1. Ross exercise 1.3.

2. Ross exercise 1.8.

3. The Fibonacci numbers are given by \(F(1) = 0, F(2) = 1, F(n + 2) = F(n + 1) + F(n) \) for \(n \in \mathbb{N} \). Define \(f(n) = \frac{1}{\sqrt{5}}(a^{n-1} - (1-a)^{n-1}) \) where \(a = \frac{\sqrt{5} + 1}{2} \). Let \(P_n \) be the proposition that “both \(F(n) = f(n) \) and \(F(n + 1) = f(n + 1) \)”. Use mathematical induction to show that \(P_n \) holds for all \(n \in \mathbb{N} \), thus deduce \(F(n) = f(n) \) for all \(n \).

4. Show that \(\sqrt{3} - \sqrt{2} \) is not rational.

5. Show \(||a| - |b|| \leq |a-b| \) for all real numbers \(a, b \).

8. Let \(A, B \) be nonempty bounded sets in \(\mathbb{R} \) and define \(M = \{a \cdot b| a \in A, b \in B\} \). Is \(\text{sup} A \cdot \text{sup} B = \text{sup} M \)? Either prove or give a counterexample.
