1. Let S be a smooth surface and let P be a plane that intersect S in a curve γ. Show that if S is symmetric with respect to P, then γ is a geodesic (Hint: use the uniqueness of geodesics).

2. Let $\gamma(t)$ be a unit speed curve in \mathbb{R}^3, defined for $t \in I$, with nowhere vanishing curvature. Consider the surface patch $\sigma(u, v) = \gamma(u) + vB(u)$, where B is the binormal vector, $u \in I$ and $v \in (-\epsilon, \epsilon)$. Fact: If ϵ is small enough then σ parametrize a regular surface. Prove that γ is a geodesic in S.