Crit(Ag)) is such a loop. The Hessian should is morally the
linearisation of grad Ay at -, and should be a linear operator

A, :=Vgrad Ay(y) : T(v*"TM) = T'(v*TM). (1.0.6)

It is defined using a connection V on M in the following way: for n € I'(y*T'M) pick a
smooth family {7, : S* = M} e(—cq) with 79 =7 and 9,7,|,—0 = 7, and setting

A“ﬂ? = Vp(grad AH(%))|p=O (1-0-7)

The “Hessian” is independent of the choice of connection since the difference of two
connections is a tensor and grad Ag(vy) = 0.

Proposition 1.0.1. If V is a torsion-free connection on M, then

An=Ji(Vin—V,Xy). (1.0.8)

Proof. By the Leibniz rule,
Vo(grad Au(7,)) = V,o(Ji(7) (Yo — Xe(70))) (1.0.9)
= (Vpdi(00)) (G — Xi (7)) + T (1) Vo (o — X (7))- (1.0.10)

Evaluating at p = 0, the first term vanishes since ¥ — X;(v) = 0 as grad Ay () = 0. Since
V is torsion free, the torsion tensor on M is identically zero, and

0= T(ap, 8t) = Vpat - Vtap - [ap, 8t] (1011)
The commutator is zero, and hence V,0; = V,d,. Then
Vo (Fp = Xe(¥p))lp=0 = ViOpYplp=0 = Vo3, Xit|p=0 = Vi — V) X (1.0.12)

Therefore, A,n = J,(Vin — V, Xy). n

2 The “Hessian” in SFT

Let (Y271 ¢) be a contact manifold with contact form «, Reeb vector field R, and an
almost complex structure J : & — & compatible with the symplectic structure dafe. Let

me : TM — £ be the projection along R,. The contact action functional is the functional
Ay C*(S1Y) — R defined by

Aa(v) = / ot (2.0.1)
Sl
Similarly, if n € D'(y*TM) =: T,C*>(S',Y), the variation of A, is given by

dA.(y)n = / 1 da(mey,n) dt. (2.0.2)

Sl

do(n, ) dt = —/

S

Here we have used that da(R,, —) = 0, so we may project % onto the contact structure
along the Reeb vector field via m¢. Unlike the action functional in Hamiltonian Floer
theory, the variation of the contact action functional has a built-in degeneracy. This is
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a result of the fact that the Reeb vector field is time-independent, and so closed Reeb
orbits come in S'-families related by reparametrisation. It is clear that dA,(y)n = 0,
whenever 7 points in the direction of the Reeb vector field R,.

It is also clear from the variation of A, that a loop 7 : S' — M is critical if and only
if mey = 0, i.e. ¥ is everywhere tangent to the Reeb vector field R,. There are infinitely
many ways to parametrise the same closed orbit that is everywhere tangent to the Reeb
vector field. We define a preferred parametrisation of a closed orbit v, as one where 7 is a
constant multiple of R,. So, a preferred parametrisation of a critical loop  is one where

Y=T"-Ra(7), T = Aa(7)- (2.0.3)

It will become clear in what follows, why this is a sensible parametrisation. Now we
run into a slight problem if we try to define the Hessian of the contact action functional
in a similar way to the Hessian in Hamiltonian Floer theory. The Hessian in Hamiltonian
Floer theory had a trivial kernel, because w (which appears in the first variation, and
the L?-metric) is nondegenerate. If we did an analogous construction in the contact
case, the resulting Hessian will always have a nontrivial kernel since da is degenerate
in the Reeb direction. To avoid this degeneracy, we assume that every closed orbit has
the preferred parametrisation, and we only allow perturbations (for tangent vectors) in
directions tangent to £. In other words, we will consider preferred trivialisations, and
restrict the tangent space to sections n € I'(v*¢) C I'(v*Y). For n € T'(v*¢), we then
have

dAw(v)n = /Sl da(=Jmey, Jn) dt = (=Jmey,m) 1z, (2.0.4)

with L%-inner product
n,nype = /1 da(n, Jn') dt. (2.0.5)
s

In this way, the L?-metric on sections of v*¢ is nondegenerate. Now we can proceed in
exactly the same way as in the Hamiltonian Floer case. We define the gradient

grad A, (y) == —Jmey € D(v*€). (2.0.6)

The Hessian is the linearisation of grad A, in the £ directions, and should be a differ-
ential operator
Vgrad Ay (7) : T(v*€) — T(7€). (2.0.7)

To define it, let n € T'(v*¢), pick a smooth family {~, : S* = M} (- ) with 79 = v and
9,7l p=0 = m and pick a torsion-free connection on Y. We want to define the analogue of
the Hessian as

A, =V ,(grad Ag(7,))]p=o0- (2.0.8)

This will be independent of the choice of connection if 7 is a closed Reeb orbit, but it will
assume that v has the preferred parametrisation. As was mentioned before, the operator
A, may have a nontrivial kernel, but we will come back to that.

Proposition 2.0.1. If the connection V on Y is torsion-free, the operator A, defined
above is given by the equation

An=—-J(Vin—=T -V,R,). (2.0.9)



Proof. The proof is slightly more involved than in the Hamiltonian Floer theory case,
but is simplified by the preferred parametrisation. In order to calculate the covariant
derivative of the gradient, note that the projection of 4 onto the contact structure is
given by

TeYp = Op — a(0ip) Ra(p), (2.0.10)
since a(R,) = 1. By the Leibniz rule, and a calculation similar to that of ??, we get that
Vo(medp)lp=0 = Vi — a(9)Vy = 0p(a(0r7,)) | p=0 - Ba(7)- (2.0.11)

This first step requires that V is torsion-free, but we haven’t used the preferred parametri-
sation yet. Note that this covariant derivative is a section of I'(7*{), since m¢7, is in the
subspace I'(75¢). Using the preferred parametrisation (Y =T - R,), we get that

0="T"-do(n, Ra(y)) = da(p7p007) | =0 = Fp(a(Vp))l =0 — Ot((p7p)) | p=0- (2.0.12)

In the last step we’'ve used the standard formula for evaluating an exact 2-form on two
vector fields, and used that [0,,0;] = 0. Now the last term in this equation vanishes
since a(n) = 0, since n € I'(v*€) and £ = ker a. Hence the last term in equation 2.0.11
vanishes, and

Vo(medp)lp=0 = Vin — T - Vy Ry € T(778). (2.0.13)

Using that J and V, commute when evaluated on critical loops (m¢y = 0), we obtain
Vo(=JImeVp) om0 = =S (Vin =T - V3 Ra) € (7€) (2.0.14)
This concludes the proof. O

Motivated by the previous proposition, we make the following definition.

Definition 2.0.2. Let v : S' — Y be a loop parametrising a closed Reeb orbit in
(Y, € = kera) of period T' = «(¥). Then the asymptotic operator associated to ~y is the
first order differential operator A, : I'(y*¢) — I'(7*§) defined by

An=—-JVin—-T-V,R,). (2.0.15)
Proposition 2.0.3. A, is symmetric with respect to the L*~inner product on I'(v*§).
Proof. Let n,n" € T'(y*¢). Then

(A, ) pe = /S da(Aqy, Jif) di = /S (—da (Vo) +da(T -V, o)) dh. (2010

Since the Reeb flow preserves the contact structure ¢ and the symplectic structure dafe,
ie. Lr,aa=0and Lp da =0, we have

0= (Lr,da)(n,n') = Ra(da(n,n')) — da([Ra, ], 1) — da(n, [Ra,n']). (2.0.17)

Using that V is torsion free, [R,,n] = Vg, n — V,R,, and similarly for . Substituting
these relation into equation 2.0.16, and integrating by parts then shows (A.n,7')2 =

(n, Ay 2. O

Proposition 2.0.4. A Reeb orbit y is nondegenerate (i.e. the linearisation of the Reeb
flow @', has the property that its linearisation along the contact bundle do’ (v(0))
&40) = &) does not have 1 as an eigenvalue) if and only if ker A, is trivial.

’57(0) :
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This proposition justifies the terminology that the asymptotic operator A, is nonde-
generate if its kernel is trivial.

Remark 2.0.5. The Hermitian vector bundle (v*¢, J, da) over S is globally trivialisable,
since Hermitian vector bundles over S! are classified by [S', BU(k)] = m(BU(k)) =
mo(U(k)) = 0.

Let 7 be a global trivialisation of v*¢. There are equivalent ways of defining the
Conley-Zehnder index of a nondegenerate Reeb orbit v in a trivialisation. One way is to
set 1ty () = péy(A,), and define the difference of Conley-Zehnder indices pugy,(A,) —
1Ey (Ay) to be the spectral flow p*P*°(A.,, A./). This definition agrees with the definition
for a path of symplectic matrices determined by the time ¢ linearised Reeb flow.
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