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SFT is an infinite-dimensional analogue of Morse theory where the Morse critical
points are replaced with closed nondegenerate Reeb orbits. To each closed orbit we will
assign a self-adjoint differential operator along the contact bundle, and this operator will
play the role of the Hessian. Before we construct these operators in the SFT case, we
will briefly revisit an anlogous construction in Hamiltonian Floer theory.

All of the material below taken from Wendl’s lecture notes [1].

1 Review of the “Hessian” in Hamiltonian Floer theory
The action functional for a time-dependent Hamiltonian H = {Ht : M → R}t∈S1 on a
symplectic manifold (M2n, ω) is a functional AH : C∞

contr(S
1,M) → R. AH assigns to a

contractible loop γ ∈ C∞
contr(S

1,M) the value

AH(γ) = −
∫
D2

γ̄∗ω +

∫
S1

Ht(γ(t)) dt, (1.0.1)

where γ̄ : D → M is a disc with γ̄(e2πit) = γ(t). The tangent space to a contractible loop
is TγC

∞
contr(S

1,M) := Γ(γ∗TM). The variation of the action functional is then given by

dAH(γ)η =

∫
S1

ω(γ̇ −Xt(γ), η) dt, (1.0.2)

where Xt is the Hamiltonian vector field associated to Ht, and η ∈ Γ(γ∗TM). The critical
points of AH are then precisely the contractible orbits of Xt with period 1. Choosing a
family of ω-compatible almost complex structures J = {Jt ∈ J (M,ω}t∈S1 , we can define
an L2-inner product on Γ(γ∗TM) by setting

⟨η, η′⟩L2 =

∫
S1

ω(η(t), Jtη
′(t)) dt, (1.0.3)

for η, η′ ∈ Γ(γ∗TM). We may then express the variation of the action functional by the
formula

dAH(γ)η = ⟨Jt(γ̇ −Xt(γ)), η)L2 . (1.0.4)

Mirroring the definition of the gradient on Riemannian manifolds, we define the unregu-
larised gradient of AH by

gradAH(γ) := Jt(γ̇ −Xt(γ)) ∈ Γ(γ∗TM). (1.0.5)

1



Using this definition, critical points of AH are precisely loops that satisfy gradAH(γ) = 0.
Now assume that γ ∈ Crit(AH)) is such a loop. The Hessian should is morally the
linearisation of gradAH at γ, and should be a linear operator

Aγ := ∇ gradAH(γ) : Γ(γ
∗TM) → Γ(γ∗TM). (1.0.6)

It is defined using a connection ∇ on M in the following way: for η ∈ Γ(γ∗TM) pick a
smooth family {γρ : S1 → M}ρ∈(−ε,ε) with γ0 = γ and ∂ργρ|ρ=0 = η, and setting

Aγη := ∇ρ(gradAH(γρ))|ρ=0 (1.0.7)

The “Hessian” is independent of the choice of connection since the difference of two
connections is a tensor and gradAH(γ) = 0.

Proposition 1.0.1. If ∇ is a torsion-free connection on M , then

Aγη = Jt(∇tη −∇ηXt). (1.0.8)

Proof. By the Leibniz rule,

∇ρ(gradAH(γρ)) = ∇ρ(Jt(γρ)(γ̇ρ −Xt(γρ))) (1.0.9)
= (∇ρJt(γρ))(γ̇ρ −Xt(γρ)) + Jt(γρ)∇ρ(γ̇ρ −Xt(γρ)). (1.0.10)

Evaluating at ρ = 0, the first term vanishes since γ̇−Xt(γ) = 0 as gradAH(γ) = 0. Since
∇ is torsion free, the torsion tensor on M is identically zero, and

0 ≡ T (∂ρ, ∂t) := ∇ρ∂t −∇t∂ρ − [∂ρ, ∂t]. (1.0.11)

The commutator is zero, and hence ∇ρ∂t = ∇t∂ρ. Then

∇ρ(γ̇ρ −Xt(γρ))|ρ=0 = ∇t∂ργρ|ρ=0 −∇∂ργρXt|ρ=0 = ∇tη −∇ηXt. (1.0.12)

Therefore, Aγη = Jt(∇tη −∇ηXt).

2 The “Hessian” in SFT
Let (Y 2n−1, ξ) be a contact manifold with contact form α, Reeb vector field Rα, and an
almost complex structure J : ξ → ξ compatible with the symplectic structure dα|ξ. Let
πξ : TM → ξ be the projection along Rα. The contact action functional is the functional
Aα : C∞(S1, Y ) → R defined by

Aα(γ) :=

∫
S1

γ∗α. (2.0.1)

Similarly, if η ∈ Γ(γ∗TM) =: TγC
∞(S1, Y ), the variation of Aα is given by

dAα(γ)η =

∫
S1

dα(η, γ̇) dt = −
∫
S1

dα(πξγ̇, η) dt. (2.0.2)

Here we have used that dα(Rα,−) = 0, so we may project γ̇ onto the contact structure
along the Reeb vector field via πξ. Unlike the action functional in Hamiltonian Floer
theory, the variation of the contact action functional has a built-in degeneracy. This is
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a result of the fact that the Reeb vector field is time-independent, and so closed Reeb
orbits come in S1-families related by reparametrisation. It is clear that dAα(γ)η = 0,
whenever η points in the direction of the Reeb vector field Rα.

It is also clear from the variation of Aα that a loop γ : S1 → M is critical if and only
if πξγ̇ = 0, i.e. γ̇ is everywhere tangent to the Reeb vector field Rα. There are infinitely
many ways to parametrise the same closed orbit that is everywhere tangent to the Reeb
vector field. We define a preferred parametrisation of a closed orbit γ, as one where γ̇ is a
constant multiple of Rα. So, a preferred parametrisation of a critical loop γ is one where

γ̇ = T ·Rα(γ), T := Aα(γ). (2.0.3)

It will become clear in what follows, why this is a sensible parametrisation. Now we
run into a slight problem if we try to define the Hessian of the contact action functional
in a similar way to the Hessian in Hamiltonian Floer theory. The Hessian in Hamiltonian
Floer theory had a trivial kernel, because ω (which appears in the first variation, and
the L2-metric) is nondegenerate. If we did an analogous construction in the contact
case, the resulting Hessian will always have a nontrivial kernel since dα is degenerate
in the Reeb direction. To avoid this degeneracy, we assume that every closed orbit has
the preferred parametrisation, and we only allow perturbations (for tangent vectors) in
directions tangent to ξ. In other words, we will consider preferred trivialisations, and
restrict the tangent space to sections η ∈ Γ(γ∗ξ) ⊂ Γ(γ∗Y ). For η ∈ Γ(γ∗ξ), we then
have

dAα(γ)η =

∫
S1

dα(−Jπξγ̇, Jη) dt = ⟨−Jπξγ̇, η⟩L2 , (2.0.4)

with L2-inner product

⟨η, η′⟩L2 :=

∫
S1

dα(η, Jη′) dt. (2.0.5)

In this way, the L2-metric on sections of γ∗ξ is nondegenerate. Now we can proceed in
exactly the same way as in the Hamiltonian Floer case. We define the gradient

gradAα(γ) := −Jπξγ̇ ∈ Γ(γ∗ξ). (2.0.6)

The Hessian is the linearisation of gradAα in the ξ directions, and should be a differ-
ential operator

∇ gradAα(γ) : Γ(γ
∗ξ) → Γ(γ∗ξ). (2.0.7)

To define it, let η ∈ Γ(γ∗ξ), pick a smooth family {γρ : S1 → M}ρ∈(−ε,ε) with γ0 = γ and
∂ργρ|ρ=0 = η and pick a torsion-free connection on Y . We want to define the analogue of
the Hessian as

Aγη := ∇ρ(gradAH(γρ))|ρ=0. (2.0.8)

This will be independent of the choice of connection if γ is a closed Reeb orbit, but it will
assume that γ has the preferred parametrisation. As was mentioned before, the operator
Aγ may have a nontrivial kernel, but we will come back to that.

Proposition 2.0.1. If the connection ∇ on Y is torsion-free, the operator Aγ defined
above is given by the equation

Aγη = −J(∇tη − T · ∇ηRα). (2.0.9)
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Proof. The proof is slightly more involved than in the Hamiltonian Floer theory case,
but is simplified by the preferred parametrisation. In order to calculate the covariant
derivative of the gradient, note that the projection of γ̇ onto the contact structure is
given by

πξγ̇ρ = ∂tγρ − α(∂tγρ)Rα(γρ), (2.0.10)

since α(Rα) = 1. By the Leibniz rule, and a calculation similar to that of ??, we get that

∇ρ(πξγ̇ρ)|ρ=0 = ∇tη − α(γ̇)∇η − ∂ρ(α(∂tγρ))|ρ=0 ·Rα(γ). (2.0.11)

This first step requires that ∇ is torsion-free, but we haven’t used the preferred parametri-
sation yet. Note that this covariant derivative is a section of Γ(γ∗ξ), since πξγ̇ρ is in the
subspace Γ(γ∗

ρξ). Using the preferred parametrisation (γ̇ = T ·Rα), we get that

0 = T · dα(η,Rα(γ)) = dα(ργρ∂tγ)|ρ=0 = ∂ρ(α(γ̇ρ))|ρ=0 − ∂t(α(∂ργρ))|ρ=0. (2.0.12)

In the last step we’ve used the standard formula for evaluating an exact 2-form on two
vector fields, and used that [∂ρ, ∂t] = 0. Now the last term in this equation vanishes
since α(η) = 0, since η ∈ Γ(γ∗ξ) and ξ = kerα. Hence the last term in equation 2.0.11
vanishes, and

∇ρ(πξγ̇ρ)|ρ=0 = ∇tη − T · ∇ηRα ∈ Γ(γ∗ξ). (2.0.13)

Using that J and ∇ρ commute when evaluated on critical loops (πξγ̇ = 0), we obtain

∇ρ(−Jπξγ̇ρ)|ρ=0 = −J(∇tη − T · ∇ηRα) ∈ Γ(γ∗ξ) (2.0.14)

This concludes the proof.

Motivated by the previous proposition, we make the following definition.

Definition 2.0.2. Let γ : S1 → Y be a loop parametrising a closed Reeb orbit in
(Y, ξ = kerα) of period T = α(γ̇). Then the asymptotic operator associated to γ is the
first order differential operator Aγ : Γ(γ∗ξ) → Γ(γ∗ξ) defined by

Aγη := −J(∇tη − T · ∇ηRα). (2.0.15)

Proposition 2.0.3. Aγ is symmetric with respect to the L2-inner product on Γ(γ∗ξ).

Proof. Let η, η′ ∈ Γ(γ∗ξ). Then

⟨Aγη, η
′⟩L2 =

∫
S1

dα(Aγη, Jη
′) dt =

∫
S1

(−dα(∇tη, η
′) + dα(T · ∇ηRα, η

′)) dt. (2.0.16)

Since the Reeb flow preserves the contact structure ξ and the symplectic structure dα|ξ,
i.e. LRαα = 0 and LRαdα = 0, we have

0 = (LRαdα)(η, η
′) = Rα(dα(η, η

′))− dα([Rα, η], η
′)− dα(η, [Rα, η

′]). (2.0.17)

Using that ∇ is torsion free, [Rα, η] = ∇Rαη −∇ηRα, and similarly for η′. Substituting
these relation into equation 2.0.16, and integrating by parts then shows ⟨Aγη, η

′⟩L2 =
⟨η,Aγη

′⟩L2 .

Proposition 2.0.4. A Reeb orbit γ is nondegenerate (i.e. the linearisation of the Reeb
flow ϕt

α has the property that its linearisation along the contact bundle dϕT
α(γ(0))|ξγ(0) :

ξγ(0) → ξγ(0) does not have 1 as an eigenvalue) if and only if kerAγ is trivial.
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This proposition justifies the terminology that the asymptotic operator Aγ is nonde-
generate if its kernel is trivial.

Remark 2.0.5. The Hermitian vector bundle (γ∗ξ, J, dα) over S1 is globally trivialisable,
since Hermitian vector bundles over S1 are classified by [S1, BU(k)] = π1(BU(k)) =
π0(U(k)) = 0.

Let τ be a global trivialisation of γ∗ξ. There are equivalent ways of defining the
Conley-Zehnder index of a nondegenerate Reeb orbit γ in a trivialisation. One way is to
set µτ

CZ(γ) := µτ
CZ(Aγ), and define the difference of Conley-Zehnder indices µτ

CZ(Aγ) −
µτ
CZ(Aγ′) to be the spectral flow µspec(Aγ,Aγ′). This definition agrees with the definition

for a path of symplectic matrices determined by the time t linearised Reeb flow.
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