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LIE ALGEBRAS AND EQUATIONS OF KORTEWEG-DE VRIES TYPE

V. G. Drinfel'd and V. V. Sokolov UDC 515.168.3+4+517.957

The survey contains a description of the connection between the infinite-dimen-
sional Lie algebras of Kats—Moody and systems of differential equations generali-
zing the Korteweg—de Vries and sine-Gordon equations and integrable by the method
of the inverse scattering problem. A survey of the theory of Kats—Moody algebras
is also given.

INTRODUCTION

Among nonlinear differential equations integrable by the method of the inverse scatter-
ing problem the Korteweg—de Vries (KdV) equation up = uxyxx + 6buux and the sine-Gordon equa-
tion viy = sinv are especially popular. Both these equations are connected with the modified
Korteweg—de Vries (mKdV) equation wg = wyxx + 6wzwx. The connection between KdV and mKdV is
realized by the Miura transformation u = iwy + w? taking solutions of mKdV into solutions of
KdV. The connection between the mKdV and sine-Gordon equations is as follows. After the
substitution w = vyx/2 the mKdV equation can be written in the form

‘vl’=‘v.xxx+]7'vx3. (0.1)

It is found that if the function v(x, t, 1) satisfies Eq. (0.1) and vy = sinv for t = Q,
then vix = sinv for all (this assertion is formulated in a more rigorous way in Sec. 10 of
the present work).

Systems of equations usually called two-dimensional Toda lattices have been intensively
studied recently (see [30, 65, 59, 46, 55, 72]). These systems have the form

n
0?uy
0xat=exp/§A,iuj, ifl, 2, e,y

where (Aij) is the Cartan matrix of a Kats—Moody algebra. To the simplest Kats—Moody algebra
s[(2, C[A, A']) there corresponds the system

0y,
m‘ =exXp (21&1 —_ 2u2),
02%u,
aro = EXP (2u,— 2uy),

which is essentially equivalent to the sine-Gordon equation. It turns out that for each
Kats—Moody algebra there exist systems of evolution equations connected with a corresponding
Toda lattice in exactly the same way as KdV and mKdV are connected with the sine-Gordon equa-
tion. For arbitrary Kats—Moody algebras these analogues of the KdV and mKdV equations are
constructed in [12]. Some of the equations considered in this work were investigated earlier
(see [49, 54, 13, 42, 41, 60] and also many works devoted to the scalar Lax equation), but
their connection with Kats—Moody algebras was apparently not recognized.

Together with a detailed exposition of the results of the note [12], the present paper
contains a survey of the theory of Kats—Moody algebras. Moreover, some general questions of
algebraic character connected with the method of the inverse scattering problem are treated.

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie
Dostizheniya), Vol. 24, pp. 81-180, 1984.
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Here for the equations investigated we study mainly local conservation laws, symmetries, and
the Hamiltonian formalism. All assertions are presented with complete proofs. Section 5
devoted to Kats—Moody algebras is an exception. We proceed to a detailed statement of the
contents of the work.

In Sec. 1 for the example of the well-studied [32, 15, 16] equation of N-waves the meth-
ods applied subsequently (see Secs. 3, 4, and 6) in more complex situations are demonstrated.
Proposition 1.2 seems to us methodologically important; it may be considered an algebraic
version of the dressing method [19, 20]. At the end of Sec. 1 we discuss the connection of
the approach based on Proposition 1.2 with the traditional approach based on considering for-
mal eigenfunctions.

In Sec. 2 in the language of the theory of fractional powers (see [5, 34, 67]) we present
the well-~known [7, 26, 27, 44, 70] facts concerning the scalar Lax equation, i.e., the equa-
tion dL/3t = AL — LA, where L and A are scalar differential operators. This equation is of
interest to us, since, as will be apparent later, it is an equation of KdV type connected
with the Kats—Moody algebra sl(%, C[A, A™']), where k is the order of L. We note that for one
of the basic results of Sec. 2 — the proposition on the equivalence of two methods of con-
structing local conservation laws for the Lax equation — we were unable to find a simple
proof. Apparently, we are not alone (see [51, 71]).

In Sec. 3 we essentially explain the connection between the scalar Lax equation and the
Kats—Moody algebra sl(k, C[A, A-']) . Of course, it is not difficult to find for the scalar Lax
equation a representation of the form

dg (0.2)
where
d
tet 00...0A 80...u1(x)
A=(‘°:::°°’ 1(=(2 07 ) (0.4)
00...10 00...ur(x)

However, an operator £ of this form at first glance has no natural analogue in the case

where sl(k, C[A A7']) 1is replaced by an arbitrary Kats—Moody algebra. This difficulty is
overcome in the following manner which again emphasizes the importance of the concept of gauge
equivalence (see [17, 18]) in the theory of integrable nonlinear equations. We assume that

in formula (0.3) q(x) is an upper triangular matrix of gemeral form. From the condition of
self-consistency of Eq. (0.2) & 1is then determined only up to the addition of an upper tri-
angular matrix with zeros on the diagonal. The indeterminacy of the system of equations
arising in this manner is compensated by its invariance relative to gauge transformations

of the form §=NEN-', where N is a function with values in the group of upper triangular ma-
trices with ones on the diagonal.® Condition (0.4) on q{x) is only one of the possible
gauges. This manner of viewing Eq. (0.2) makes it possible to construct analogues of the
KdV equation for any Kats—Moody algebra.

The approach to scalar Lax equations described above, aside from the possibility of
generalization, possesses the merit that it makes it possible to obtain a natural group-
theoretic interpretation of the so-called second Hamiltonian structure of Gel'fand-Dikii [7].
For this it suffices to combine Theorem 3.22, which is one of the main results of [12], with
the construction of the work [39]. For details see part 6.5 of the present survey.

In Sec. 3 we also define, following [42, 60], analogues of mKdV and the Miura transfor-
mation for the algebra gl(k, Clr, A-1]).

Section 4 is devoted to a generalization of the results of Sec. 1 to the case where the

operator

L=2Z tha+4q(x), a, ¢(x)éMat (k, C), (0.5)
contained in Sec. 1 is replaced by an operator of the form (0.5), where @ and q(x) belong to
an arbitrary Lie algebra.

A, V. Mikhailov brought to our attention the importance of gauge transformations of this
type.
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Section 5 is an elementary introduction to the theory of semisimple Lie algebras and
Kats—Moody algebras. Its purpose is purely utilitarian — communication of facts used in Secs.
6-10. The choice of material and character of exposition in Sec. 5 is therefore somewhat
unusual. A detailed exposition of the theory of Kats—Moody algebras is contained in [21, 50,
62].

In Sec. 6, finally, we define analogues of the KdV and mKdV equations corresponding to
an arbitrary Kats—Moody algebra. It turns out that to each algebra G there corresponds a
series of equations of mKdV type and several series of equations of KdV type (roughly speak-
ing, these series correspond to the vertices of the Dynkin scheme for G).

We mention that in Sec. 3 the scalar Lax equation is interpreted as the equation of KdV
type corresponding to sl(k, C[A, A~1]. InSec. 7 for classical Kats—Moody algebras distinct from
sl(k, C[» A"']) we solve the converse problem in a certain sense: scalar (L, A)-pairs are
found for equations of KdV type corresponding to such algebras. The answer is very curious
(see part 7.1).

In Sec. 8 we consider questions connected with the Hamiltonian formalism for equations
of KdV type.

Section 9 is devoted to examples of equations of K4V and mKdV types.

In Sec. 10 we present some facts concerning two-dimensional Toda lattices including their
connection with equations of KdV type and an assertion to the effect that the orders found in
[65] of the conservation laws for Toda lattices are the exponents of the corresponding Kats—
Moody algebra. The answer to the question of the orders of the conservatjion laws (see [65])
has been obtained in a very simple manner thanks in final analysis to Proposition 1.2.

In conclusion we wish to thank Yu. I. Manin who brought a preprint of the work [60] to
our attention and thus stimulated the writing of the note [12]. Moreover, we wish to thank
Wilson who acquainted us with the contents of the papers [51, 59, 71, 72] before their pub-
lication, B. A. Magadeev who took part in writing Sec. 9, and also 0. B. Sokolov for helping
with the manuscript.

List of Basic Notation

If V is a vector space over C, then
det | & )
V)= vrt |06V, m>0f,
1=0

def [ o
VA, x-l];[z oM | 0EV, 1, meZ],

{=n

0 m
14 [Wl]]d:—f[ 2 v:’»‘l'vxevl, V((’»“))Lf{ 2 oM | vV, mel}.

l=— l=—c0

m def def def
For any P= 2 pMEV (A1) we set P+=Zp,x‘, P_=Zp,h', res P=p._,.

e i»0 i<0
The set of smooth mappings from M to N is denoted by C*(M, N). For brevity we use the

def det
notation B =C*(R, C), Bp=C™(R/Z, C). All functions not specified to belong to a particular
class are assumed smooth.

We often denote the operator d/dx by D. We set

def [ & def [ v
B|[D]= Ea,D‘Ia,eB, n>0}, B((D“))=[ 2 a D' a€B, neZ].

=0

fom—oo

The notation Bo[D], Bo((D~!)) has an analogous meaning. Elements of B((D™Y)) are called
pseudodifferential symbols, while elements of B[D] are differential operators. B[D] and
B((D™')) are algebras over C. Multiplication in B((D™1)) is defined by the formula

b {4
D"a—aD"=2n(n—1) .ee (n—i-}-l)%D"“,

i=1
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n

def def def
where neZ, a€B.. 1If L= E a,DEB (D)., then L+=2 a, D!, L,=2 a,D!, resL=—q_,. The symbol *

{m—oo 130 <0

. . . . . * defugy
denotes the operation of forming the formal adjoint in B((D“)):(E a,D‘) =Z(—1)’D‘a, (we
emphasize that * acts identically on B and not as complex conjugation).

Mat (k, F) denotes the set of square matrices of dimension k with coefficients in F, E
denotes the identity matrix, and ejj denotes the matrix having a one at the intersection of

def
the i-th row and j-th column and zeros elsewhere. If A=(g,)6Mat (k, F), then A‘=(ay). Sup-

pose that F is equipped with an antiautomorphism * such that (a*)* = g for any a€f , then
def

Ar=(a;+l_] g4i—y)» In particular, if the ring F is commutative and * is the identity auto-

morphism, then AT is obtained from A by transposition relative to the secondary diagonal.

The trace of a matrix A is denoted by tr A (while Tr denotes the Adler functional; see part

s . . 0...0 .
2.3). By definition diag(a;, @ ...,a,) 1is the matrix (‘1(; ..... ) For any matrix A = (aij),

def
Agjg=diag (@, @y, - -+, @), Diag denotes the set of all diagonal matrices in Mat (k, C). The
set Mat (k, C) considered as a Lie algebra is written al(g).

1. THE METHOD OF ZAKHAROV-—SHABAT (THE ALGEBRAIC ASPECT)

The title of the section is somewhat tentative: we treat only some questions, and not
the deeper ones, connected with the method of Zakharov—Shabat (see {19, 20]).

1.1. We consider the relation

dL 1.
=I4, L], (1.1

m
where L=Ed;_}—q—7»a, A:E Al q and Aj are functions of x, t with values in Mat (k,C), a
i=0
is a constant matrix of order k whose eigenvalues are distinet,”® and A is a spectral param-
eter.

In order that Eq. (1.1) be satisfied identically in A it is necessary that the commuta-
tor fA, L] not depend on A. The following problem arises in this connection: for a given L
find the set @ of all matrix polynomials A such that [A, L] does not depend on A. In solving
this problem t plays the role of a parameter; we can therefore temporarily forget that L and
A depend on t. Moreover, we may assume with no loss of generality that the matrix a is di-

def
agonal. We set Z;={MeMat(k, B(A"){JL, M]=0}. The first step in solving our problem is
the following observation.

LEMMA 1.1. If MEZ,, then M,6Q, . 2) Let MEZ, . Then [M,, L] = [resM, a].
Proof. We note that [My, L] = —[M_, L]. It is clear that the left side of this equality

is a polynomial in A, while the right side has the form [resM, a]+2 oA R
=1

We shall now describe Z1,. The next result plays a key role in this.

Proposition 1.2. There exists a formal series T of the form E-{-E T;(x)A! such that
oo =1
def
Ly=TLT-' has the form &";_xa_{_z h,(x)A% where the matrices hj are diagonal. T is uniquely
=0
determined up to multiplication on the left by an arbitrary series with diagonal coefficients
and can be chosen so that the matrices Ti are differential polynomials in q with zero free
3
terms., "\

®The method used in the present section is applicable also in the case where a is an arbi-
trary matrix for which not all eigenvalues coincide.

®The words "the matrix T is a differential polynomial in the matrix q" here and henceforth
means that each element of T is a differential polynomial in the elements of q.
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Proof. Equating coefficients of A\™% inm the equality TL = L, T, we obtain the recurrence

relation
n—1

ot [Tups al=Tg—Ty' = T, (1.2)
i=0

Since a has distinct eigenvalues, any matrix can be represented (nonuniquely) in the form
X + [Y, a)], where X is diagonal. Therefore, relation (1.2) makes it possible to find the
coefficients hy and Tp+;, knowing the coefficient with the preceding indices. It is hereby
possible to require that the diagonal elements of the matrices T;{ be equal to zero; the re-
maining elements of them are then found to be uniquely determined differential polynomials
in q with zero free terms.

_ Suppose that the coefficients of the series Lo = TLT ! are also diagonal. We set S =
TT-'. Then L¢S = SLg, whence it follows easily that the coefficients of the series S are
diagonal. ®

To find Zp, we need the following result.

" Q
d
LEMMA 1.3. Let M= 2 b, N=_——hat 2 $iM, deg[M, N]<n . Then b, is a diagonal

constant matrix. {ex—co [=—eo

Proof. We have [M, N|=[a, b,M" +({b, So}+[a, b.a]—b8)A*+ ... . By equating to zero
the coefficient of AD*! we see that by is diagonal. Equating now the coefficient of A" to
zero, we obtain by = 0. ®

Let T and Lo be the same as in Proposition 1.2. It follows from Lemma 1.3 that ZLo =
Diag ((A"')). Therefore, Zy, = T-1Diag ((XY))T.

For any u€Diag(("!)) we set @(u)=T-wT . It follows from Proposition 1.2 that ¢ 1is
well defined and that the coefficients of the formal series (u) are differential poly-
nomials in q. According to Lemma 1.1 @(u)4+€6Q2r for any wu€Diag((A')) [actually ¢(u); de-
pends only on the coefficients of negative powers of A in the series for u]l. Moreover, it
is obvious that any function in C=(R, Diag) belongs to Q. It follows from Lemma 1.3 that
the vector space @ is generated by functions and elements of the form ¢(bA")., where be€Diag,
n€N. Below we shall consider the relation (1.1), where

A=X9(bM),, beDiag (1.3)
i=0
as an equation for q and call it for brevity Eq. (1.1).
Example. The Equation of N-Waves. Let L=£—+q——7~a, a=diag(a,,...,a), A=0(bA),, b=

bi—bj
a)—aj

diag (by,...,bg). The corresponding equation has the form q = p' + [q, pl], where p;;=
We note that for b = a it becomes the equation qr = q'.

qij

We have shown that Eq. (1.1) is an evolution equation whose right side is a differential
polynomial. We shall find the order of this polynomial.

Proposition 1.4. 1If we set A=®(b\"), , where b€Dlag , then Eq. (1.1) has the form 3q/3t =
Pq(n) + £{q, q',...,q(n‘l)), where P is a linear operator in the space of matrices which an-
nihilates diagonal matrices and is such that its restriction to the space of matrices with

def
zeros on the main diagonal is equal to adb(ad @) ™ (we recall that ada{y)=[a.y]). If we as-—
sume that q(l) has degree of homogeneity i + 1, then f is a homogeneous polynomial of degree
of homogeneity n + 1.

Proof. According to Lemma 1.1, Eq. (1.1) has the form 3q/dt = [resM, a], where M =

T-1pAnT, T=E+2 T, is the formal series of Proposition 1.2. We recall that T is
sy

uniquely determined if we require that the diagonal elements of the matrices Tj be equal to
zero. It is evident from formula (1.2) that with this choice of T, T{ is a homogeneous poly-
nomial in q of degree of homogeneity i. Therefore, resM has degree of homogeneity n + 1.

(n) . .
From this it follows that [resM, a]=Pqg 4 f(¢,9¢,...,q'* V), where P is a linear operator, and f
does not contain linear terms.

1979



We shall find P. For this we set L(g) = d/dx + €q — Aa and differentiate with respect

to € the relation T(e)L(e) = Lo(e)T(e); we then set € = 0. We obtain S’——k[a,S]==q——é5ﬂ3L

- de  |e=0’
def
where S= 2 SAi= ‘%ﬁi) om0
i=1

ficients of the series Lo(e) have zero off-diagonal elements, we obtain

Recalling that the §; have zero diagonal elements while the coef-

S —la,S,u]=0for i1, [a, Sil=qae—9 (1.4)
From the relation M(e) = T~ *(e)bADT(e) it follows that Q%%#Q. ;:[bk",SL Therefore, the
g==

linear part of the expression [resM, a] is equal to —[a, [b, Sp+;]] = —[b, [a, Sp+1]]. From
this and formula (1.4) it follows that P = adb(adq)™0. ®

Remark. From part 2) of Lemma 1.1 it follows that if L satisfies Eq. (1.1), then (3/3t)x
ddiag = 0. Therefore, if desired we can set qqjag = O without violating the self-consistency
of the equation.

1.2. We shall show that Eq. (1.1) possesses an infinite series of polynomial conserva-
tion laws.

Proposition 1.5. Let hj be the same as in Proposition 1.2. Then the elements of the
matrices hj are densities of congervation laws for Eq. (1.1). Here hp = ddiags if i > 0,
hi = diag(hﬁ, hi,...,hE), then hy is a differential polynomial in q whose linear part is a

(i—1)

rs 9sr
(ar— a:)l

total derivative and whose quadratic part, up to total derivatives, is equal to —
where a = diag (a1,...,aK). S

Clarification. It is easy to see that in spite of the nonuniqueness in the choice of T
in Proposition 1.2 the h; are uniquely determined up to total derivatives, and in giving the
density of a conservation law such arbitrariness is admissible.

Proof of Proposition 1.5. Equation (1.1) can be written in the form

d (1.5)
[F—A L]=0.
Let T and Ly be the same as in Proposition 1.2. Then [T(i%n—uA)T*,Lo]==O, i.e.,
d ~ ~ uef _ daT _
|44 L]=0, A=raT 4 71 (1.6)

We recall that L0=—d% +H , where H= —Aa+2 |t is a diagonal matrix. From (1.6) it is
1=0

therefore easy to deduce the diagonality of A. From tﬁis, in turn, it follows that relation
(1.6) can be rewritten in the form

OH L 04 _ g (1.7)

This implies that hj are the densities of conservation laws.

We normalize T so that (Tj)diag = O. From formula (1.2) it then follows that ho =
qdiag> hi = (Tiq)diag for i > 0. Therefore, the linear part of hj is equal to zero, while
to find the quadratic part it suffices to know the linear part of Tj which was denoted by S;
in the proof of Proposition 1.4. From (1.4) we obtain the desired formula for the quadratic

=
part. x

Remark. For any i > 0 the expression }Eh[ is a total derivative. Indeed, from rela-
r=1

tion T(E‘—i;—}-q—?»a) T"=Zti——|—H it follows that tr(H-4+Aa—¢q)= —tr (Z_:' T'1)=—-£-lndet7‘. From

. r o, . , . .
the formula for the quadratic part of hj it is evident that the densities hg, where i > O,
r # 1, are linearly independent modulo total derivatives.

1.3. The purpose of this subsection is to prove that the flows defined by relation
(1.1) for different A commute.
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LEMMA 1.6. Let M = T~ !uT, where uEDiag ((A™") » and T is the same as in Proposition 1.2.
If L satisfies Eq. (1.1), then dM/dt = [A, M].

Proof. It is given that [d/dt — A, L] = 0. We must show that {[d/dt — A, M] = 0. After
conjugating these equalities with T the first of them becomes (1.6), while the second takes
the form

[:—t—ﬁ, u]=0. (1.8)

As noted in the proof of Proposition 1.5, it follows from (1.6) that A is diagonal, and this,
in turn, gives Eq. (1.8). n

We consider the equation

oL
=M, L], M=T"'uT, ueDiag[], (1.9)
L ~ ~ - ~
ot =[M,, L}, M=T-'uT, ueDiag][A]. (1.10)
Proposition 1.7. é;§_==if£,, where the derivatives are computed by means of Egs. (1.9),
(1.107. T oot
oM, .
Proof. We have 7?—(35) [A4+,L]——[ ,L]—kllww %é} . According to Lemma 1.6,
dM 0 oL ~ ~ oL
+ __[M+, Mi,. Thus, &= (d—t)=[[M+' Ml,, L1+[M,, [M,, L]] - Similarly, dt (ar )_[[M+, Mm,, L]_*_[M“
. F . g (oL 0
[M,, L]]. Using the Jacobi identity, we obtain T(W)*TJT(T)T)=“M+’ M|, —[M,, M]+ M,

M), L], but [M,, Ml,=[M, M],=[M,, M],, so that [M,, M],—[M, M],+[M, M]=0. M

1.4. It is well known that Eqs. (1.1) are Hamiltonian. More precisely, there exist at
least two Hamiltonian structures such that the conservation laws obtained in Proposition 1.5
are Hamiltonians for Eqs. (1.1). In this subsectionwe recall the explicit formof these structures.

A Hamiltonian structure on a finite-dimensional smooth manifold M is determined by giving
the Poisson brackets on the set F of smooth functions onMwhich converts F into a Lie algebra
and possesses the following property: if f, géF and the differential of f at a point ne€M is
equal to zero, then {f, g}(n) = 0. In our situation a class of functions of x with values
in Mat (k, C) plays the role of M, while the role of F is a class of functionals on M. For M
we take the set of all smooth functions q:R/Z -+ Mat (k, C) while for F we take the set of all
functionals L:M - C of the form

L= | flx g, ¢ 0, ..., ¢ (x)dx, (.11
*GR/Z

where f is a polynomial in q, q‘,...,q(n) whose coefficients are smooth functions of x. The
following considerations possibly clarify our rather clumsy choice of M and F. The reason
for choosing as M a class of periodic functions (and not, say, rapidly decreasing functions)
is as follows. It is matural to require that the class F contain all functionals 7 of the
form

L@)={ 7 (g, ¢ (9, .., ¢ (x)dx. (1.12)

where f is a polynomial. However, in the case where M consists of rapidly decreasing functions
this requirement is inadmissible, since the integral in formula (1.12) becomes meaningless

if the free term of f is not equal to zero. If we assume that F contains only functionals of
the form (1.12) corresponding to polynomials f with zero free terms, then F turns out not to
be closed with respect to some reasonable Poisson brackets. Having chosen for M a class of
periodic functions, it would be natural to include in F all analytic functionals on M. How-
ever, on this path difficulties arise connected with the fact that the differential of an
analytic functional on M can be any generalized function of x (not necessarily smooth). If
in the periodic case we include in F only functionals of the form (1.12), then functionals

in F will not separate points of M. Recognizing the shortcomings of our approach to the
Hamiltonian formalism as compared, say, with [8-11], we have chosen it in striving to empha-
size the analogy with the finite-dimensional case.
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For any functions u, p€M we set

(#, v)={ tr (@ (x) 0 (x) dx.

1f I6F, qéM , then we define the function grad,l/eM from the condition d%l(q-{—eh)le_o=(gradq I,

h) which should be satisfied for any A€M . It is easy to see that grad 7 is nothing other
than the variational derivative of the density f of formula (1.11).

Following the works [32, 38] we define the first and second Hamiltonian structures on
M by the formulas

{®, vh(9)=(grad, @, [grad,}, a]), (1.13)
i d
@, vhig)=(grad,?, [grade¥, 7z +4]). (1.14)
where @, $€F, geM. In order to see that these formulas actually define Poisson brackets,

it is necessary to verify that a) {@, $}16F and {g, $}:6F for any @, p€F; b) the brackets
{,}1 and {, }2 are skew symmetric and satisfy the Jacobi identity. Assertion a) follows
from the explicit formula for the variational derivative. In place of b) we prove the fol-
lowing stronger assertion.

Proposition 1.8. For any A, péC the formula {g, ¥}=Ar{e, Wihi+ur{e Y}2 gives a Poisson
bracket.

def
Proof. We have {, $}(¢9)=(grad,®, [grad; vy, 8]) » where L=Ara+}p (dix—}-q). It is easy to verify
the following properties of the scalar product on M:

(. [v, @))=—(v, [&, @»]), (2 v)=—(v, o). (1.15)

From these formulas it follows that (x, [0, 8])=—(v, [&, &]) for any «, vEM and such that
{9, ¥} is skew-symmetric.

Standard considerations show that it suffices to verify the Jacobi identity for func-
tionals @, @, 93 of the form 9, (q)= (u1, 9 u,6M. Since grad®, =y, , it follows that {1,

P9 = (e (2, 8])=(u" lu% A'“‘*‘P%])‘l‘“(ul:, [, 41)=(u1. [um A,a-[—p%])—{—p.([u,, U], g) (we have

used formula (1.15)]. Hence, grad,{®,, P} = p[u;, #,], so _that ({9, 9}, Pa} = (w1, u], [us g)).
Again using (1.15), we obtain {{¢,, @,}, ths}=p,(u,,7[u2, [#s 8]]) . In exactly the same way {1,

@3}, @} =p (), [us [#2, 8]]). Therefore, {{p,, 9o}, P}—{{?1, Ps}, P2} = p(uy, [[Le, us], &)={P;, (@5, Pa}}
which is equivalent to the Jacobi identity., @

Remark 1. Generally speaking, a linear combination of two Poisson brackets does not
satisfy the Jacobi identity. If any linear combination of two Poisson brackets is again a
Poisson bracket, then it is said that the original two brackets are coordinated. A general
scheme is known which makes it possible on the basis of two coordinated Hamiltonian struc-
tures and some additional data to construct an infinite sequence of functionals commuting
relative to both structures (see [8, 63]).

Remark 2. A beautiful group-theoretic interpretation of the second Hamiltonian struc-
ture on M is proposed in [39]. We shall recall it in part 4.4.

m m
Let u€ Diag|A], u=2 bA'. We define a functional Hy: M > C by the formula Hu(q)=2 (b, k),
1=0 {=0
where the hj are the same as in Proposition 1.2. Because of Proposition 1.5, the functionals
Hy are conservation laws for Eq. (1.1).

Proposition 1.9. Equation (1.1) in which A is defined by formula (1.3) is the Hamiltonian
Hy and the second Hamiltonian structure. 2) This same equation is the Hamiltonian equation
corresponding to the Hamiltonian Hyy and the first Hamiltonian structure.

Proof. We recall that q satisfies theHamiltonian equation corresponding to a Hamiltonian

H if ‘ﬁ'g_g).={cp, H}(q) for any @gF. Since %@):(gradqcp, g) » the Hamiltonian equation corre-

sponding to the Hamiltonian H and the first Hamiltonian structure has the form

g=[grad, H, aj. (1.16)
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The analogous equation for the second Hamiltonian structure is given by the formula
g=|grad H, 7o +q|- (1.17)
LEMMA. gradqHy = Ao, where Aq is the free térm of A.

Proof. Let A€M . We shall find dieHu(q—}—eh)]eEo. We set L(s)=£+q'+eh—7»a. Let T and

Lo be the same as in Proposition 1.2. We define T(e) and Ly(e) in the obvious way. It is
easy to see that Hy{(q) is equal to the free term of Qu Lo"é%); therefore, égffu(q—}eh) is

00

equal to the free term of (u, Differentiating with respect to € the relation Lg(e) =

dT ()

T(e)L(e)T- (e), we obtain d.%-p:T(g)hT“(g).‘-[T

T-1@), Lo(®) |, whence (u, 288 =(u, T (@ T x

(3))“‘(“' [dz—:a)T_l(a)’Lo(e)])—:(ur T () kT ) =(T"' ) uT (), /l) We have used formulas (1.15) and the

fact that due to the diagonality of Lo(e), [u, Lg(e)] = 0. Thus, 5%17u(q“FSh)k=0== the free
term of (T *uT, h) = (Ag, h) [we recall that A = (T " uT)y]. ™

Formula (1.17) and the lemma show that for the proof of the first part of Proposition
1.9 it suffices to verify the equality [A, L] = [Ap, d/dx + q]; now this is obvious, since
[A, L] does not depend on A, and hence in computing this commutator it is possible to set
A = 0. It follows from the lemma that gradqHpy = res (T"uT). Therefore, the second part
of the proposition follows from Lemma 1.1 and formula (1.16), ®

Since the functionals H,; are conservation laws for Eqs. (1.1), the next result follows
from Proposition 1.9,

COROLLARY. For any g, ueDiag{r], {H.. H;h ={H, H;}:=0.1R

If the Hamiltonians commute, then the corresponding flows also commute, so that we have
proved Proposition 1.7 anew.

1.5. In this subsection we clarify the connection between the method of obtaining con-
servation laws for Eq. (1.1) described in Proposition 1.5 and the well-known formulas ex-
pressing conservation laws in terms of a formal scattering matrix.

We assume that q is a smooth, compactly supported function R - Mat (k, C) . It is well-
known (see [24], Chap. 6) that the equation Ly = 0 has exactly one formal matrix solution of

the form Y(x, A)=f (x, A)exp(Aax) , where f(x, L)=2 fi(x)At, such that £(x, A) = E for x < 0.
1=0

It is clear that f£(x, A) does not depend on x for x » 0. We set S(A) = f(x, X) for x » 0.
We call S(A) a formal scattering matrix. The connection between the formal S-matrix and the
conservation laws of Proposition 1.5 is as follows.

Proposition 1.10.

S (Ay=-exp (——i At ej h, (x)dx),

1=0 —o0
where hj are the same as in Proposition 1.2.

Proof. Let T and Lo be the same as in Proposition 1.2, whereby the coefficients of the
formal series T are chosen in the form of differential polynomials with zero free terms. Then
T = E for |x| »0. Since Lg = TLT™ !, the equation Ly = O is equivalent to the equation LTy =
0. Therefore, the solution of the equation Ly = O of interest to us is equal to 779, where
@ 1is a matrix solution of the equation L®=0 such that @(x,A)=e€** for x € 0. Since

{=0 —00

. d had . . b - x . -
Lo=a—7"a+20hi/" i, it follows that th(x, A)=exp ("““‘2" ! jhz(y)dy) , s0 that for sufficiently

large x we have {(x, A)=exp (Lax—z x"jh,(y)dy). [

{=0 —_—c0
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2. THE SCALAR LAX EQUATION

2.1. We consider the relation

§§==[A, 1], (2.1)

k—1 e m

where L=D"+2 u, DY, Dd=f£;, A=2fa,-Di ; here uj, vi are functions of x, t with values in
=0 iw(}

C. The left side of Eq. (2.1) is a differential operator of order no greater than k — 1,

while the right side, generally speaking has order m + k — 1. Therefore, the coefficients

of the operator A are connected with the coefficients of the operator L by means of m rela-

tions. The theory of fractional powers (see [5, 34, 67]) shows that the operator A is de-

termined by these relations on the basis of the operator L up to m constants and one arbi-

trary function.® Here t plays the role of a parameter; we therefore temporarily forget that

the coefficients of our operators depend on t.

We are interested in the structure of the set @ of differential operators A€B[D] such
that ord [A, L]S k — 1. We set Z,={MeB((D-1))|[M, L] =0}.

LEMMA 2.1. 1) If M&Z, , then M,6Q,, and, moreover, ord[M,, L] <k—2;2) BcQ,.

Proof. If M€Z,, then [M,, L] = —[M-, L], whence ord [M,, L} <<ord M_+ord L—1<<k—2. The
second part of the lemma is obvious.

We shall now find Z;. We hereby consider a more general case than we now require: we
shall assume that L is a pseudodifferential symbol with leading term DK. It is easy to see

that there exists exactly one pseudodifferential symbol M of the form D-{—EalD" such that
i=0

MK = L; the coefficients of M are here differential polynomials in the coefficients of L. The

symbol M is written Li/k, For any réZ we set Lr/k = (Ll/k)r.

Proposition 2.2. Zp is the set of all series of the form

3 wL, yec. (2.2)

{es—oco

Proof. It is clear that series of the form (2.2) belong to Zj. We shall show that any

m
element PEZ; has the form (2.2). Let P= Z p:D'. Equating to zero the coefficient of
{e=—oc0
DOHK*L ih the symbol [P, L], we find that p,€C . Therefore, p,Lm/*6Z; , and hence the previous
argument is applicable to the symbol P — pyLm/k. Repeating this process, we obtain the repre-
sentation of P in the form (2.2). =

Proposition 2.3. As a vector space over C @ is generated by B and operators of the
form (L*/#),, réN.

Proof. According to Lemma 2.1, (L7/%),6Q;, BCQ; . We shall show that any operator PR

m
has the form zy,(Li/k)++f , where fEB, y,6C. The proof is carried out by induction on the
i=1 m

order of P. Let P=2p,D’, m>0. Equating to zero the coefficient of DUtK-1 ipn the operator
=0
[P, L), we find pmn€C . Therefore, p,(L™*),68; , and hence the induction hypothesis can be ap-
plied to the operator P — pm(Lm/k)+. L]
Below we shall consider relation (2.1) where
m
A=Nc, (LY, c,€C (2.3)
i=0

as a system of equations for the coefficients of the differential operator L and call it the
Lax equation. It is clear that the right sides of this system are differential polynomials.

“In [26, 43] formal eigenfunctions of the operator L are used in place of its fractional
powers. In final analysis these approaches to the investigation of Eq. (2.1) are equivalent.
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Remark 1. It may be assumed with no loss of generality that in formula (2.3) ci = 0 if
i is divisible by k. Indeed, if i/k€N , then (Ll/k)_,_ = Li/K commutes with L.

Remark 2. It follows from assertion 1) of Lemma 2.1 that the right side of the Lax
equation (2.1) is a differential operator of order no higher than k — 2., Therefore, if L =
k—1

D"+z u,D! satisfies the Lax equation, then boTu’H:O' Hence, without violating the self-
=0

consistency of the equation, it may be assumed that uy-; = 0, as is usually done.

Example 1. Let L = D? + u. If we set A=(L3/2+=D3+% uD +%—u’,, then Eq. (2.1) is
the Korteweg—de Vries equation (KdV) ut=%(u”’+6uu’). The equations corresponding to A =
(Ln+1/2)+, where n6N, n>1, are called higher Kdv.

Example 2. If L =D® + uD + v, A = (L2/3)+, then the system (2.1) has the form

U= —u"4+2v,
V' — 2y 2
= -3—u —?u .

Eliminating v from the system, it is easy to see that u satisfies the Boussinesque equation
[14].

We shall now prove that the flows determined by the Lax equations commute with one
another. For this we need the following result.

d
LEMMA 2.4. If %2 =[A,L], then 2 (L"%—[A, L""].
Proof. We set M = LT/K, Tt is given that
da — (2.4)
[ﬁ A,L]_o.

It is necessary to prove that [%—A,M] =0. Since MK = LT, from (2.4) it follows that

[%—A, Mk]=0. (2.5)
On the other hand,
[%—A, M'*]:é M"l[-:—t—A,M-J M, (2.6)
=

It is easy to see that the leading coefficient on the right side of (2.6) is k times larger

than the leading coefficient of [%—A, M] . Therefore, the assumption that [%_A,M} #0
contradicts (2.5). W

We consider the equation

m
oL M, L], M= e, ciC, (2.7)
1=0
. o
oL (M, L}, M=, CEC. (2.8)
im0
P 0:L 0L . . 2.8
Proposition 2.5.. 3737 = dear" where the derivatives are computed by Eqs. (2.7) and (2.8).

The proof is the same as that of Proposition 1.7 (Lemma 2.4 now plays the role of Lemma
1.6).

2.2. This subsection is devoted to conservation laws for the Lax equation. If P =

m
2 b,D!, b&B , then we set resP = b-1.

§ ms—0c0

LEMMA 2.6. Let P,QeB((D")). Then res[P,Q] is a total derivative of some differential
polynomial in the coefficients of P and Q.
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Proof. It suffices to consider the case where P = gDM, Q = bD®., If m + 7 < —1, then

res (PQ) = res (QP) = 0. If m + L 2 —1, then res(PQ) = m(m_l)"'(l_l)(_l)ab('"+’+”, res(QP)=

[+ 1)
(m+I+1)! X batm+i+1) . Therefore resp [P, Q] = g', where
* i

m+
_m(m—1)...(A—0)(—1) (1) g (b i—
E= T m+l+D go(—l)‘“l”(m ’.om

From Lemmas 2.4 and 2.6 we obtain the following result.

Proposition 2.7. For any réN, resl'* is a density of a conservation law for the Lax
equation. ®

Of course, nontrivial conservation laws correspond only to numbers r not a multiple of k.

We now discuss another means of constructing conservation laws.

LEMMA 2.8. Let P be an element of B((D™!)) of the form P=D +2g,D", 2,68. Then any
=0

element MEB((D™')) can be represented uniquely in the form Zh,-P", néZ, hEB . Here hj are

i=n

differential polynomials in the coefficients of M and P. ®

THEOREM 2.9. Let P==D+Z gD, g€B . We represent D in the formD=P+2 kP! . Then

i=0 1=0
a) hg = —go; b) if r > 0, then hy + resPr/r is a total derivative of some differential poly-
nomial in the coefficients of P.
r—1
COROLLARY. Let L=D"+2u1D‘. We represent D in the form

i=0

D=L L ¥ L™, f€B. (2.9)
) i=0

Then a) fo = —ug-1/k; b) if r > 0, then f, + res Lr/k/r is a total derivative of a differ-
ential polynomial in ug,...,ug—3. ®

From the corollary, in particular, it follows that all f,. are densities of conservation
laws for the Lax equation. This fact can be proved directly without difficulty (see, for
example, [69, 71, 16, p. 48]).

Before proving Theorem 2.9, we present a means of computing the densities f, by means
of an equation of Ricatti type. We consider a formal solution of the equation Ly = Ky of
the form

¥ (x, D=etr X ¢ (x) b1, Po0. (2.10)
i=0

This solution is uniquely determined up to multiplication by series of the form zc,g—l, c,eC »
co = 0. i=0

Proposition 2.10.

o 2.11)
P (2 8 o D=8+ ) f1 (%) T
=0

Proof. It follows from (2.9) that \p'=L”"\p+2 f,L_i/ktp. It remains to show that Ll/klp =
i=0
Zy. Since c_lLl/klp is an eigenfunction of the operator L of the form (2.10), it follows that

Ll/kw = a(g)y, where a(C)=c§+2d1§" . It is easy to see that ¢ = 1. Since Ly = Xy, it fol-
i=0

lows that a(z)X = zK. Therefore, a(z) =¢. ®@

Thus, to find the densities fj it suffices to find 'y, i.e., a formal solution of an
equation of Ricatti type. This is much more convenient than expanding D in a series in
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fractional powers of L. Therefore, as the definition of f;, as a rule, we take formula (2.11)
rather than (2.9).

Proof of Theorem 2.9 (I. V. Cherednik [43], Flaschka [51]). Assertion a) is obvious.
To prove b) we use the formula

res Pm=D.(Pm)_—(D-Pm)_. (2.12)
Let (P”')_=2cpimP" ; then

imat

D-(Pm)_.=D- X 0,nP =09, P14 2 9,,D-Pi=

ie=1 fum] fe=]

(-]

~ 2% Pt Z%n,P"‘nLZZ‘thIP‘f—2¢,mP‘+(P"') P X b (PP,

1 le=1 lml je=0 J=0

(D-Pm)_=(Pm*1)_4 3 by (P7)..

J=0
Therefore, multiplying (2.12) by P™ and summing on m, we obtain

co

2 (res Pm). P-m _2 Eq, P- t—m+2 (Pm)_.P1-m — z(pm+l) p—m+z Eh (Pm)_. P-1-m

m=1 m=1 i=1 me=1 M=l j=0

o oe

2 E h} (Pmi)_ P-m_E Ew p-tm. L p_ _E h, 2(pm-f) p-m_
m=l j=0 me=1l=1 M ]
Since P_—— % kP, (Pm).=PmJi for m < j, (P3)_ =0 for m = j, it follows that
j=0
z(res P'")-P-M=E ch;mp-z-m__zjhjp-/_ (2.13)
m=1 m=1 l=1 J=1

Equating coefficients of P7T in (2.13), we obtain the desired relation res P't{rk, = 2 P, N

i4+mer

2.3. Ve proceed now to a discussion of the Hamiltonian formalism for Lax equations.
For reasons put forth in part 1.4, we shall discuss only the periodic case. The manifold M

on which it is necessary to introduce a Hamiltonian structure consists of all differential
k=1

operators L of the form Lﬁ-k:Stq[y, 6By . As in part 1.4, the Poisson bracket will be de-
=0 -

fined on the set of functionals of the form

o= [ flr o0, .o e (B oens uf (2), ..., 1) dx, (2.14)
*ER/Z
. . . (n) (n) . . . . . 3
where f is a polynomial in ug,...,Uk-315.+-5U; ~,...,ug_) wWith coefficients in Bg. It is con

venient to first define the Poisson bracket for affine linear functionals of the form (2.14),
i.e., for functionals of the form

k—1
tp(L)=c+2 j a,(x)u,(x)dx, c€C, a,€B; (2.15)

i=0 xGR/Z

Since the differential of a functional of the form (2.14) at any point of M has the form
(2.15), knowing the Poisson bracket of functionals of the form (2.15), it is possible to
uniquely recover the Poisson bracket of any functional of the form (2.14).

Following [44], we now introduce a convenient form of writing functionals of the form

(2.15). We define the functional Tr:B,((D™'))~C by the formula TrP= j (res P)dx . The nota-
*GR/Z

‘tion "Tr" is justified by the formula Tr[P, Q] = 0 which follows from Lemma 2.6. To each
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pseudodifferential symbol X of the form ZbiD", b,€By (such symbols will henceforth be
i=1
called integral symbols) we assign the functional Iyx:M - C given by the formula Zx(L) = Tr x
(XL). It is clear that lx has the form (2.15), and any functional of the form (2.15) can be
r—1
written as Iy by setting X=2 Dlg, 4 eD*1,
=0

THEOREM 2.11. 1) On the set of functionals of the form (2.15) there exist Poisson
brackets {, }1 and {, }2 (called, respectively, the first and second Gel'fand—Dikii brackets)
such that for any integral symbols X, Y and any L €M

{x, bh Q) =Tr L[V, X]) (2.16)
{Ix, by}, L) =Tr (LY), LX — XL (YL),). (2.17)

These brackets are coordinated. 2) The Lax equations are Hamiltonian relative to both Gel'-
fand—Dikii brackets. More precisely, the equation dL/dt = [(Lr/k)+, L} is the Hamiltonian
equation corresponding to the Hamiltonian H,y and the second Gel'fand—Dikii brackets and also
to the Hamiltonian Hy4+k and the first Gel'fand-Dikii bracket, where Hy:M -+ C is defined by
the formula Hy(L) = kTr Lr/k/r.

The proof will be carried out in Sec. 3, where we discuss the relation between the Gel'-
fand-Dikii brackets and the brackets given by formulas (1.13), (1.14). There is another proof
in [5, 7].

Remark 1. It follows from Proposition 2.7 that the Hamiltonians H,, réN are conserva-
tion laws for Eq. (2.1). From this and Theorem 2.11 it follows that the functionals Hy com~
mute with one another relative to both Gel'fand—Dikii brackets.

Remark 2. The meaning of the first Gel'fand—Dikii bracket was clarified in [27, 44].
In these works it was noted that if we consider the set G of all integral symbols as a Lie
algebra and identify G* with the set of differential operators assigning to the operator L
the functional X + —TIr (Lx), then the Hamiltonian structure of A. A. Kirillov [37] on G* is
defined by formula (2.16). We note that formula (2.16) itself first appeared in [27, 44].

Remark 3. We shall indicate the connection between the Hamiltonians Hy and the coeffi-
cients of the formal monodromy series. By the formal monodromy series we mean the following.
We consider a formal solution of the equation Ly = cky having the form (2.10). Then y(x +
1, £)e”% is a formal solution of the same form, so that e %y(x + 1, z) = M(Z)¥(x, L). The
series M(f) we call the formal monodromy series. From Proposition 2.10 and the corollary of
Theorem 2.9 we have the formula

M(R) =exp(L( S (1) dxt+ 3 Hii)).
R/Z r=1

3. THE SCALAR LAX EQUATION AS REDUCTION IN THE ZAKHAROV--SHABAT SCHEME

3.1. We consider an operator & of the form
d
=E+q+‘-\. (3.1

Here q(x) is a function with values in the set b of upper triangular matrices of order k and
A =1+ Ae, where
E—1
1=z eiy1,1, €=E;. (3.2)

io=]

We recall that ej j denotes the matrix having a one at the (i, j)-th site and zeros else-
where. We denote by n (respectively, N) the set of matrices of b with zeros (respectively,
ones) on the main diagonal. It is easy to see that if @ is an operator of the form (3.1),
SeC”(R, N), then the operator

2=8-188 (3.3)
also has the form (3.1). We call the transformation (3.3) a gauge transformation, and we
call the operators £ and [ gauge equivalent.
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Proposition 3. 1.° Any operator £ of the form (3.1) can be uniquely represented in the

form SgenS-1, where SECT (R, N), 8" =Z‘i—+q°‘"(x)+A,

g7 =v1(x) €12 +Vy(X) €2t - - - +Va(X) €, (3.4)

Here S and qfal are differential polynomials in q.
k-1
Proof. We represent q in the form 2‘7" g,(x)€b,, where 'b, is the set of matrices (ayg)

'1=0 k1 B—=1
such that agg = 0 for B ~a # i. In exactly the same way, qcan=2 gean, S=E+2 S,. Since
. i=0 i=1
[e, 8] = 0, the relation g=858*"S-! can be written in the form S§' + [I, S§] + qS — Sq%@0 = O,

1f q§2%,...,952], S1,...,8; are already known, then gq{°" and Sj+; can be found from the rela-
i

i
tion [1,S,+1]-—q;ﬂ“.=z S5 ~‘?t~—2 9;.;;—S,/ which is uniquely solvable. ®
i=1 1=1

COROLLARY. If the operators § and g are gauge equivalent, then 1) the matrix S in re-—
lation (3.3) is uniquely determined; 2) 8@"=g%“" N

Remark. The canonical form (3.4) is not the only possible one. If for any-ic{0, 1,...,k—

. £—1
1} we choose a vector subspace V,Cbh; such that §=[/, 8, ]|®V, and set V=1®OV,, then any

operator of the form (3.1) can be uniquely represented in the form S(§%~+54-A)S",where
SEC” (R, N), g6C* (R, V). Actually, [I,b,,] consists of all matrices (@ap) €6, such that Etlag-——‘
0; therefore, dimVj = 1. a.B

We denote by R the ring of differential polynomials in the elements of q which are in-
variant relative to gauge transformations.

Proposition 3.2. There exist elements u,..., #6R such that any element of R can be
represented uniquely in the form p(uy,...,uyx), where p is a differential polynomial.

We call a collection of elements ui,...,ux possessing this property a system of genera-
tors in R.

Proof. We shall show that for uj(q) it is possible to take the differential polynomials
vi(q) of formula (3.4). 1Indeed, let jeR ; then from Proposition 3.1 it follows that f can be
represented as a differential polynomial in vi,...,vg and the elements of the matrix S, while
from the gauge invariance of f it follows that this polynomial does not depend on S.

Definition. We say that the equation 3q/3t = p, where p is a differential polynomial in
q, preserves gauge equivalence if the derivative by the equation of any element of R again
belongs to R.

Roughly speaking, an equation preserves gauge equivalence if from the fact that two of
its solutions are gauge equivalent at t = 0 it follows that they are gauge equivalent for any
t (there is a particular gauge transformation for each t).

Suppose that there is given an equation 23q/3t = p preserving gauge equivalence. In R
we choose a system of generators ui,...,ux. Then

a .

'o_l;l_r—fl(uh"-yuk), i=1,...,k (3.5)
where fj are uniquely determined differential polynomials. We consider (3.5) as a system of
equations for the functions uj(x, t). If in R we choose another system of generators (15T
Uk, then the system of equations duj/dt = f£j(¥1,...,0) corresponding to it is obtained from
(3.5) by an invertible differential-polynomial change of unknowns. We have thus obtained an
entire class of equivalent systems. Any one of them we call an equation for the class of
gauge equivalence.

3.2, Following the scheme of Sec. 1, in this subsection we consider some differential
equations for an operator ‘@ of the form (3.1). It will be shown that these equations pre-

serve gauge equivalence.
—_—

5Propositian 3.1 is essentially contained in [65, 25].
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Proposition 3.3. Let the operator 8 have the form (3.1). Then there exists a formal

series T of the form ETA !, where TEC* (R, N) , such that the operator SO—TST’ has the
form 1=0

d 00
Q=az +A+ D fAY,  fiEB. (3.6)
i=0

The series T is uniquely determined up to multiplication on the left by series of the form

E-I—E t, A, t,€B. T can be chosen in exactly one way so that the first column of T is equal
i=1

to (1, 0,...,0)t. The T; are hereby differential polynomials in q with zero free terms.
We first formulate an elementary lemma.

LEMMA 3.4. 1) Each element of Mat(k, C((A"!))) can be uniquely represented in the form

m

Y Al vhere h€Dlag. 2) If h = diag (a1,...,ak), then Ah = hOA, where h° = diag (ak, a1,

Ju=—oco 0

A23eee3@k~1). 3) A matrix TeMat(k, C((AY)) has the form ET,L" , where TN , if and only if
o im0

T can be represented in the form E+Z R A7, h€Diag. 4) An operator & of the form (3.1) can

—1 i==1

be written as g +A-1—Z d, A, where d,6C” (R, Diag). I

=0

Proof of Proposition 3.3. We write the desired series T in the form E+2 kA, BECT R,
t=1
Diag). Equating coefficients of A™® in the equality £T=T7g we find that h,,—hi—f,E
can be expressed in terms of hi,...,hp, f£f1,...,fq-1. The existence of the series T and the
operator £, will be proved therefore if we show that any diagonal matrix can be represented
in the form h — h® — fE. For this it suffices to verify that any diagonal matrix with zero
trace can be represented in the form h — h%, and this is obvious. The fact that T is uniquely

determined up to multiplication by series of the form E+2 tiAY t€B can be verified in the
{e=1

same way as the corresponding assertion in Proposition 1.2. To prove the remainder of the

proposition it suffices to note that the first column of the matrix T=E+z kA is equal
1=1

to (1, 0,...,0)t if and only if for any i the equality (hj)y,n = O holds where n — 1 is the
remainder on dividing —i by k. ®
For any operator £ of the form (3.1) we set Zg={M€EMat(k, B(A"))IE, M=0}
LEMMA 3.5. Zg=T"'C((A"'))T , where T is the same as in Propositiom 3.3.
Proof. It suffices to show that if £, is an operator of the form (3.6), then Zg =
c((A™1). Let [M, 8]=0, M= i kAl h,6C=(R, Diag). Equating the coefficient of AR*! in the
—oo

expansion of [M; &) in powers of A to zero, we find that hy is a scalar matrix. Equating to
zero the trace of the coefficient of AR, we see that hn = 0. We apply an analogous argument
to the series M — hpA?, etc. ®

n def def
If M= 2 h,A', h,Diag , then we set M+=2 kA, M‘=Z kA' . Regarding the symbols M,
f=—c0 i»0 i<
and M- see the list of notation.

Remark. It is not hard to verify that the difference M* — M, belongs to p and does not
depend on A.

LEMMA 3.6. Let -MEZQ. Then [M*, &] and [M,, & are upper triangular matrices not de-
pending on A.

Proof. We consider the equalities [M*, & =—[M", 8], (M,, 8]=—[M_, &]. The left sides of
these equalities are polynomials in A, while the right sides can be expanded in series in
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nonpositive powers of A. From this we easily deduce the assertion of the lemma. ®

For any u€C((A7!)) we set @(u)=T-'uT, where T is the same as in Proposition 3.3. From
this proposition it follows that ¢ 1is well defined and that the coefficients of the series
¢(u) are differential polynomials in q.

It follows from Lemma 3.6 that the equation
dg def < A C
2 =+ 9], .9¢=‘§cl(q>(A)) , /€ (3.7)

is a self-consistent equation for the matrix q. Together with equation (3.7) we consider the
equation

def &
F=IB 2, B=2, c.(@(A)),, c€C, (3.8)
i=0
which is also self-consistent.

Proposition 3.7. Equations (3.7) and (3.8) preserve gauge equivalence and lead to the
same equation for the class of gauge equivalence.

Proof. We shall show that if f€R , then the derivatives of f by Eqs. (3.7) and (3.8)
coincide. We denote the difference of these derivatives by g. It is clear that g is a de-

rivative of f by the equation ZTQ=[.9¢—F/3, g], i.e., g(i‘):‘%f(g(t))],_o , where 2(¥) is any

function such that 8(0)=8,%’ 0=[-9¢——FB, ] . From the remark preceding Lemma 3.6 it follows

that ##—% 1is a function of x with values in n , which does not depend on A. Therefore, the
function S(x,f)=E+4£{(¥—%B) does not depend on A and takes values in N. For (1) it is
possible to take S (x, £)8S7!'(x, £). Then due to gauge invarianceof f, f(2({))=Ff(¥) does not
depend on t, and hence g(®)=0. It remains to show that Eq. (3.8) preserves gauge equivalence.
For this it suffices to note that if @(f) satisfies (3.8) and S(x)EN, then L(#)=S"'2(f)S
also satisfies (3.8). ®

Remark 1. Since AK = AE, we have P (A*)=ME, JEZ . Hence, it may be assumed in formulas
(3.7) and (3.8) that c¢{ = 0 1f i is divisible by k.

Remark 2. It follows from (3.7) that trg(x, f) does not depend on t. Indeed, ;%trq(x,

‘t)==——g%tf54, and from the definition of & it is evident that tr& 1s a constant. Thus,

without violating the self-consistency of Eq. (3.7), it is possible to set trg=0. The same
applies to Eq. (3.8).

Below we shall be interested not so much in Eqs. (3.7) and (3.8) as in the equation for
the class of gauge equivalence corresponding to them. This equation can be written in the
form

dgcan o dgtan
9f =F(q.n, —Ox—,...). (3.9)

We shall find the Lax representation for Eq. (3.9). If on the basis of the operator

9@ ywe find an operator & by formula (3.7), then the equation ﬂ§;2=[5¢,2“"] will not be

self-consistent. In order to correct the operator &% we use the following lemma which is
proved in the same way as Proposition 3.1.

LEMMA 3.8. For any 7, g6C~(R, b) there exists precisely one matrix 66C*(R, #) such that
all columns of the matrix [d/dx + I + q, 0] — n except, possibly, the last are equal to zero.
Here 0 is a differential polynomial in q and n.

Using Lemma 3.8, we find a matrix 0€EC*(R,®) such that all columns of the difference
[1{4_]4_4 e]-—[&¢,9] except the last are equal to zero (we recall that according to Lemma 3.6
dx !

. . d
[, 8] is an upper triangular matrix not depending omn A). Slnce[2,6]==[a;4—14—q,e] , the
equation
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dag
ET=L”+Q’S] (3.10)

admits the reduction =% . In analogy to Proposition 3.7 it can be shown that Eqs. (3.7)
and (3.10) lead to the same equation for the class of gauge equivalence. Therefore, the

equation g%;z=45¢4—& 2] is a Lax representation for Eq. (3.9).

It will be shown further on that (3.9), where q%2" has the form (3.4), is nothing other
r—1

than the scalar Lax equation for the operator L=D"——2'v,+1D’. For another choice of q
1=0

can

(see the remark following Proposition 3.1) Eg. (3.9) is connected with the Lax equation by
an invertible differential-polynomial substitution. It can happen that for an appropriate
choice of ¢ Eq. (3.9) is in a certain sense more simpatica than the corresponding Lax
equation (has lower order, for example).

Example 1. The Lax equation with L = D3 + uD + v, A = Li/3 is a system of third order

(see Example 2, part 2.1). However, if we set q@" = (aey, + Bea3)U + yey3V, then for suit-

able constants a, B, Yy the system (3.9) has the form

L]1=="ijx4'bfx:
V,=V,..+UU,.

Example 2. The Lax equation with L = D* + uD? + vD + w, A = Li/z 1s a system of fourth
order (see [35]). However, if we set q%80 = q(ejs + e3s)W + (Beys + ye24)V + 8ey4U, then for
suitable o, B, v, ¢ the system (3.9) has the form

Lll::_'L]xx"F2L,x“V_kI/“7xr
‘/t==L,xx4‘L]x
W,=V,.

3.3. Suppose an operator £ of the form (3.1) is given. On B((A~!))X we introduce

2 def d
the structure of a B[D]-module as follows: if P=2b,D‘EB[D], nEB ((AY))*, then P-n=2b,2‘(’ﬂ).

1=0 =0
The axioms for a module are satisfied, since [, 8]=#" for bEB . It is clear that B[A]X is
a B[D]}-submodule in B((A™!))K. We emphasize that D-n=8M)#n! We set $=(1,0,...,0/'€B[A]~

LEMMA 3.9. Each element of B[A]K can be uniquely represented in the form P-y, where
PeB{D].

Proof. It is easy to see that any element WEBJA]* can be uniquely represented in the

n
form q=2b,A‘¢, b€B, b,+0. The number n is henceforth called the order of n, and b, is
i=0
called the leading coefficient of n. To prove the lemma it suffices to note that £{(n) has
order one higher than n and has the same leading coefficient as 7.

Remark. It is evident from the proof of the lemma that the order and leading coefficient
of Py are equal to the order and leading coefficient of P.

From the lemma and the remark it follows that Ay = L-y, where L is a uniquely determined
differential operator of the form
R—1

L=D*4 3 u,D. (3.11)

i=0

Thus, to each operator & of the form (3.1) we have assigned an operator L of the form
(3.11).

Proposition 3.10. 1) To gauge equivalent operators £ there correspond the same opera-
tors L. 2) The mapping obtained from the set of classes of gauge equivalence of operators ¢
into the set of operators L is bijective.
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i=0

- r—l
Proof. 1) Let £=58-'2S ,where S(x)éN . It must be shown that if L\p=(£k+2u131)¢,

i==()

A—1
then x¢==(§“4-lglh§jlb. For this it suffices to multiply both sides of the first equality

on the left by S™! and note that § = S¢. 2) In view of Proposition 3.1, it suffices to prove

that each operator L corresponds to exactly one operator 8==é;-kq4—A , where q has the form

(3.4). Indeed, it is easy to see that the coefficients uo,...,ux-3 of the operator L can be
expressed in terms of the elements vi,...,vk of the matrix q by the formula uj = —vj+;. B

COROLLARY. The'coefficients of the operator L considered as differential polynomials in
q form a system of generators in R.

The remainder of this part will be devoted to the exposition of another point of view
regarding the nature of the correspondence described above between the operators (3.1) and
(3.11).

Let B be a noncommutative ring with identity. We consider an arbitrary matrix FeMat(k,
B of the form

F=(°/L; %) (3.12)

where A is an invertible matrix in Mat(k—1,%). We denote by R the set of upper triangular
matrices in Mat (g, B) having ones on the main diagonal.

def
LEMMA 3.11. 1) There exist S, SR such that ®—S,FS, has the form

(94 3.13
o_(A 0), (3.13)

where AEMat(k—1,%). 2) The element d does not depend on the choice of S; and Sa.

Proof. To prove the first part of the lemma we use the fact that multiplication of a
matrix on the left (respectively, right) by a matrix of the form E + aejj, i < j leads to
an elementary row (respectively, column) transformation. In order to reduce F to the form
(3.13), it suffices to subtract from the first row a linear combination of the remaining rows
and from the last column a linear combination of the remaining columns. The coefficients of
each of these linear combinations are found by solving a system of linear equations with ma-
trix A. To prove the second part of the lemma it suffices to verify that if S;9: = ¢2S2,
where ¢; are matrices of the form (3.13), S&%, then d; = d;. Indeed, in the right upper
corner the matrix S;91 has di, while $2S8, has dp. ®

We denote the element d by A(F). It is easy to show that AF = 8 — oA™ly.
Let W be a left module over ® . It is trivial to prove the following assertion.
LEMMA 3.12. If Fr(ui,...,ug)t = (v, 0,...,0)t, where y,&W, véW , then A(F):ukx =v. ®

We assume that there is given an antiautomorphism x = x* of the ring % such that (x*)* =

def
x. For any matrix A = (aji,j) in Mat(k, B) we set Al = (a¥,j), where af ;=@ ;. 141 - It is
not hard to verify that (AlAg)T = A¥A¥ for any matrices A; and A;.

LEMMA 3.13. A(FT) = (A(F))*.

Proof. Applying the operation T to both sides of the equality S1FS; = ¢, where ¢ is a
matrix of the form (3.13), we obtain the assertion of the lemma. ®

We return to our situation. Let B = B[D, 4], W =S ((A")*, and let * be the operation

def

of forming the formal adjoint, i.e., D*=—D, f*=f for fEB[A]. The structure of a B[D,
Al-module is introduced by means of an operator & of the form (3.1) (see the beginning of
part 3.3). On the other hand, it is possible to consider & as a matrix with coefficients in
% . 1In order to avoid confusion, we denote this matrix by 1. We set 7o = 1 — Xe. It is
clear that 1y does not depend on A and has the form (3.12). We denote the elements of the

- — def _
standard basis of W as a module over B((A™1)) by €1,...58c. We recall that =e;.
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Proposition 3.14. Let L be an operator of the form (3.11) such that L'y = Ap. Then
L =—(A(Zo))*.

Proof. It is not hard to verify that the equality D.¢,=8(e),i=1,..., & can be written
1T (e, . 1)t = 0, i.e., Z'gl(ek,...,el)t = (—Aey, 0,...,0)t. Using Lemmas 3.1Z and 3.13,
we find that —(&(Zs))*+e1 = Xej. It remains to use Lemma 3.9. ®

3.4. 1In this subsection we show that the equation for the class of gauge equivalence
corresponding to Eq. (3.7) coincides with the scalar Lax equation.

on B({(x"*))k we introduce the structure of a B((D"'))~module. For this it is necessary
to assign a meaning to the expression D™':n, where neB (AN

LEMMA 3.15. The operator L:B{(A))*—=B({(A")* 1is invertible.

Proof. It is easy to see that any element in B((A~!))K can be uniquely represented in

n
the form 2 b A, b€B . As in the proof of Lemma 3.9, this makes it possible to introduce
the concepts of order and leading coefficient of an element of B{(A™1))k. We set A=8—A=
d/dx + q. The operator inverse to & is given by the formula {n=(A(E +AA) m=A"n—
ATTAA '+ ATAATTAA ' — -+, which is meaningful, since the operator A does not increase the
order. ®

It is clear that the operator 2 :B((A")*—B((")* reduces the order. Therefore, ex-

n
pressions of the form 2 6,8 , where 6,68, n€B((A"1))* are meaningful. We thus obtain on

fe=—00
B((A"1))K the structure of a B((D~}))-module. It can be proved in analogy to Lemma 3.9 that
each element nEB((A7')* can be uniquely represented in the form Py, where PEB((D™!) . Here
the order and leading coefficient of P are the same as for n.

Proposition 3.16. @ (A*)($)=L"* 4.
Proof. We represent ®(A)(y) in the form P.y, PEB((D')). Since @ (A) has the form

A-}-E h,(x) A", h;(x)€Diag, the order and leading coefficient of 9(A)(¥) , and hence also of P,
i=0

are equal to one. Since [p(A), ]=0, it follows that @(A) commutes with the action of any

element of B((D”!)). Therefore, PA)()=P"y for any n. In particular, for n = k we ob-

tain Pt.y=Ap=L-p , since Pk = L. Thus, P = L'/¥  and hence ¢(A")(@)=L"*-¢.M

LEMMA 3.17. Let JgMat(k, B((A ), MEB((D), A =M-¢p. Then MA*p=M, ).

Proof. Since A™YEB[A]*, it follows that H*yp=P.y, where PEB[D]. The element (M ~—
P).-y= A~y has negative order, since ord (M — P) < 0. Therefore, P = M,. ®

We choose the coefficients of L as a system of generators in R.

Proposition 3.18. The equation for the class of gauge equivalence corresponding to Eq.
(3.7) with this choice of the system of generators coincides with the scalar Lax equation

m
(2.1), where A= ——2 c, L%,

i=0

Proof. It must be shown that if £ satisfies (3.7), then the corresponding operator L
satisfies the Lax equation. For the time being let B denote the ring of smooth functions of

x and t. We denote by B[D, D¢] the ring of differential operators of the form Ea,fDlD,/,
)

a;68. On B{A1K we introduce the structure of a B{D, Dt])-module so that the operator of multi-~

plication by D¢ is equal to -gt—-—&ﬂ (this is possible, since [B,d%-——-%‘ =0 and [7{‘;—-—.%, b}=

m
%”7 for beB). We recall that f—.A*, where ./l=2 c®(A). Since y = (1, 0,...,0)t, it fol-
im0

lows that D, ¢=—#p=—A*p which by Proposition 3.16 and Lemma 3.17 is equal to A*y. From
the equalities Ly = Ay and (Dy — A)-¥ = 0 it follows that [Dy — A, L]*¢y = 0. Since [Df — A,
L] belongs to B[D], from this it follows that [Dy ~ A, L] = 0. ®
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3.5. Proposition 3.19. The functions f; defined by formula (3.6) are densities of con-
servation laws for Eq. (3.7). The arbitrariness in the choice of T (see Proposition 3.3)
leads only to the change of fj by a total derivative.

The proof is the same as that of Proposition 1.5. ®

We shall now show that the conservation laws found coincide with the conservation laws
for the scalar Lax equation obtained in Sec. 2.

Proposition 3.20. Let & be an operator of the form (3.1), let L be the corresponding
operator of the form (3.11), and suppose that the functions fj are defined by formula (3.6).

Then f°=——L— Uy, » and for >0 f,+%res LY* is a total derivative.

Proof. In view of the corollary of Theorem 2.9, it suffices to show that

D’—_—'Ll/k-l—i flL—l/k' (3-14)

=0

where the functions f; are defined by formula (3.6) in which % is normalized by the condi-

tion Ty = ¢. Conjugating both sides of (3.6) with T, we obtain 8=T"! -—T—I—‘P(A)—l—z Ji® %
1=0

. def
(A"1). From Proposition 3.16 and the equality Ty = ¢ it follows that D.p=8y=P(A)p+

Efiq’(A")liJ=(L”k+2 f,L_”k)-\p, whence we obtain (3.14). W
=0

l=_=-0

3.6. We now proceed to the discussion of the Hamiltonian formalism for Eqs. (3.7).
The manifold 4 on which it is necessary to introduce a Hamiltonian structure is the set of
classes of gauge equivalence of operators of the form (3.1), where the elements of the matrix
q belong to Bg. We note that if in relation (3.3) the operators 3 and 3 have periodic coef-
ficients, then it follows from the uniqueness of the matrix S that its elements are also
periodic. It is convenient to represent functionals on A/ as gauge invariant functionals on
the set of operators of the form (3.1). The Poisson bracket will be defined on the set &
of gauge invariant functionals of the form (1.11).

For any u, véMat(k, B)) we set (u, -v)=S tr(u(x) v (x))dx. If‘ leF, g6C*(R/Z, b) , then gradg A
denotes any element of Mat (k, Bg) such that

B L(g+ehemo=(graddl, h), (3.15)

for any h€C” (R/Z,b). We emphasize that gradql is ot uniquely determined by relation (3.15)

but only up to the addition of functions w1th values in »,

We define the first and second Hamiltonian structures on J by formulas analogous to
(1.13) and (1.14):

{®, v} (@)= —(grad, @, [gfadall’o e)), (3.16)
{9, ¥ (9)=(grady @, [gradew, 7 +7+4]). (3.17)

where @, y6&F, g6C”(R/Z, b), and I and e are defined by formula (3.2). It must be verified
that a) the definition is correct, i.e., {@, \p}l and {@, ¢}, do not depend on the arbitrari-
ness in the choice of the gradient; b) gauge invariance of ¢ and ¢ implies invariance of
{9, 9}, and {9, ¢}, ; c) the brackets {-, +}1 and {-, +}2 are skew-symmetric and satisfy the
Jacobi identity. Verification of a) reduces to the proof of the equalities

(grad, 9, [0, e])=0, (3.18)
(0, [grad, ¢, e])=0, (3.19)
(erade @, [0, 7 +7+4])=0, (3.20)
(e, [gradq ¥, ‘%+[+q])=0, (3.21)
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for any function 66C*(R/Z, n). Formulas (1.15) show that Eqs. (3.19) and (3.21) follow from
(3.18) and (3.20). Equality (3.18) is obvious, since [6, e] = 0. Equality (3.20) follows
from the gauge invariance of @ . Indeed, we define q(e) from the equality (E +20) & (E +20)' =
d d ' d : '

xH+heta@). Then L o(g@E)k—o—|grad, 9, |0, 5 +1+q])=0.

To prove b) it suffices to note that if q and q are connected by the relation ‘-g?-{-q-}—
A=S§"! (&ix +4+A)S, where SEC”(R/Z, N), then grad;9=S"'(grad,9)S.

The skew-symmetry of the brackets (3.16) and (3.17) follows from formula (1.15). We
shall show that the bracket (3.17) satisfies the Jacobi identity. For any functional Z:Mat x
(k, Bg) + C of the form (1.11) we denote by I the functional on C”(R/Z,v) given by the for-
mula 2(q) = Z(I + q). It is clear that if g96C*(R/Z, v) , then for gradqi it is possible to
take grady+q l. Therefore, for any functionals 9, P of the form (1.11) such that ¢ and
are gauge invariant we have {9, ¢},={@, 15}2, where (9, y}, is defined by formula (1.14). Hence,
the Jacobi identity for the bracket (3.17) follows from the Jacobi identity for (1.14). The
Jacobi identity for the bracket (3.16) is verified in exactly the same way [we note only that
the bracket (1.13) satisfies the Jacobi identity for any matrix a including a = —e].

Remark. From the coordination of the Hamiltonian structures (1.13), (1.14) there fol-
lows the coordination of the structures (3.16), (3.17).

For any #n6N we define the functional ,: 4 —~>C by the formula &4, (Sl)=ka,,(x)dx,
R/Z

where f; is defined by formula (3.6). It is clear that 4,6 . We note that in the present
situation a Hamiltonian EF defines the evolution not of the operator £ itself but only
of its class of gauge equivalence. Therefore, the Hamiltonian equation is a system of evolu-
tion equations for the generators of R.

Proposition 3.21. The equation for the class of gauge equivalence corresponding to Eq.
(3.8), where #=¢(A"), , is the Hamiltonian equation corresponding to the Hamiltonian &,
and the second Hamiltonian structure. This same equation is the Hamiltonian equation corre-
sponding to the Hamiltonian J4,,, and the first Hamiltonian structure.

The proof is analogous to the proof of Proposition 1.9, ®

3.7. If by the means indicated in part 3.3 we identify J and the manifold M of part
2.3, then & obviously goes over into a class of functionals on M of the form (2.14).

THEOREM 3.22. The first and second Hamiltonian structures on 4 go over, respectively,
into the first and second Gel'fand-Dikii structures on M.

In the proof of the theorem we use the following functional Tr:Mat(n, By((D"))—-C [which
is a generalization of the functiomal Tr:B,((D'))>C considered in part 2.3]: if AgEMat(n,

def ’
By((D™)) , then Tr A= jl(tr res A)dx . It is easy to see that if X and Y are matrices over
R/Z

Bo((D~!)) of dimension m x n and n x m, respectively, then Tr(XY) = Tr(YX).

Proof. Let X=2 D-a,, Y=E D'b; be integral symbols, let Iy and ly be the func-

i=1 =1

tionals on M they define (see part 2.3), and let Iy and ly be the functionals on J, corre-
&—1

sponding to lx and ly. Lety6C”(R/Z, 1), 53=£ +49+A, and let L=D"+2 u,D! be the operator
i=0
corresponding to & . It must be shown that {z\», Z)r}l @={x, Iyt (L), {7,\», Zy}Z(q)={lx, Iy}, (L) 5 i.e.,
(grady Ix, [grad, Iy, e])=Tr (Y, X)-L), (3.22)
(eradeZx, [grad,ly, 4144 1)= Tr((LV),LX—XL(¥L),). (3.23)

It may hereby be assumed that (see the second part of the proof of Proposition 3.10)

=——(uoel,k—|-u1e-g_k-|-...—|—uk_,ek,k). (3-24)
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We shall first prove (3.23). We shall find grad,Ix. Let 46C™(R/Z, %) . We denote by L(e) the
element of Bg[D] corresponding to the operator @-1teh. We recall (see part 3.3) that L(g) =
—(8(P(e)))*, where P(e) = I + q + €h + diag (D,...,D). Thus, Ix(g4-eh)="Tr(X-L(e)=Tr (A (P ()

X*) [we have used the identity TrZ*= —TrZ, ZeB,((D") ].- We write P(¢) in the form (‘;((i)) 223)’

where A(e) is a square matrix of order k — 1. Then A(P(e)) = B(e) — a(e)A™ (e)y(e) (see part

3.3). Writing now h in the form (gc E]J , where C is a matrix of order k — 1, and setting o =

a0y, B =B(0),y =v(G), A = A(U), we obtain—‘;‘E—A(P(e))]wo—_—C—ZjA"y—aA'1q+aA"CA'ly. There-
d -~ —~

fore, Elx(q_;-ak) lemo =Tr EX*)—Tr (§- A" 'yX*)—Tr (n- X*a2A) 4 Tr(C- A 'yX* aA"!) whence grad,lx=

— AT XF, A"vX*aA")

~ —A-tu¥V*  A-1y -
res_( X*, — X*aA- In exactly the same way, grad,,ly=res/ A'yY*, A-'yY*a A ‘) , whence

\ Y+, —Y*a A

’

- = d _ — A 2WY*, A-WWY*aAd Yy ja B 0, A-1yY*L* [ —L*, L*Y*aA-! .
[gradq b, 77 + 7 4-g}=res [( v+, — YR AT ), (A v)]=res (0, _yLe )—res;\ 0, 0 ) Using

k—1

now the fact that q has the form (3.24) we have L=Dk+z u, D!, aA'=(D, —D2, weer (=1 DEYy,
A'ly= —((LD™),*, ..., (LD ®),*). Therefore, =0

. k
tr (gradqzx- tgradq Iy, gv— +/7 +q]) - _Z res (X* (DI1)*) X
(=1
k

X res (LD7),* Y*L*), 4 yres (L3Y* (D)) tes (LD),* X*)=
i=1

= D) res (DF'YL)-res (X (LD),)— D) res (D~ X)-res (L¥ (LD"Y),).

ie=] . i=1

For any Z€B;((D™") we have E(LD“'),,-res (D1Z)=(LZ)), (to see this it suffices to represent
im1

Z in the form ;D/fj). Hence, tr(gradqzx'[gradqz}', ;‘i—-{—/%—f/])=res (X (LWFL)),)—res (LY (LX),)=

res(XL(YL)_)—IGS((LY)_LX)- Thus, the left side of (3.23) is equal to Tr(XL(YL)-—*(-‘:Y)-LX)=

Tr((LY).LX — XL{V'L),), as was required to prove.

We shall now deduce (3.22) from (3.23), following [60]. We note that (3.23) remains in
force if q is replaced by q — e and L is replaced by L + 1. Since X =Y, = 0, it follows
that

(gradq-e Ix, [gradq_el}, dix«_|_1 +q—e]) _
=Tr((LY),LX —XL(YL))+ Tr(LY), X —X (VL)) =Tr (LY), LX — XL (YL),)+Tr(L-[Y, X]). (3.25)

Since Ix(L + 1) — Ix(L) does not depend on L, it follows that ix(q —e) — zx(q) does not de-
pend on q, and hence gradg-e lx = gradq lx. Therefore, subtracting (3.23) from (3.25), we
obtain (3.22). B

We note that in the proof of Theorem 3.22 we did not use the assertion that the Gel'-
fand-Dikii brackets satisfy the Jacobi identity. Moreover, in proving Propositions 3.20,
3.21, and Theorem 3.22, we proved Theorem 2.11 at the same time.

Theorem 3.22 and the results of [39] make it possible to give a group-theoretic inter-
pretation of the second Hamiltonian structure of Gel'fand-Dikii. This interpretation will
be presented in part 6.5.

3.,8. 1In this subsection we consider so-called modified Lax equatioms.

LEMMA 3.23. Equation (3.7) admits the reduction

8= +a(0+A, g=diag(g, .-, q0- (3.26)
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Proof. Let £ be an operator of the form (3.26), and let MEZg, 1t is necessary to

prove that [M*, 8] is a diagonal matrix. It is clear that in the expansion of [M', &| in
powers of A (see Lemma 3.4) there are no negative powers of A. On the other hand, it is
evident from the equality [M* 8]=—[M", & that in this expansion there are no positive
powers of A. B :

Remark. It can be proved in exactly the same way that for any r€{0, 1,..., k—1} (3.7)
admits the reduction q = (qij), where qjj = 0 for j — i > r.

Equation (3.7) with g¢(x)éDlag we shall call the modified Lax equation. This equation
may be considered a reduction of Eq. (1.1). In order to see this, it is necessary to set

A = zk and pass from the operator € to the operator §=®8®"={t—+§a+q(x) , where ¢ =

diag (1, Lyer.sf8" 1), a =1+ e. The modified Lax equation can then be written in the form

m
dT%=[Q, @], where # in the notation of part 1.1 is given by the formula .9_¢=2 ¢ @ (a'Th),.
i=0

By the method indicated in part 3.3 we assign to each operator & of the form (3.26) an
operator L of the form (3.11). We call this mapping the Miura mapping. It is clear that the
Miura mapping takes solutions of the modified Lax equation into solutions of the corresponding
Lax equation.

Proposition 3.24. The Miura transformation is given by the formula

L=(D—qy)...(D—¢)(D—gq)). (3.27)

def
Proof. We denote the standard basis in B[A]K by €1,...58k. We recall that y=¢, . It

must be shown that the operator L defined by formula (3.27) satisfies the equality L-y = Ay,
ie., (8—qy...(8—¢)(@—q)ei=1e,. Indeed, (8—q)e,=e,1 for i<k, (8—qr)er=re,. B

We note that the Miura transformation is not injective: knowing L, in order to find
q1s...5q9k from relation (3.27) it is necessary to solve a system of ordinary differential
equations. This means that different operators of the form (3.26) may be gauge equivalent.

Example. Let L = D> +u = (D + qQ)(D—q). If A= Li/z, then the Lax equation (2.1) 1is

the Korteweg—de Vries equation ug = (u' + 6uu')/4. The corresponding modified Lax equation
d . e . .

%=_[¢(A3)*, g], where 2=W+ (;] i'_q), is the modified Korteweg—de Vries equation q¢ =

(@™ - 6q2q')/4. The relation u = —q' — q? connecting the solutions of these two equations

was found by Miura.

We proceed to a discussion of the Hamiltonian formalism for the modified Lax equation.
The manifold A, on which it is necessary to introduce a Hamiltonian structure consists of
all operators & of the form (3.26) where g¢i€Bs. The gradient of a functional [/ —-C at a
point ¢6C”(R/Z,Diag) 1is a function grady/€C”(R/Z, Diag) such that relation (3.15) is satis-
fied for any AeC™(R/Z, Diag). The gradient is uniquely determined by this condition. The
Poisson bracket on A 1is given by the formula

d .
@, 9} ()= (5 grad, @, grads ). (3.28)
We denote by £, the restriction to A& of the functional #, A -C of part 3.6.

Proposition 3.25. The modified Lax equation .Z_f-=[q)(A")+, 2] 1is the Hamiltonian equation
corresponding to the Hamiltonian J§,.

Proof. It is easy to see that the Hamiltonian equation corresponding to #, has the
form %—:— —(grad36,). Just as in the proof of Proposition 1.9, it can be verified that
grad#,=9@(A"),, where ?(A")° is the free term in the expansion of ?(A") in powers of A. It
remains to show that [9(A")*, 8] = —@(A")’. Indeed, [p (A7), 9]='[q)(A")O, T’i—-}—q" = —@P (A7), , since
9(A")y, and q are diagonal matrices. ®

According to Proposition 3.19, the functionals J, are conservation laws for the modi-
fied Lax equations; from Proposition 3.25 we therefore obtained the following result.
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COROLLARY. {#.,,3€,}=0. m

We introduce the important concept of a Hamiltonian mapping. A manifold with a Hamil-
tonian structure given on it we call a Hamiltonian manifold. Let M; and Ms be Hamiltonian
manifolds. We denote by Fi the class of functionals Mj + C on which the Poisson bracket is
defined. If 7 is a functional on Mz, then for any mapping f:Mi -~ M f*(l) denotes the func-
tional on My given by the formula f*({)(n)=I(f(n)), n€M, .

Definition. A mapping f:M; + Mz is called a Hamiltonian mapping if [*(F;)cF, and for
any @, $€Fs, [*{e, ¥} = {/* (o, f*(p)}.

Proposition 3.26. The Miura transformation p:.#/—>M, where M is the manifold of part
2.3 equipped with the second Hamiltonian structure, is a Hamiltonian mapping.

Proof. It follows from Theorem 3.22 that in the assertion to be proved it is possible
to replace M by & . Thus, we must verify that if ¢ and y are functionals on 4, @ , and ¢
and their restrictions to ., then {9, $}={P, ¥}, In other words, we must prove the equality
: = = d : .
((gradoy, gradq¢)=(grad¢¢, [gradqxp, a1 +4ql), g(x)eDiag. We normalize grad, and grad;y so that
they are lower triangular matrices; then (grad,9, [grad,y, / 4-¢])=0. It remains to mote that
grad,® =(grad,9)s,,¢, €radoh=(gradsP)g;,e and to use formula (1.15). ®

The Hamiltonian property of the Miura mapping was first proved in [60]. The simplicity
of the proof of this assertion presented above as compared with the proof in [60] is achieved
to considerable extent due to the use of the nontrivial Theorem 3.2.

4. THE METHOD OF ZAKHAROV—SHABAT FOR LIE ALGEBRAS

4.1. Let @ be a finite-dimensional Lie algebra, and let a be an element of @&. We set

def def
H=Kerada, H* =Imada. We assume that a) the Lie algebra $ is commutative; b) G=5H@Ht.
For any ¢e® we denote by g the projection of ¢ onto §. We note that if on ® there is
given a nondegenerate, symmetric, invariant bilinear form then %' coincides with the ortho-
gonal complement of . In the case where ®&=Mat(k, C) for a it is possible to take any
matrix with distinct eigenvalues. If & is a simple Lie algebra, then for a it is possible
to take an arbitrary regular element.

m
We consider the relation (1.1), where L=‘%+ qg—Aa, A—_—E A, q and Aj are functions
i=0
of x, t with values in & ; a is an element of & satisfying conditions a), b) formulated
above. OQur purpose is to carry over the main results of the first section to this case. As
in Sec. 1, the key feature is the reduction of the operator

=& +g—ha, gEC” R, ©) (4. 1)

to canonical form (see Proposition 1.2). However, now if no representation of & has been
chosen we cannot conjugate L with a formal series in A™! simply because the operation of
multiplication is not defined in & . The analogue of conjugation in our situation is appli-

cation of the operator ea8dU Thig operator acts as follows: if u=2 ur~t, w6, PEB (A1),
i=1

def 1 . . — adu ==
Zgiz_gadu(\p)=1p+[u, Y]+ o7 [u, [u, 9]]4+ ... . We note that in the case where &=Mat(k, C), €**(})
It is not hard to verify that the mapping eadu:@((A-'))>@((A")) is a Lie-algebra automor-
phism. From the Campbell-Hausdorff formula [40] it follows that automorphisms of this type
form a group. n
- . d
We consider the Lie algebra & of formal series of the form 2 (c,ﬂ+p,) M. c€C, pi€

f=m—00
C”(R, ). We note that the operator L belongs to &. It is clear that the mapping e3dU,
where U=2uz7~“, u,6C=(R, ®), is an automorphism of &. We denote the group of all such

i=l1

automorphisms by G.
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> def
Proposition 4.1. There exists a formal series U=2u,7~“, u,€C” (R, ) such that Ly=

eadU(L) has the form i=1

Lo=‘%—}»a’+§)h,}f‘, REC™ R, 9). (4.2)

The automorphism eadU is defined uniquely up to multiplication on the left by automorphisms

adUo’ where Uosz'v,l,",. 9,6C” (R, $). It is possible to choose the series U in

=
exactly one way so that its coefficients uj belong to C”(R, $') . Here the uj are differential
polynomials in q.°!

of the form e

. adz ,”A‘l
Proof. Equating coefficients of A™R on both sides of the equality e !=! (L)=£——ha—|—
‘Zhl}‘_" we find that [up+;, a] + hy can be expressed in terms of uj,...,up, hg,...,hp-7.

=0

Since the restriction of ada to $' 1is an isomorphism, any element in @& can be uniquely
represented in the form [X, ¢] + Y, where XeHt, YEH. Therefore, knowing uj,...,Ups hose..,

hp-1, it is possible to uniquely determine #,,6C”(R, $') and #,6C~ (R, 9).
def def
Let g, g,6G be such that the operators L;=g;(L) and L,==g (L) have the form (4.2).

Since G is a group, g2g1_1=exp (adZ'v,}u"), where 7,6C”(R, ®). We must verify that v,6C" (R, §) .

fom [

Equating coefficients of A™™ in the equality exp (adzﬂ,h“) (L)=L,, we see that if vi,...,
=1

0,6C”(R, §), then [v,,, a]éC”(R, $), and hence 7,,6C"(R, %) W

We set Z;={MEC™(R, G((A™"))|[M,L]1=0}. In exactly the same way as in Sec. 1, it can be
proved that Z;=e~*($((A"), where U is the series of Propositiom 4.1. For any &be§((A™))
we denote by @(b) the series e~3dU(b). It is easy to see (see Lemma 1.1) that if A =9@(b),,
where bEH((A1), then the commutator [A, L] does not depend on A. Hence, relation (1.1), where

A=D0(BM),, bED (4.3)

1m0
is an evolution equation for q. For brevity we call this equatiom Eq. (1.1).
4.2, The following assertions are proved im analogy to Propositions 1.4, 1.5, 1.7.

Proposition 4.2. If we set A=Q(bA"), , where bES , then Eq. (1.1) has the form 3q/dt =
Pq(n) + f(q, q',...,q(n'l)), where P is a linear operator on & annihilating £ and such that

its restriction to $' is equal to adb(ad @) ™. 1If we assume that q 1) has degree of homo-
geneity i + 1, then f is a homogeneous polynomial of degree of homogeneity n + 1., ®

Proposition 4.3. The functions hj(x) defined by formula (4.2) are densities of conser-
vation laws for Eq. (1.1). Here lz0=qg, ; if i > 0, then up to total derivatives the
dl—l
dxi-1

linear part of hj is equal to zero, while the quadratic part has the form -;—[(ada)“
AR
Iq) q]gJ ‘

Proposition 4.4. We consider the equations

(99—

oL y (A~
=0, L, w9
oL ” " -
5e=19®.. L], u€n(@ ).
then 32L/3t3t = 3°L/313t, where the derivatives are computed by these equations. W

°The words "u is a differential polynomial in q," where u and q are functions with values in

vector spaces V and W, mean here and henceforth that for some (and hence any) choice of bases
in V and W the coordinates of u are differential polynomials in the coordinates of q.
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4.3. 1In this and the following subsection we shall discuss the Hamiltonian formalism
for Eqs. (1.1).

As the manifold M on which a Hamiltonian structure is introduced we take C*(R/Z, @),
while for the class of functionals F we take the set of all functionals from M toc C of the
form (3.11). .

We assume that on & there is given a nondegenerate, symmetric, invariant bilinear form
(,). We recall the invariance of a form means that for any u, v, w68 the equality (u,

adv(w)) = —(ad v(u), w) holds. For any functions g, 2eM we set (g, h)= ‘f(g(x) h(x)dx . It
is obvious that (g, h') = —(h, g').

We define the Poisson brackets {:+, :}1 and {+, *}2 on M by formulas (1.13) and (1.14).
In exactly the same way as in part 1.4, it can be verified that any linear combination of
these brackets is a Poisson bracket.

m m
Let u=2 bA, b€%. We define the functional Hy:M » C by the formula H,,(q)=2(b,, k) ,
=0 =0
where h{ are the same as in Proposition 4.1. By Proposition 4.3, the functionals H, are
conservation laws for Eq. (1.1).

Proposition 4.5. 1) Equation (1.1), where A is defined by formula (4.3), is the Hamil-
tonian equation corresponding to the Hamiltonian Hy, and the second Hamiltonian structure. 2)
This same equation is the Hamiltonian equation corresponding to the Hamiltonian Hjy and the
first Hamiltonian structure.

The proof of this assertion differs in only minor details from the proof of Proposition
1.9. =

COROLLARY. For any u, #€9((x"), {Hu. Hzh ={H, H:h=0.18

4.4, In [37-39] Reiman and Semenov-Tyan-Shanskii constructed an imbedding of the mani-
fold M in the dual space to a remarkable infinite-dimensional Lie algebra & such that the
second Hamiltonian structure on M is induced by the Kirillov structure on &%, 1In this sub-
section we present the construction of Reiman and Semenov-Tyan-Shanskii. It will be used in
part 6.5 in constructing a group-theoretic interpretation of the second Hamiltonian structure
of Gel'fand—Dikii.

We first make a remark of general character. Let X be a Hamiltonian manifold, and let
9 be a subalgebra of the Lie algebra of functionals on X. Then the mapping i:X—>%* as-
signing to each point x€éX the functional [ :9—C given by the formula Zx(f) = f(x) is a
Hamiltonian mapping (see the end of Sec. 3) if the Hamiltonian structure of A. A. Kirillov is
considered on %* . If, moreover, functions in ¥ separate points of X, then i is an imbed-
ding. In this case X may be considered a submanifold of %*, and the Hamiltonian structure
on X is induced by the Kirillov structure on U* Of course, an imbedding i of the type de-
scribed above can be useful only if the algebra % is not too large.

As X we now take the manifold M= C=(R/Z, ), equipped with the second Hamiltonian struc-
ture. For any u€M, c€C we define the functional @,.:M—C by the formula @..(q)=(g, #)+c.
We have {Puy.co Pusies}=Purc » where

u=[u1, UQ], C=(u1,, ug). (4.4)

. def . .
Thus, the set Q;{(pu.clueM, ceC} is a Lie algebra. Applying the construction described above
to the pair (M, ®) , we obtain the desired imbedding i:M — &*. It is clear that iM)c

{IE@*II(CPO )=1}. This inclusion is not an equality: if 1c6*, [(@®.)=1, then 7 has the form
l(cpu d=I{g, ©)-c, where q is a generalized function R/Z—+®&. Following [38], we understand by
®* below the set of "smooth" linear functionals on & (i.e., functionals of the form @,.—
(95 u) + ac, where agC, 96C~(R/Z, ®)). With this interpretation of &* we have i(M) =

{166* |1 (®o,)=1}.
We shall discuss the structure of & as a Lie algebra. It follows from (4.4) that the

one~dimensional subspace in @&, consisting of functionals of the form ¢, c6C 1is contained
in the center of @. Identifying this subspace with C, we see that the algebra ®/C is iso-
morphic to C«(R/Z, ®). The algebra & is hereby not isomorphic to the direct sum of the
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algebras C~(R/Z, ) and C. Thus, @ is a nontrivial central extension of C>~(R/Z, @) by

C. It is known that if the algebra & is simple, then such an extension is unique up to iso-
morphism. Therefore, in the case where @ is a simple Lie algebra the manifold M has the

following abstract description: let @ be a nontrivial central extension of C=(R/Z, ®) by
C; then M is the hyperplane in &* consisting of functionals l¢6* taking the value 1 on the
element 16C—@ , and the Hamiltonian structure on M is induced by the Kirillov structure on
& '

In conclusion, we note that the imbedding M—>®&* described above makes it possible to
interpret the Hamiltonian Hy (see Proposition 4.5) in terms of a so—called Adler scheme (see
[37-39]).

5. SOME FACTS CONCERNING SEMISIMPLE LIE ALGEBRAS AND KATS-MOODY ALGEBRAS

As always in this work, in the present section we consider Lie algebras only over C.

5.1. Definition. A Lie algebra is called simple if it is finite-dimensional, non-
Abelian, and contains no nontrivial ideals. A semisimple Lie algebra is the direct product
of a finite number of simple algebras.

We shall recall the structure and classification of semisimple Lie algebras.

Definition. A system of Weyl generators of a Lie algebra & is a system of generators
Xi, Yi, Hi, 1 € 1 < r of it such that a) Xy # U, Y{ # 0, Hi # O for all i; b) for any i, j
the relations

[HI,HJ]=O, (5-1)
(X, Y]=0,H,, (5.2)
[, X=N,X, (5.3)

[Ho Y]=—NY, (5.4)

hold where (Nij) is a nondegenerate matrix such that Nji = 2 for any 1i.

Remark. If Njj # O, then, multiplying Xi and Hj by 2/Njji, it can be arranged that Nji =

Proposition 5.1. 1) In order that in a finite-dimensional Lie algebra @& there exist a
system of Weyl generators it is necessary and sufficient that & be semisimple. 2) Suppose
that the Lie algebra ® is semisimple and {Xj, Yij, Hij} and {XU,?P f?ﬂ,ieﬂ,...,rL jeﬂ,...,;}
are Weyl generators of it. Then a) T = r; b) there exist an inner automorphism ¢:@-@
and a permutation 0€S, such that X,=9(Xow), Yi=2¥ew), H,=9(Hsu) for any i. Here ¢
and ¢ are unique.

We recall that an automorphism of @ is inner if it can be represented in the form of a
product of a finite number of automorphisms of the form exp (ada), aé€. If € is realized
as a subalgebra of Mat (n,C) and G is a connected Lie subgroup in GL (n, C) with Lie algebra
@, then inner automorphisms of @ are automorphisms of the form x—TxT-}, T€G.

To prove Proposition 5.1 it suffices to use Theorem 1 and Lemma 16 of the work [21] and
also Proposition 1 of Sec. 4, Theorem 1 of Sec. 4, and Proposition 5 of Sec. 5 of Chap. 8 of
the book [4].

Let € be a semisimple Lie algebra. In it we choose a system of Weyl generators Xj, Yj,
Hi, 1 € i € r. The number r is called the rank of € [this definition is correct by asser-
tion 2) of Proposition 5.1]. The matrix (Nij) [see formulas (5.3) and (5.4)] is called the
Cartan matrix of the algebra @. Assertion 2) of Proposition 5.1 shows that up to simul-
taneous permutation of rows and columns this matrix does not depend on the choice of the sys-
tem of Weyl generators.

Proposition 5.2. 1) N(,ez- 2) If 1 = j, then Nuéo, N”Niiss- 3) N”=0 #N“=0-

A proof is given, for example, in part 3 of the book [40].

Proposition 5.3. If i 2 j, then
(@d X )'~™1i. X ;= (adY )'~NuiY ;=0. (5.5)

2) Equalities (5.1)-(5.5) form a complete system of relations between the elements Xj, Y;, Hi.
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A proof is given, for example, in [4], Chap. 8, Sec. 4, Proposition 4.
COROLLARY. A semisimple Lie algebra is uniquely determined by its Cartan matrix.

Instead of writing out the Cartan matrix, it is customary to present the corresponding
Dynkin scheme — a graph with vertices c¢i,...,cy such that 1) the number of segments connect-~
ing cj and cj, i # j is equal to NjjNji; 2) these segments are equipped with an arrow pointing
to ¢; if and only if Njj < Nji. From Proposition 5.2 and the equality Njj = 2 it follows that
the Cartan matrix can be uniquely recovered from the Dynkin scheme.

Proposition 5.4. 1) The Dynkin schemes of simple Lie algebras are those and only those
graphs presented in Table 1. 2) Let @,..., &, be simple Lie algebras. Then the Dynkin
schemes of the algebra @&;x ... X®,; is the disjoint union of the Dynkin schemes of the alge-
bras @y,...,8,

Assertion 1) is proved in Sec. 4, Chap. 6 of the book [3], while assertion 2) follows
from the definitions (as a system of Weyl generators of the algebra &,X...X®, it is pos-
sible to take the union of the systems of Weyl generators of the algebras &, ..., @,).

Remark. When we speak, say, of a Lie algebra of type Eg¢ we have in mind the simple Lie
algebra whose Dynkin scheme has type Eg¢. The index 6 designates the number of vertices of
the Dynkin scheme, and hence the rank of the algebra is equal to 6.

Examples of simple Lie algebras are the algebras sl(n) for n=2, o(2n+1) for nz=1, sp(2n)
for n 2 1, and 0(2n) for n 2 3 which are usually called the classical Lie algebras (see Ap-
pendix 1). Their Dynkin schemes are An-1, Bp, Cn, and Dp, respectively. Since A; = B = Ci,
B, = C2, A3 = D3, it follows that sI(2)=0(3)=2p(2), 0(5)=9p(4), 21(4) =0(6) . We note further that
0(4) is a semisimple Lie algebra isomorphic to sI(2)Xsl(2) (see Appendix 1).

We recall the structure of the group of automorphisms of a semisimple Lie algebra @&,
We denote by Aut!® the set of inner automorphisms of @. Aut'® is a normal subgroup of Aut@.
Let T be the Dynkin scheme of @, z€Autl', and let T{(c)=<¢Cqn . Then there exists exactly one
automorphism 9,.:8—+8 such that @ (X)=Xun, 9V )=Vcn, 9 (H)=Hsy (Lhe existence of @,
follows from Proposition 5.3). We call ¢, the automorphism & induced by 1. It follows
from assertion 2) of Proposition 5.1 that any automorphism of & can uniquely be represented
in the form f.p, , where fGAut*®, tcAutl' . Therefore, Aut &/Autt@=Autl'. If PeAut® and
Y= foP,, whete fEAutd'®, 16Autl, then we call T the automorphism of ' determined by the auto-
morphism V.

In conclusion we note that with each system of Weyl generators of a semisimple Lie alge-
bra @ there are connected three subalgebras in @, which will play an important role in Sec.
6: the Cartan subalgebra Z, generated by all elements Hj, the Borel subalgebra §, generated
by all elements Hi and Yj, and also the subalgebra n, generated by all elements Y;. It is
easy to see that a) § is commutative; b) the elements Hj form a basis in § ; c) H=$D.

If for the classical Lie algebras we choose the Weyl genmerators as done in Appendix 1, then
® 1is the set of diagonal matrices in @&, § is the set of upper triangular matrices in 8,
and n is the set of matrices in § with zeros on the main diagomnal.

5.2. Let % be a Lie algebra; then on %[C, ('] there is a natural structure of a Lie
algebra. If @:%—9% is an automorphism of finite order n, then we set L(¥, @) ={feA[C,
2xi .
C-lllf(ceT)$¢ (F@) LM 9 is a Lie subalgebra in %[¢, ¢Y]. :

Definition. A Kats—Moody algebra is a Lie algebra of the form L(¥, ¢), where % is a
simple Lie algebra and ¢:%—% is an automorphism of finite order.

The next result follows from results of the work [23].

Proposition 5.5. 1) If L(%, ¢;)=~L(%, ¢2), where % and %A are simple Lie algebras,
thea A =9, . 2) Let @ and @2 be automorphisms of finite order of a simple Lie algebra %.
In order that L(¥, gi)=~=L(%, g2} it is necessary and sufficient that the automorphisms of the
Dynkin scheme 9%, determined by ¢, and @ be conjugate.

We note that the group of automoxphisms of the Dynkin scheme of a simple Lie algebra
(see Table 1) either has order 1 or 2 or is isomorphic to S3 (the last possibility is real-
ized only in the case of Dy). Therefore, the conjugacy class of an automorphism of the Dyn-
kin scheme is uniquely determined by its order. If % has, say, type Es and @EAut¥ deter-
mines an automorphism of the Dynkin scheme of order 2, then it is said that the algebra L%, 9)
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has type Eg ). The Kats—Moody algebras of types Bél), Cél), Ar(lk), Dék) (k = 1, 2) are called

classical. Their explicit realizations are presented in Appendix 2.

Proposition 5.5 shows that all Kats—Moody algebras are exhausted by algebras of the form
L(%, ¢) , where ¢:%->% is induced by an automorphism of the Dynkin scheme of the algebra %
For our purposes, however, it is more convenient to choose as representers of the cosets of
the group Aut¥ by the subgroup Aut®® not the automorphisms induced by automorphisms of the
Dynkin scheme but the so~called Coxeter automorphisms.

Definition. An automorphism C of a simple Lie algebra ¢ is called a Coxeter auto-

defl
morphism if 1) the algebra U ={xf¥Y|Cx=x} is Abelian; Z) among all automorphisms QeC-Autoy
such that the algebra UY® 1is Abelian C has least order.

It follows from the results of (23] that for amy automorphism T of the Dynkin scheme %
in the corresponding coset Ky of the group Aut¥ by the subgroup Aut®Y there exists a
Coxeter automorphism C, and C is unique up to conjugation with inner automorphisms. The
order h of the automorphism C is called the Coxeter number of the algebra L (¥, C). The Coxeter
numbers of Kats—Moody algebras are presented in Table 3 (see part 5.6) takem from [57]. From
the results of [23] it is possible to extract the following means of constructing C if h is
known. In 9 we consider a canonical system of generators {Xj, Y3, Hj}, 1< j<r. Suppose
that T takes the j-th vertex of the Dynkin scheme into a vertex with index o(j). Then the
action of C on the generators can be given by the formulas C(X)=e""Xy iy, C¥ )=e Y o5,
C{#3) = Hp(3)-

Let C be a Coxeter automorphism of a simple Lie algebra 9, and let w = eZ"i/h, where
def
h is the Coxeter number. We set G=L (¥, C). We have G=}Qé~)9{){j_,where U ={xe%|{Cx=w/x}. Ve
z
set (V=UYL). It is clear that G=_Eé>ZGi, [G/, G} <=GH*, so that G is a graded Lie algebra.
J

According to the definition of the Coxeter automorphism, the algebra G0=19%, is Abelian. The

del :
number r=dimG® we call the rank of the Kats—Moody algebra G.

Proposition 5.6. 1) There exist elements &y,..., &6G", f¢...., f,6G7, hoy.... B,6G° such that
a) egy...,er form a basis in Gl, fg,-..4f¢r form a basis in G, hg,...,hy generate ¢%; b) the
following relations hold:

[A;: #;]=0, (5.6)
[e:, f]]=61jhi1 : (5.7)
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(24 el=A, e, (5.8)
(74, fj]=—Aijfjv (5.9)

where Ajj = 2 for all i. 2) The elements ej, fi, hj are uniquely determined up to enumera-
tion and transformations of the form &; = cexp (ada)ej, £ = c"texp (ada)fj, hj = h;, where

c6C, ag@Go.

A proof is given at the beginning of part 4 of the work [23]. We note that if concrete
% and C are given, then it is not hard to find the explicit form of the elements ej, f£i, hi
(ei and f; are eigenvectors of the operators ade, acG?).

1

The matrix (Ajj) is called the Cartan matrix of the algebra G. It is proved in part 5
of the work [23] that this matrix possesses the following properties.

Proposition 5.7. 1) Ay€Z. 2) If i # j, then Ajj S 0, AjjAji S 4. 3) Aj) = 0 &=
Aji = 0. 4) The space of solutions of the system of equations

‘ (5.10
EA”xl-——-O, j=0, eeey Iy )
1=0

is one-dimensional.

From the results of part 4 of the work [23] and Proposition 13 of the work [21] we ob-
tain the following results.

Proposition 5.8. 1) The elements ej, f£fj, hi, 0 € 1 € r generate G. 2) If i # j, then

(ade)' " ¢,;=(ad f,)'~M f,=0. (5.11)

3) Let (0o,...,ar) be a nonzero solution of the system (5.10). Then

20‘:,h,=0. (5'12)

im0

4) Equalities (5.6)-(5.9), (5.11), (5.12) form a complete system of relations between the
elements ej, £, hj.

We call the system of generators {ej, f£i, hi} of the algebra G canonical.

Remark 1. Assertion 1) of Proposition 5.8 means that G is generated as a space by mul-
tiple commutators of the elements ej, £i, hj. Using the Jacobi identity and relations (5.6)-—
(5.9), from this it is not hard to deduce that G is generated as a vector space by elements
of the form [eil,...,ein], [fil,...,fin] (n =1, 2,...) and hj. It is clear that for any
neEN the space GM is generated by elements of the form [ej,,...,ei,] and G " by elements of
the form [fil:°--sfin]-

-~ ~
Remark 2. Frequently not the algebra G but the algebra G with generators ej, fi, hj and
defining relations (5.6)-(5.9), (5.11) is called the Kats—Moody algebra. The algebra G has

r
a one—-dimensional center generated by the element :thh,, and its factor by the center is
=0
isomorphic to G. We note that the most interesting applications of Kats—Moody algebras (see
[22, 31, 47, 48, 56, 66, 68]) are connected with G rather than G.

The concept of the Dynkin scheme for a Kats—Moody algebra is introduced in the same way
as for semisimple Lie algebras. It follows from Proposition 5.7 that the Cartan matrix can
be uniquely recovered from the Dynkin scheme of a Kats—Moody algebra and thus so can the al-
gebra itself. The Dynkin schemes of Kats—Moody algebras are presented in Table 2 borrowed
from [23].

Let G be a Kats—Moody algebra with canonical generators ej, fi, hj, 0 < i S r.

Proposition 5.9. Let Sc{0, 1,..., r} be a proper subset. Then the subalgebra gener-
ated by the elements e, [, hi, i€S, is semisimple, and these elements themselves are Weyl gen-
erators.

Proof. Comparing Tables 1 and 2, it is not hard to see that if from the Dynkin scheme
of a Kats—Moody algebrapart of the vertices and adjacent segments are removed, then a Dynkin
scheme of a semissimple Lie algebra is obtained. m
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CORQOLLARY. In relation (5.12) aj # 0 for all i.

Proof. The complementary minors of the diagonal elements of the matrix (Aij) are non-
zero, since they are the determinants of the Cartan matrix of semisimple Lie algebras. W™

The gradation in G that we have so far considered is called canonical. Moreover, to
each vertex of the Dynkin scheme of G there corresponds a gradation G=/(EDZG, called a stan-
dard gradation. The standard gradation corresponding to a vertex cp is characterized by the
following property: €,6G), fm €G_,, and the remaining canonical generators belong to Gp.

Proposition 5.10. Let G=%ch be the standard gradation corresponding to the vertex
F

cm of the Dynkin scheme. Then 1) if i > 0, then Gicz G/. 2) If i < 0, then Gicz Gi. 3)

i>0 j<v
Go 1s a semisimple Lie algebra with Weyl generators ej, fi, hi, 1 # m. 4) The algebra Gy

Z G/ 1s generated by the elements ej, 1 # m. 5) The algebra GOHEG/ is generated by the
7>0 j<0

elements f;, i = m.

Proof. It is clear that for any n€éN the space G, (respectively, G—_p) is generated by
elements of the form [ej,,...,eji] (respectively, [fjl,...,fjk]), where m occurs among the
numbers jj3,...,jk Precisely n times. Gp is generated by elements of the form [ejl,...,ejk],
[fj,5+++5£§ ), where j1 # m,...,jx # m and by the elements hj. From this we obtain asser-
tions 1), 2), 4), and 5). To prove 3) it is necessary to use Proposition 5.9 and further
note that because of Proposition 5.9 hy can be expressed in terms of the elements hj, jZm
from relation (5.12). =

Remark. It follows from assertion 3) of Proposition 5.10 that the Dynkin scheme of G,
is obtained from the Dynkin scheme of G by deleting the vertex cp and the edge contiguous
to it. ’

5.3. If o is an automorphism of finite order of a simple Lie algebra 9 such that
¢ '-0 is an inner automorphism, then, according to Proposition 5.5, there exists an isomor-
phism L(¥, C)SL(¥,0). We shall indicate the explicit form of this isomorphism in the case
where o=C.e¢**r, xG(G% We recall that

2ary
L%, 0)= {fe%[x, }r‘]lf(he n )=c(f(k))}, (5.13)

where n is the order of 0. We make the substitution A=e 7. We denote by T the algebra of

k
functions g:C—% of the form g(u)=21e"f"-'a,~, where a,6C, v6%. Then
=

L(%, 0)={g€T |g(u+1)=0 (g(2))}. (5.14)
e i :
In exactly the same way L (%, C)L—f{fe'?ll 6 &1\ f (C,e "l) = C(f ()} ={g€T | g(u+1)=C (g (r))}, where

iu
{—e . It is not hard to verify that the mapping 7:T - T given by the formula

-~ - def :
(=8 g(u)=eng(u), (5.15)
isomorphically maps L(¥, C) onto L(%, o).
Proposition 5.11. For each vertex cp of the Dynkin scheme of G there exists exactly
one element x€G° possessing the following property: if we set op = C-e%4X and define 1 by

formula (5.15), then T takes the standard gradation of the algebra G=L(¥, C), corresponding
to the vertex cp into a gradation of the algebra L(%, 0») in powers of A.

Proof. Since the elements hj, j # m form a basis in G®, the desired element x can be

represented in the form x=2 x;k;, x€C. We recall that ey= el = e, exp (2:—1"), Se=J =
J¥em .

~ 2 -~ =
,f,,exp(—-—f—“). where €, fi6d. The element X possesses the property that exp (u-ad x)ek does
‘not depend on u for any k # m. From this we obtain the system
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,§ Ajpx;= —Z . ogk<r, k#m, (5.16)

for determining Xj - Since this system has exactly one solution (see the proof of the corol-
lary to Proposition 5.9), the uniqueness of x has been proved. We shall now prove that the

element x=2 x;h;, defined from the system (5.16) is the desired one. We set op = c-e2dX apg
Jdem

define L(¥%, 0,) by formula (5.14) [it is not possible to define L(¥, on) by formula (5.13)

until it has been proved that op has finite order]. By the construction of x we have t(ej) =

&j for j # m. Moreover, it is easy to see that t(f;) = fj for j = m, t(hj) = hj for all j,

and there exists ¢€C such that t(ey) = exp (cu)ép, T{fp) = exp (—cu)fy. We shall show that

¢ has the form 2—#, neN. For any y€EG° the element z = y-ch belongs to Gh. Since z lies in

FAl

the subalgebra generated by the elements ej, it follows that t(z) lies in the subalgebra
k

generated by the elements t(ej) and hence has the form Zexp(lcu)-v,, v,6%. On the other hand,
=0

t(2)=2=y-exp(2niu). Therefore, c has the form 2—;—“, neN. It is not hard to verify that op X

(&m) = eC-&p, opl&;) = g; for j # m, op(fm) = e Cfy, om(fj) = fj for j # m, op(hj) = hj for
all j. From this it follows that oy has order n. Since 1:(e,,,)=exp(2-%-'f) em=MAm T(fm)=A"'Fm

and the images of the remaining elements ej, fj, hj under the mapping T do not depend on A,
it follows that T takes the standard gradation L(¥, C), corresponding to the vertex cy into
the gradation of L(%, 0,) in powers of A. ®

COROLLARY. dimGj < .

The automorphism oy = C-ed3dX  yhere x is the same as in Proposition 5.11, we shall call
the standard automorphism corresponding to the vertex cp, while the realization of G in the
form L(¥, 0,) we call the standard realization.

We make several remarks concerning a practical way to find the standard realization G.
If ¥ is realized as a subalgebra in Mat (k, C), then exp(u-adx)L(%, C)=e“L(%,C)e™. If, more-

over, G°CDiag, then eyx is a diagonal matrix of the form diag(l™,..., {"%) (we recall that

ajn
€=eT). Thus, L({®, 0,) =U QL& CYU' (), where U ({)=diag(lm,..., C%), and the numbers ni,...,
ng can be found uniquely from the following conditions: 1) the matrix U(z)e;U™1(z) does mnot
depend on ¢ for i = m; 2) U (C)6H , where H-=={e¥|y€G%. The automorphism oy is given by the

: ( =i R iy —1

formula G, (X)=U(e" }-C(X)-U(e ") . Finally, A and z, figuring in the definitions of L(¥%, o,)
and L(¥, C), are connected by the relation A = th/n, where n is the order of op.

5.4. The height of the Kats—Moody algebra L (%, ¢) is the order of the automorphism of
the Dynkin scheme of %, defined by @. This subsection is devoted to Kats—Moody algebras of
height 1.

Let % be a simple Lie algebra with Weyl generators Xj, Yi, Hi, i = 1,...,r. It is easy
to see that on ¥ there exists exactly one gradation &I=j%zw such that X 6%, Y%, H,cH0

for all i€{l,...,r}. We note that Y coincides with the Cartan subalgebra $ (see the end of
part 5.1). We set S={j6Z|W+0}. The largest and least elements of S we denote by k and R
respectively.

Proposition 5.12. 1) l=—4k; 2) dim¥*=dim%U*=1; 3) there exist nonzero elements Xq€
Y-k, Ve, HEH such that [Xo, Yol = Ho, [Ho, Xo] = 2Xo, [Ho, Yo] = —2Yo; 4) the center of
the algebra n, generated by the elements Yi,...,Yr is equal to Y%,

This proposition follows from the theorem on the existence of a maximal root (see [3],
Chap. 6, Sec. 1, Proposition 25).

The number h = k + 1 is called the Coxeter number of the algebra %.

def .
We set C=exp (Ez_l.ada) , where the element @69, is such that [a, Xj] = Xj, la, YJ'] =

—¥;, 1 € j € r (the existence and uniqueness of a follow from the nondegeneracy of the Cartan
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matrix of ¥ ). We define elements e;, f;, A,6U[E, &' " by the formulas e,=XE f,=V !, h=H,,
0<i<r. Itis easy to see that e, f;, B,€L(%,C) for all i€0,..., r}.

Proposition 5.13. 1) The automorphism C is a Coxeter automorphism (in particular, the
Coxeter number of Kats-—Moody algebra of height 1 is equal to the Coxeter number of the corre-
sponding simple Lie algebra). 2) The elements ej, f£i, hj, 0 € i € r are canonical generators
of L(%, C).

This proposition is essentially proved in [21] in the proof of Lemma 22.

Suppose that the canonical generators of a Kats—Moody algebra G of height 1 are chosen
as in Proposition 5.13. Then the vertex of the Dynkin scheme of G having index 0 is called
special. It is clear that if the special vertex and the edge contiguous to it are eliminated
from the Dynkin scheme of G, then the Dynkin scheme of the corresponding simple Lie algebra
is obtained. In Table 2 the special vertices of the Dynkin scheme of the Kats-Moody algebras
of height 1 are represented by black circles.

Proposition 5.14. The standard automorphism of ¥ (see part 5.3) corresponding to a
special vertex 1s the identity automorphism.

Proof. We recall (see the proof of Proposition 5.11) that the standard automorphism

corresponding to a special vertex is equal to C-e3dX  where x€9 is found from the following
2nin

condition: e#2dx.¢ % X, does not depend on u for all k # 0. Since [a, Xk] = Xk for all k = 0,

. 2ni
it follows that Xx=———a. " |

Thus, the standard realization of a Kats—Moody algebra of height 1 corresponding to a
special vertex is %[A, A7 In correspondence with part 5.3, the isomorphism =:L(¥, C)—
%[A, A1] 1s given by the formula t(f) = f, where ]’(k)=exp(—lnc-ada)-f((;), {=Al/*  The canoni-
cal generators of U[A, A7Y are AKXy AW, Hy X, Vi, H, 1<i<r , while the canonical gradation
of %[A, A7l has the form A[A, A= @ G}, where G'= @ Wit
Gz JF+kh=1

5.5, Let % be a semisimple Lie algebra of rank r; let Xj, wherei=1,..., r, be the ele-
ments of the system of Weyl generators of ¥ ; let lel%Dz?IIf be the gradation of % introduced

. r
in part 5.4. We set /= Y X,. It is clear that the operator ad I maps U/ into WL,
i p
i=1

Proposition 5.15. If j € 0, then the operator ad/:%/ 9% 1is injective. If j 2 —1,
then the operator ad/:%/ —»9/*! 1is surjective.

-A proof is given in [58].

Definition. The number j is called the exponent of the algebra Y% if the operator adI:
919/ is not surjective. The difference dimU~/—dim¥/! is called the multiplicity of the
exponent j.

It is shown in [58] that the definition of the exponent presented above coincides with
the definition of Bourbaki [3]. It follows from Proposition 5.15 that if the algebra % is

simple, then all exponents belong to the segment [1, h — 1], where h is the Coxeter number of
Y. We note that the number of all exponents (counting multiplicity) is equal to the rank of

o indeed, N (dim¥-/—dim¥~/) = dimU0=r.
750
5.6. Let G be a Kats—Moody algebra with canonical generators ej, fi, hi, 0 € 1 € r. We
r
set A=2 e;, 3=Kerad A= {u€G ||\, u]=0}. The next result is important for our subsequent pur-
i=0
poses.

Proposition 5.16. 1) The algebra 8 is commutative. 2) G = 3®ImadA.

A proof is given in [57] (Proposition 3.8).

As B. A. Magadeev has informed us, the following converse assertion also holds: if G is
a contragradient Lie algebra in the sense of [21] and G=KeradA®ImadA, then G is the direct
product of a finite number of Kats—Moody algebras.
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Let G=/C2-:_DZGI be the canonical gradation. It is clear that 8= %2311 , where ¥=80G.
. J -

It is easy to see that =0 , and for any j, dim3*"=dimg/, where h is the Coxeter number
of G.

Definition. The number J€[l,2—1] is called the exponent of the algebra G if 8/+0.
The dimension of % 1is called the multiplicity of the exponent j.

The exponents of Kats—Moody algebras are presented in Table 3. We note that only
algebras of type Dgé have an exponent of multiplicity greater than 1 (in this case 2n — 1
is an exponent of multiplicity 2). It is known (see [57], Proposition 3.7) that the expo-~
nents of a Kats—Moody algebra of height 1 coincide with the exponents of the corresponding
simple Lie algebra. Therefore, the exponents of simple Lie algebras can also be found from
Table 3.

We note (see Table 3) that j is an exponent of G if and only if h — j is an exponent,
and the multiplicities of these exponents coincide. In other words, dimg'=dim8' for any
i6Z. This equality can also be derived from Proposition 5.20 below.

Proposition 5.17. 1If u€3 and [u, "] = 0, then u = O.

Proof. By hypothesis [u, A] = 0, [u, G%) = 0. It is not hard to see that the elements
A and hj, O < i € r generate the algebra 800'*. Therefore, [u, GK] = 0 for k > 0. We recall

25ti k
that G=L (%, C)=k%29lk(." , where Yp,={xcU|Cx=e * x} . Here G*=UL* . Thus, [z(),%]=0 for

k 2 0. Since 91=hé;2[k , it follows that [#(§), ¥]=0. It remains to note that the center of
Re=

% is equal to zero, since the algebra 9 is simple. ®

5.7. This subsection is devoted to invariant bilinear forms on semisimple Lie algebras
and Kats—Moody algebras. -

We recall that the Killing form on a finite-dimensional Lie algebra % is defined by the
formula (%, y)X = tr (ad x-ady). It is easy to see that this form is invariant and symmetric.

Proposition 5.18. 1) A finite~dimensional Lie algebra is semisimple if and only if the
Killing form on it is nondegenerate. 2) Let ¥=% X...X ¥, ,where %,..., %, are simple Lie

n
algebras. Then any invariant bilinear form on ¥ has the form (x, y)=2 ¢; (% Y)x, ¢€C, where
{mm]
x; and yj are the components of x and y in %,. In particular, any invariant bilinear form on
¥ is symmetric.

Assertion 1) is proved, for example, in [2] (Chap. 1, Sec. 6, Theorem 1). Concerning
the proof of 2) see Exercise 18 in Sec. 6, Chap. 1 of the book [2].

Proposition 5.19. Let % be a semisimple Lie algebra on which a nondegenerate invariant
bilinear form has been fixed. Let § b, # be the same as at the end of part 5.1, and let &
be the same as in part 5.4. Then 1) if xe¥, yé%* j+k+0, then (x, y) = 0; 2) on § the bi-
linear form is nondegenerate; 3) the orthogonal complement of b is equal to n.

Proof. It is easy to show that there exists an element AgH such that [h, Xij] = Xi,
[h, Y;] = —Y; for all ig{l,...,r}. Then [h, x] = jx if x€W. If x€W, ye¥*,. then (j + k) (x,
yv) = ([h, x], y) + (x, [h, y]) = 0. Assertion 1) has been proved. It implies assertions
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i = = = !,
2) and 3), since =AU b jezow, n goﬂl B
Let G=€;)G, be a graded lLie algebra. It is said that a bilinear form(,) on G is coor-

dinated with the gradation if (x, y) = 0 for x€G., y€G,, k+1+0.

Proposition 5.20. On a Kats—Moody algebra there exists a nondegenerate, symmetric, bi-
linear form which is unique up to a factor and is coordinated with the canonical gradation.
This form is also coordinated with the standard gradation.

Proof. Let G=L (%, C), where % is a simple Lie algebra and C is the Coxeter automor-
phism. On ¥ we choose a nonzero, invariant, bilinear form. On G we define a bilinear form

B by the formula B («, 'v)=2 (w;, _)) , where tz=2 7% e v=25v,C/, u; 2,69 It is easy to see that
{ 1 1
the form B is the desired one. Noting that B(u, v) is the free term of (u(z), v(z)) and
using (5.15), we find that in the standard rea}ization of the algebra C (see part 5.3) the
form B has the form B(Zuﬂ»'. 2’017&‘)=2(u,, v_) . Therefore, B is coordinated with the stan-—
1] i {
dard gradation. The uniqueness of the form follows from the lack of nontrivial, homogeneous
ideals in G which is proved in [23] (see Exercise 18 in Sec. 6, Chap. 1 of the book [2]).
6. ANALOGOUS OF THE KdV EQUATION FOR KATS—MOODY ALGEBRAS

6.1. Let G be a Kats—Moody algebra, let ej, fj, hj be its canonical generators (i =
0,...,r), and let G=@@/ be the canonical gradation (we recall that e,G', f,6G!, h,EGY).
J

We fix a vertex cp of the Dynkin scheme of G. Let G=g@U, be the standard gradation
/.

. B . def def def def
corresponding to this vertex. We set €=G, $H=00, b=00n2 G, n=GonzG‘. We recall (see
i<0 {<0

Proposition 5.10) that € is a semisimple Lie algebra, $ and b are its Cartan and Borel sub-

algebras, and ej, fj, hi, where 1 = 0,...,m— 1, m + 1,...,r, are the Weyl generators of the

algebra €. Let €=g@6’ be the gradation of €, corresponding to this choice of generators.
i

Then $=89 b=gC€.. For any i > 0 we set b,=@E! Thus, b=g@h, $H=b, n=@h. We note that
i<0 >0 >0

[ém, 1] =0. Indeed, the algebra n is generated by elements fj, i # m which commute with ep.

We consider the operator
'§ =2 g+A (6.1)
T dx o
r
where ¢6C” (R, ¥), A=2€, . We note that the operator (3.1) considered in Sec. 3 under the
1=0

additional condition trq = 0 corresponds to the case where (=sl(£, C[A,A7!]) and cm is a
special vertex of the Dynkin scheme. All assertions of the present section constitute a
generalization of the assertions of Sec. 3 to the case of arbitrary Kats—Moody algebras.

If £ is an operator of the form (6.1) and SeC”(R, M), then the operator
=" (Q) (6.2)

also has the form (6.1). This follows from the fact that [*, b]cn [r, en]=0, [n, e]cb for
i # m. We call the transformation (6.2) a gauge transformation, and we call the operators
€ and & gauge equivalent.

It follows from Proposition 5.15 that for any i > O the operator ad I, where I::A—em,
acts from b, to b, ; injectively. For any exponent j of the algebra D (see part 5.5) we
choose a vector \subspacg V ;Cb, so that b/=[]; b, 4]®V ;. We set V=j@Vj. Since b=Vg[/,n]
and the mapping ad/:nSp 1is injective, it follows that dim V =dimb—dima=dim H=r.

Proposition 6.1. Any operator & of the form (6.1) can be uniquely represented in the
form Q= €% (9" | yhere SEC” (R, m), g =£—+‘7“"+A, g“"¢C”(R, V). Here S and q®2" are dif-

ferential polynomials in q.
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Proof. Since [S, ey] = 0, we must actually represent —d—+q+1 in the form e‘“’s(&d;—]-

q®an + 1). Let q““=2 g%, —-2 S,, where S, g"¢C™ (R, b). Equating components lying in %,
130 >0

. . d .
in the relation 3;+q+]=e""5(a— —|—q°‘“‘+1), we find that qcian + [S{+1, I] can be expressed

can .
in terms of qy ,...,ql_l, S15++.58i. Therefore, if qgan,...,qsa?, S15...,5; have already

been found, then qla and Sj;; can be found uniquely because adI is injective. ®

Thus, the choice of the space V provides a '"coordinate system" in the set of classes
of gauge equivalence.

6.2. 1In this subsection we write out equations for the class of gauge equivalence (see
part 3.1) which are naturally called generalized KdV equations

A, def
If W is a subspace of G, W=Cj)W‘, WicG!, then we set W"— @W‘ V'—HW‘ “\V‘@W'.
n l<0
The elements of W are series of the form 2 w;, w,6W! For example, 1f G=%[A, A7"] , then G =A(A)).

{m—00

Let 8, 8 be the same as in part 5.6. We set SL—-ImadA It is easy to see that gt
is the orthogonal complement of 8 relative to the scalar product on G (see Proposition 5.20).
It is clear that BJ-—CB(B‘)J- , where (8)L=3LNG".

Proposition 6.2. For any operator € of the form (6.1) there exists an element U =

def
EUn UC™(R, G) such that the operator £,=¢e"Y(2) has the form
i=

Qo=+ A+H, HEC™(R,3). (6.3)

If U and U are two such elements, then e?V.e—2U=—g3dT yhere TECT(R,3). U can be chosen in
precisely one way so that JEC”(R,(81)). The Uj are hereby differential polynomials in q.

def a
We note that C”(R, 8');HC°°(R, 3). Notation of the type C™(R,8*) and C”(R, 8} has an

. <0
analogous meaning.

Proof. Let H=2H,, HEC™ (R, 8. Equating in the relation £,=¢€2(8) the components

i=0

lying in G"i, we find that Hiy + [Uj+1, A] can be expressed in terms of Uy,...,Ui, Ho,...,Hi-21.
1t follows from Proposition 5.16 that any element gEG-! can be uniquely represented in the
form a + [b, A], where a8, b6 ')L. Therefore, knowing Ui,...,Ui, Ho,...,Hj—1, it is pos=
sible to determine U,,6C”(R, (8*")!), H,C”(R, 3" uniquely, etc. Since 3°=0 (see part 5.6),
it follows that HEC™(R, 3°).

Suppose that ﬂo——eadu(ﬁ) and @y=e»7 () have the form eadU.e -adl . eadT  yhere T= ET,,

i=t
TEC™(R,GY). We must verify that T,6C”(R, 3 ). Equating in the relation fy=e*" (@) com-
ponents lying in G~1, we see that if T, ..., T,6C”(R,8), then [A, T, 1JEC”(R,3) and hence T.€

C*(R,3"). W
For any operator £ of the form (6.1) we set Zg—{MEC”(R G)|[M, 8]1=0}.

LEMMA 6.3. Ze=e—adu(3) , where U is the same as in Propositiomn 6.2.
Proof. It suffices to show that if 9, is an operator of the form (6.3), then Zgogé.

n
Let [M, o]=0, M= Z M;, MeG! . Equating to zero the component of ¢! in M, &), we find

{—— 00

that M,EC” (R, 8%). Equating now to zero the component of G", we obtain H%M,‘=[M,l_l, A]l. Since
the left side of this equality belongs to C®(R, 3%, while the right side lies in C%(R, (3")4),
;we have E‘:i{:' =0, i.e., M,63". We then apply analogous considerations to M._Mnez&

etc.
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m
Let g= 2 g', g'€G. Since G‘:—_j%z(G‘ﬂGi), and the spaces Gj are finite-dimensional, g
n

{=-00

det def
can be represented uniquely in the form 2 g; » where g€G, We set g+=2 g g*=2g‘,
je—oa i>0 i30
def ef
g_;;g——g+, ‘i=g——g*' It is easy to see that g,—g*eén
LEMMA 6.4. Let MEZg. Then [M,, 8] and [M*, ] belong to C*(R,b).

Proof. We shall prove that [M,, 8]cC” (R, b). The fact that [M*, RI€C*(R,b) is proved
similarly. We must verify that the element [M,, 8] 1is nonpositive in the canonical gradation
and belongs to CT(R, Go). We have |M,, 8]=—[M_, 8]. The right side of this equality does
not contain positive components relative to the canonical gradation, since in this gradation

. . C d .
M_ is negative (see Proposition 5,10) and 8——;;— contains no components of degree greater

than 1. In the standard gradation the right side is nonpositive, while the left is nonnega-
tive. ®

- def
Let U be the element of Proposition 6.2. For any u€3 we set ¢(u)=e*¥(4). From the
commutativity of 8 it follows that ¢ (x) does not depend on the arbitrariness in the choice
of U. From Lemma 6.4 it follows that the relation

S=low gl (6.4)

is a self-consistent equation for gGC™(RZ2, »). Together with Eq. (6.4) we consider the equa-
tion

=1, 8, (6.5)

which is also self-consistent.

In analogy to what was done in Sec. 3, it can be proved that Eqs. (6.4) and (6.5) pre-
serve gauge equivalence and lead to the same equation for the class of gauge equivalence
which we call the generalized KdV equation corresponding to the algebra G and the vertex cp.

If an operator £ of the form (6.1) satisfies Eq. (6.4) [or Eq. (6.5)] and 8“"==3%~4—Q““4—A

is the operator of Proposition 6.1, then qCan satisfies an equation of the form ag?n==[?(qum
Ccan .
6gx ,...), which is a coordinate realization of the generalized KdV equation. An (L, A)-

. . . . can . -
pair for this equation relative to g can be constructed as in part 3.Z.

It is clear that Eq. (6.4), and hence also the generalized KdV equation, does not change
if an element of Z~ 1is added to u. Therefore, it may be assumed with no loss of generality
that u€3*.

Remark 1. We write the generalized KdV equation corresponding to an element u€3", in
the form of the system of equation

agferm dgcan

—_ can 07

5= =Fi (e =L, (6.6)
where i runs through the set of exponents of the algebra &, and q“®" and q%an are the same as
in the proof of Proposition 6.1. It can be shown that the polynomial Fj is homogeneous of

degree i + 1 + n if it is assumed that angan/ij has degree of homogeneity i + j + 1. From
this it follows that the order of the system (6.6) does not exceed n + s, where s is the
difference between the largest and least exponents of the algebra ® . Generally speaking,
the order of the system (6.6) depends on the choice of q¢am,

Remark 2. If two vertices of the Dynkin scheme of G go over into one another under an
automorphism of this scheme, then the series of generalized KdV equations corresponding to
them coincide.

6.3. The following assertions are proved in the same ways as the analogous assertions
in Sec. 1.

Proposition 6.5. We consider the equations %,—:[‘P(u)*,ﬁ] and i;.i‘_=[cp(£)*, 8], where u, ues’.
. . a? a? . ..
Then the mixed derivatives Eﬁé- and 7ﬂ%p computed by means of these equations coincide.
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An analogous assertion holds also for the equatioms %=[§>(u)", ¢] and %_[Cp(u)‘* g. |

Proposition 6.6. ©Let H be the same as in Proposition 6.2, ff:::gffh H&C™(R,3). Then
{=1
Hi are densities of conservation laws for Eqs. (6.4) and (6.5). Up to total derivatives
these densities do not depend on the arbitrariness in the choice of U (see Proposition 6.2).H

Remark 1. Since nc(G-, the densities Hi are gauge-invariant up to total derivatives
. . d . . .
(i.e., if the operator .2=a+q+A is replaced by e295(g), S(x)er, then a total derivative of

a differential polynemial in q and S is added in Hj). From this it follows easily that it is
possible to add a total derivative to Hj in such a way that a gauge-invariant differential
polynomial in q is obtained as a result.

Remark 2. According to part 5.6, Hi # O only if the remainder on dividing i by the
Coxeter number of G is an exponent of this algebra; the number of scalar conservation laws
corresponding to this exponent is equal to its multiplicity. Later (see Proposition 6.12)
it will be proved that the densities of the conservation laws obtained are linearly indepen-
dent modulo total derivatives.

Remark 3. It is not hard to show that if the element U (see Proposition 6.2) is normal-
ized by the condition U&C=(R, (3')7), then the Hi is a homogeneous (in the sense indicated at
the end of part 6.2) differential polynomial in q of degree of homogeneity i + 1.

6.4. 1In this subsection we consider generalizations of the modified KdV equation.

LEMMA 6.7. The relation (6.4) admits the reduction
53=—+q+A geC* (R, 9). (6.7)

Proof. Let £ be an operator of the form (6.7), and let MEZy. It must be shown that
[M*, RIEC” (R, §)=C™ (R, G9). We have [M*, &[=—[M",8]. The left side of this equality does not
contain components that are negative relative to the canonical gradation, while the right
contains none that are positive. ®

For any u€3* Eq. (6.4), where & has the form (6.7), we call the generalized modified
KdV equation corresponding to the algebra G (it does not depend on the choice of the vertex
Cm, Since it is defined in terms of the canonical gradation).

The mapping p assigning to each operator & of the form (6.7) its class of gauge equiv-
alence we call a generalized Miura mapping. It is clear that p takes solutions of the gen-
eralized mKdV into solutions of the corresponding generalized KdV.

It is obvious (see Proposition 6.6) that Hj are densities of conservation laws for gen-
eralized mKdV. It is not hard to verify that with a suitable normalization of U (see Remark
3 of the preceding subsection) Hj is a homogeneous differential polynomial in g€C~(R, §) of
degree of homogeneity i + 1 if it is assumed that degq(J) =3 + 1.

Proposition 6.8. Let u€3*, n>0. Then the corresponding generalized mKdV has the form
(i

has degree of homogeneity j + 1, then f is

=z f(q,--,q”’”) If it is assumed that ¢
(n-1)

i?
a homogeneous polynomial of degree n. Its part linear in q is equal to (—ad )~ [u,q

1.

We mention that (—ad A)"® here and below is considered as an operator on 3 (it follows
from Prop051t10n 5.16 that the operator ad A acts bijectively on 8L ). The correctness of the
expression (—ad A)™R[u, q( )] can be verified as follows Since 8°=0 (see part 5.6), it
follows that $C8%. 0On the other hand, [adu, ad A] = 0, and hence[u,SLRZBL . Thus,[u,bk:Bl,
so that the expression (—ad A)7%[u, q(n‘l)] makes sense.

Proof. Let ¢4 2 A, AEC™(R,GY). Equating in (6.4) the components in G? and using
the commutativity of G°, we obtain %%__——i% A, 1t remains to prove that Ap is a homogeneous

differential polynomial in q of degree n and to find its linear part. This is done in the
same way as in the proof of Proposition 1.4. ®

Proposition 6.9. The generalized mKdV and KdV corresponding to a nonzero element wu€3+,
are nontrivial,
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By definition, nontriviality of the generalized mKdV means that its right side as a dif-
ferential polynomial in q is not equal to zero. Nontriviality of the generalized KdV means
that if this equation is considered as an equation for q®@R1, then its right side is nonzero.

Proof. In the modified case it suffices to use Propositions 6.8 and 5.17. We shall now
show that triviality of the generalized KdV implies triviality of the modified equation. We
represent the operator & in Eq. (6.4) in the form 8=¢%95(8%") (see Proposition 6.1). Sup~

pose that dgdctan =0. Then %=[R, g]_—_[R,—d‘a--}-I—i-q], where R is a differential polynomial in
q with values in =1, Suppose now that ¢6C”(R, $). Then 42 6C™(R, ) (see Lemma 6.7). There-
dt

fore, P([R,dix+1—|—q])=0, where P is the projector b-n such that KerP=$§. We rewrite

the equality obtained in the form
dR
2 =PIR. ID)+IR. q] (6.8)

We suppose that as a differential polynomial in q [where ¢(x)€$ ] R has order k, i.e., R de-
pends on q(k) but not on q(k+1), q(k+2) | etc. Then the left side of (6.8) has order k + 1,
while the right side has order no more than k. Therefore, R does not depend on q. From
this and (6.8) it follows without difficulty that R = 0, i.e., the generalized mKdV is triv-
ial contrary to what has been proved. ®

We note that together with the generalized modified and unmodified KdV equations it
would be possible to consider a "partially modified" equation corresponding to an arbitrary
proper subset S of the set of vertices of the Dynkin scheme. For this in the definition of
the unmodified equation it is necessary to replace n and b by algebras n, and b, where n,
is generated by elements fj corresponding to the vertices in S and b,df=p,D§H The modified
(respectively, unmodified) equation is obtained if S = ¢ (respectively, S consists of all
vertices except one).

6.5. The remainder of the section is devoted to the Hamiltonian formalism for general-
ized KdV equations (including modified equations). In this subsection we define the corre-
sponding Hamiltonian manifolds and in the following subsection we prove that the generalized
mKdV and KdV are Hamiltonian. In the case of the unmodified equation the manifold on which
it is necessary to introduce a Hamiltonian structure is the set of equivalence classes of

operators € of the form ;;_{-q-{-A, geC”(R/Z,%), but it can equally well be taken to be the
set of equivalence classes of operators £ of the form Td;—l-q—i-l (see the beginning of the

proof of Proposition 6.1). 1In the modified case the manifold on which it is necessary to
introduce a Hamiltonian structure is C%(R/3, §). Thus, both manifolds are defined in terms
of the semisimple algebra &, and not the Kats—Moody algebra G. Therefore, in the present
subsection we shall assume that @ 1is an arbitrary semisimple Lie algebra (not related to
any Kats—Moody algebra).

Thus, let & be a semisimple Lie algebra with Weyl generators Xj, Yi, Hi, 1 € i € r.
We denote by n and $ , as always, the subalgebras generated by the elements Y;,...,Y¥r and

r
Hi,...,Hr, respectively. We set b=§5H@", [=2 X, We consider operators &£ of the form
=1

,di__}_q_{_I, géC” (R/Z, b). We call two such operators &£ and 2 gauge equivalent if Q=e25(Q) ,
X

where SEC” (R/Z,%). It is clear that Proposition 6.1 remains in force if £ 1is replaced by
% . We denote by  (6) the set of classes of gauge equivalence of the operators £. We call
the mapping w:C”(R/Z, )X (8), assigning to a function ¢¢C”(R/Z, H) the equivalence class of
the operator d/dx + q + I the Miura transformation.

On 8 we fix a nondegenerate, invariant, bilinear form (according to Proposition 5.18,
this form is always symmetric). We extend it to a bilinear form on C* (R/Z,®) by the formula

def
@, o)= { @(0), v(x) dx, (6.9)
R)z
where u, v6C”(R/Z, ®). The gradient of a functional [: C*(R/Z, $)—-C at a point ¢€C*™ (R/Z, H)
is a function grad;/eC”(R/Z, ) such that the relation (3.15) is satisfied for any 4eC™ (R/Z,
$). The gradient is uniquely determined by this condition, since the scalar product on §
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is nondegenerate. We define a Poisson bracket on C”(R/Z,8) by formula (3.28).

As in Sec. 3, on A (®) we define two Hamiltonian structures. Here the first structure
will depend on the choice of the element e in the center of M. If I is a functiomal on K (®)
[i.e., a gauge-invariant functional on C”(R/Z,b)], then grad,! denotes any element in
C” (R/Z, @) satisfying (3.15) for all hkeC™(R/Z, b). From assertion 3) of Proposition 5.19 it
follows that grad,! is defined up to the addition of elements of C™(R/Z,n) We define the
first and second Hamiltonian structures on 4 (®) by formulas (3.16) and (3.17). Just as in
part 3.6, it can be verified that {:, -}; and {+, *}, are well defined and are coordinated
Poisson brackets. Moreover, just as in part 3.8, it can be proved that the mapping p:C>(R/Z,
})—>#(®) is Hamiltonian if the second Hamiltonian is considered on A (B)

The manifold denoted by 4, in part 3.6 will henceforth be denoted by & (sl(k)) [we are

obliged to specify this, since the algebra gl(k) is not semisimple]. In Sec. 3 J (8!(R)) was
£—1

identified with the set of differential operators of the form l)kﬁ—zazhl)', so that the first
el

and second Hamiltonian structures on . (g{(£) go over into the corresponding Gel'fand-Dikii

structures. Analogous realizations of (&) for all classical simple algebras & will be con-

structed in Sec. 8.

Remark 1. By definition, #(®) depends on the choice of Weyl generators of the algebra
® , but from assertion 2) of Proposition 5.1 it follows that this dependence is actually in-
consequential.

Remark 2. Both Hamiltonian structures on 4 (®) depend on the choice in @ of an in-
variant scalar product, while the first structure additionally depends on the choice of an
element e in the center of n. If the algebra & is simple, then e and the invariant scalar
product are uniquely determined up to multiplication by a number (see Propositions 5.12 and
5.18). Therefore, the arbitrariness in their choice leads only to multiplication of both
brackets by constants.

Remark 3. Let B=@;xX@, We assume that the scalar products on &, and @, are taken
to be the restrictions of the scalar product on @. Then the manifold 4 (8), equipped with
the second Hamiltonian structure is the direct product of the Hamiltonian manifolds (@)
and #(8:;) (on which the second structure is also introduced). The same holds for the first
structure if the elements e€@®, ¢,6@,, €68, are chosen in a coordinated way. Thus, it suffices
to study (@) in the case where @ is a simple algebra. The words "a Hamiltonian manifold M
is the direct product of Hamiltonian manifolds M; and M;" mean, by definition, that a) M as
a set is equal to M1 x Mz; b) the projections mj:M - Mj, i = 1, 2 are Hamiltonian mappings;
¢) for any functionals @, :M—C, @;:My—>C the equality {m*¢;, no*@}=0 is satisfied, where
n*@: is the functional on M defined by the formula (m*q:)(x)=q:(n:(x)).

The remainder of this subsection is devoted to an interpretation of the second Hamil-
tonian structure on 4 (®) (and, in particular, the Gel'fand—Dikii structure) in terms of
Hamiltonian reduction. This interpretation will not be used below but is of interest in it-
self.

We denote by M the set of operators of the form d/dx + g, ¢6C=(R/Z, 8), equipped with
the second Hamiltonian structure (see part 4.3). We denote by N the connected and simply
connected Lie group with Lie algebra n [if & is realized as a subalgebra of g{(k), then N =

{e‘lxﬁ@ ]. We set ﬂV C”(R/Z N), n~-—-C‘"’(R/Z n). The group N acts on M by conjugation. It

is easy to verify that this action is a Poisson action (see [1], p. 337) and the corresponding
moment mapping P: M—n* (see [1], p. 338) assigns to the operator d/dx + q the functional
l;:n—~C, given by the formula lq(£) = (£, q). According to the general scheme of Hamiltonian
reduction (see [371, p. 11; [1], pp. 339, 340), if lén*, and O, is the orbit of I under the
coadjoint action of N, then under some additional assumptions there is a natural Hamiltonian
structure on f"(OJ/ﬁV. It is said that P'(@)/N 1is obtained by reduction of M by the ac~

tion of N on I [sometimes AP‘1«9D/5V is called reduced phase space]. It is not hard to verify
that the manifold 4 (8), equlpped with the second Hamiltonian structure is obtained by reduc-

tion of M by the action of N on the functional [,;€x*, given by the formula I1(f) = (£, I).

If we now use the interpretation of M presented in part 4.4, then we obtain the follow-
ing abstract description of J (8). Suppose first that %, 1is an arbitrary Lie algebra, ¥,
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is a subalgebra of it, and A is a connected Lie group with algebra %,, [e¥,*. We then denote
by M(¥,, %,, /) the Hamiltonian manifold obtained from the reduction of %;* by the coadjoint
action of Ay on ! (we consider the Kirillov Hamiltonian structure on %* ). It is not hard

to see that the manifold 4/ (®), equipped with the second Hamiltonian structure has the form
M, %W, I): as U, it is necessary to take the algebra &, considered in part 4.4, as %, the
preimage of n under the natural mapping @3—>C°°(R/Z, ®) (we note that the algebra %, is
canonically isomorphic to X C), and define the functional [:3XC—C by the formula Z(f,

a) = (£, I) + a. All that has been said above is valid, in particular, for &=g!{(k). Thus,
we have obtained a group-theoretic interpretation of the second Hamiltonian structure of Gel'-
fand—Dikii. ’

6.6, We now return to the Kats—Moody algebra G. Let @ b , etc. be the same as in part
6.1. On G we fix a nondegenerate, symmetric, invariant, bilinear form coordinated with the
canonical gradation (see Proposition 5.20). Since this form is coordinated with the standard
gradations, its restriction to Gy (i.e., to § ) is nondegenerate. We shall define the Hamil-
tonian structures on C*(R/3, §) and A4 (B) (see part 6.5) using just this bilinear form on @ .

The bilinear form on ¢ obviously extends to G and then to C°(R/Z, G) [see formula (6.9)].
For any u€8 we define the functional #6,:C>(R/Z, b)—>C by the formula .(q)=(H(g), #), where
H{(q) is defined by formula (6.3). If u€3~, then 26,=0, and hence it may be assumed with no
loss of generality that u€3*. We note that . does not depend on the arbitrariness in the
definition of H (see Proposition 6.6). From Remark 1 following Proposition 6.6 it follows
that 56, is gauge—invariant and hence can be considered a functional on 4 (@).

Proposition 6.10. The generalized KdV corresponding to an element u€3, is the Hamil-
tonian equation corresponding to the Hamiltonian ‘46, and the second Hamiltonian structure.

Proof. Let @(u) be the same as in formula (6.5), @ (u)= E A, AEC”(R/Z, G). Exactly

{e=—o00

as in the proof of Propositiom 1.9, it can be verified that for gradd8, it is possible to
take Ag. It remains to show that {Ao, ;;+q+1‘[=|~q>(u)+, f;—#q—}—/\]. This equality follows
from Lemma 6.4 and the fact that the projection of q + A onto Gp is equal togq + I. S

Since the functionals 56, are conservation laws for generalized KdV (see Proposition
6.6), the next result follows from Proposition 6.10.

COROLLARY, {5#6,, #:},—0 for any u, u€3.
We denote by J8, the restriction of #, to C”(R/Z, ). From the equality {#,, #;},=0
and the fact that the mapping p:C”(R/Z, )4 (D) is Hamiltonian it follows that {38,, HB;}=0.

Proposition 6.11. The generalized mKdV corresponding to an element uE§, is the Hamil-
tonian equation corresponding to the Hamiltonian Z4,.

k
Proof. Let ¢(u)= E At , where A'C”(R/Z, GY). 1In the proof of Proposition 6.8 it was

f=—o00
shown that the generalized mKdV has the form dq/dt = —(A%)'. On the other hand, just as in
the proof of Proposition 1.9, it can be verified that gradé—gu= A0, Thus, the equation in
question has the form %=_(grad%u)’, and this is a Hamiltonian equation. ®

The next result follows from Propositions 6.9-6.11.
Proposition 6.12. If u€8% u+£0, then #,+0, ¥,+0.0

The equations considered in Sec. 3 are Hamiltonian relative to not only the second but
also the first Hamiltonian structure. For generalized KdV this is not true, generally speak-
ing. A counterexample is provided by generalized KdV corresponding to the algebra A§2 (see
Sec. 9). We shall show, however, that the assertion regarding the Hamiltonian character
relative to the first structure is valid for generalized KdV corresponding to a Kats—Moody
algebra of height 1 and a special vertex of its Dynkin scheme (see part 5.4).

We recall that the standard realization of a Kats—Moody algebra G of height 1 corre-
sponding to a special vertex has the form % (A, A"!] , where % is a simple Lie algebra. In this
realization U,=9%Y\* and, in particular, @=9%. Let Xi, Yj, Hi, where 1 € i < r, be the Weyl
generators of the algebra %, and let Xy be the same as in Proposition 5.12. From the
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explicit form of the canonical generators of ¥U[A,A7'] (see part 5.4) it follows that A =

.
I + AXg, where ‘1==25)(p For the element e contained in the definition of the first Hamil-
{eal

tonian structure we take Xg (we recall that according to Proposition 5.12 the center of u is
equal to CXo). The following result is proved just as analogous assertions in Secs. 1 and 3.

Proposition 6.13. In the situation described above the generalized KdV corresponding
to an element #€3, is the Hamiltonian equation corresponding to the Hamiltonian &6y and the
first Hamiltonian structure. Moreover, {#,, #;},=0 for any u, ﬁeé.

7] SCALAR (L, A)-PAIRS FOR GENERALIZED KdV EQUATIONS

7.1. 1In Sec. 3 the scalar Lax equation (2.1) was interpreted as the equation for the
class of gauge equivalence for Eq. (3.8). In Sec. 6 for an arbitrary pair (G, cp), where G
is a Kats—Moody algebra and cp is a vertex of the Dynkin scheme of G, an analogue of Eq.
(3.8) [Eq. (6.5)] was constructed. The equation for the class of gauge equivalence corre-
sponding to this analogue was called a generalized KdV equation. A generalization of the
generalized KdV corresponding to (sl(%k C[A, A7']), o) » where cgq is a special vertex of the Dyn-
kin scheme, is the scalar Lax equation (2.1) in which the additional condition uk-; = O is
imposed on the operator L (regarding the possibility of such a reduction see the remarks
following Propositions 2.3 and 3.7). It is possible to not consider vertices of the Dynkin
scheme of sl(k, C[A, A7']). distinct §rom co, since they go over into cp under automorphisms of
this scheme (see Table 2, type Anl Y.

In this section for generalized KdV corresponding to classical Kats—Moody algebras dis-
tinct from si{k, C[A, A7!]), we will find realizations analogous to the scalar Lax equationms.
It turns out that a generalized KdV corresponding to a classical Kats—Moody algebra G dis-
tinct from si(k, C[A, A7']), and a vertex c¢p of its Dynkin scheme can with some conventions (see
parts 7.3 and 7.4) be written in the form

T: A2L1—L1Aly (7-1)
dL,
T: AlLQ—LQ‘AQ,

2{+1 N T2141

where L, and L; are scalar pseudodifferential symbols, A1=Z b,(Lle)T, A2=2 b,(L,LQ):rT,

def
b,£C, ki:oﬂlLr+ordL3- Here the operators Li are of three types (we denote these types by
Pa, Qn, and Ry):
def n=l .
1) Pp=D¥" 4 ) (u; (x) D1+ D¥*u; (x)),
i=0
n—1

def
2) Qu=D4 Y (1, (x) D+ D%z, (x)),
{=0

n—1

3) R,,d—i D1y Z (1, (x) D'+ D%y, (x)) + 1o (x) D7 ag (x)-

i=1

In order to determine the types of operators L; and L corresponding to a given pair (G, cp)
it is convenient to use the language of Dynkin schemes. The Dynkin scheme for G after re-
moving ¢y decomposes into Dynkin schemes of two simple Lie algebras of types Bn, Cp, and Dy
(see Tables 1 and 2). To one of these algebras there corresponds the operator L; and to the
other the operator Lz. To the algebra By there hereby corresponds an operator of type Pn,
while to the algebras Cn and D there correspond operators of types Qu and Rp- ,

)

A detailed proof of the assertion formulated above will be presented for the cases (Azg s
cp) and (D(l), cp), where cp is a vertex of general position. In the remaining cases the
proof is analogous. o

We note that if L and L2 satisfy (7.1), then the operator L=L,[; satisfies the equa-

2041 def
tion i—‘:‘;—[Al, L], where A1=2 bﬂ:?, k—ordl. Therefore, the system (7.1), where L; and L;
i

have type P, or Qq, is in a certain sense a reduction of the scalar Lax equation. Special
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cases of such reductions were considered in [41].

7.2. Suppose that the algebra G of type A( ) is realized in the form L(sl(2n-+1), on),
0 < m < n, where oy is the standard automorphlsm corresponding to the vertex cy (see Appen-
dix 2). Then the operator @ corresponding to the pair (G, cp) [see formula (6.1)] has the
form

where the blocks a;(x) and az(x) are upper triangular and belong, respectively, to o(27— 2m-+

n
1) and sy (2m); A=Z e; (the form of e; is indicated in Appendix 2). We denote by Wi
=)
the set of columns of the form (u;, uz,...,uzn.,.l)t, where u;(A)€B((A"), i=1,...,2n4+1 , whereby

def
ui (A) = u;(A) for 1 £ 2n — 2m + 1, uj;(A) = —uj;(=A) for i > 2n' — 2m + 1. We set W,=AW, 1If

(;L %)EG » where atMat(2n—2m 41, C[A, A7), 6eMat (2m, C[A, A7!]), then the blocks a and & contain
only even powers of A, while the blocks B and y contain only odd powers. Therefore, X (WV))C
Wi for any X¢G. Moreover, (‘V)cW By means of the operator & we introduce the struc-
ture of a B((D"!))-module on W{ in the same way as this was done in part 3.4. The following
result is proved by direct verification.

LEMMA 7.1. Any vector inW; whose components contain A only in nonnegatlve powers can

be uniquely represented in the form A-¥i, where A€B[D], v,=(1,0,...,0), $,=(,...,0,1,0,...,
o)t. = 20— Fm+1

It follows from Lemma 7.1 that there exist uniquely determined operators L;, L,6B[D]
such that Liy-¥1 = AY2, L2+yY2 = AP1. It is easy to see that the orders of these operators
are equal, respectively, to 2n — 2m + 1 and 2m, while the leading coefficients are equal to one.
It is not hard to verify that Li and L» do not change under gauge transformations of the
operator &.

LEMMA 7.2. L} =-L;, L} = La.

Proof. It is proved in analogy to Proposition 3.14 that Li = —(A(P;))*, where P{ =
D 0...0V
a; (x)+ ] _D:':O . According to Lemma 3.13, (A(P{))* = A(PF{). On the other hand, P}_‘ = —diag (1,
0...1 D

—1,..., (=1 Pdiag (1, —dse. o, (— D), whence A(P))=—A(P), AP)H=A(P,). R

We have thus constructed a mapping from the set of classes of gauge equivalence of oper-

ators € of the form (7.2) to the set of pairs (L, L.), where L, and L, are oper-
ators of type Pn_p and Q, respectively (see part 7.1). 1In Sec. 8 it will be shown that
this mapping is bijective (see Propositions 8.2 and 8.4).

It is not hard to verify that elements of the form A?‘i”, where 2i+16Z 1s not divisible
by 2n + 1, generate the centralizer 3 of the element A as a vector space over C (see Appen-
dix 2).

Proposition 7.3. Suppose that an operator & of the form (7.2) satisfies Eq. (6.5),

where u=2b,A2‘”, 5,6C. Then the operators L; and L; satisfy the system (7.1), where A; =

2i41 . 2i+1

_ 2, by (LT, A= —2 by (LiLo)3

1=0

Proof. Throughout the proof B will denote a ring of functions of x and t. On Wi, 1 =
1, 2 we introduce the structure of a B[D, Dy]-module so that the operator of multiplication

by Dt is equal to ———(P(u)* This is possible since 1)[ —9(n),, ] 0, 2) ¢(u),6G , and the

"

elements of G take Wj into itself. We shall find operators A,EB[D], i=1, 2, such that D¢-¥;
Aj-¥j. Since D9, =—9(#),$, , according to Lemma 7.1 the A; exist and are unique. We have

o~ )=0 23} (g) wenee

o
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0,2 _AL,4L,A
o~ (350 B ) (s s )

and hence the operators Lj satisfy the system (7.2). In order to express A1 in terms of Lj
and L2 we note that LaLi+$1 = A%Py. From this, as in the proof of Proposition 3.16, it fol-

I
lows that @(A)¢,=(L,L)" .9, Further, following the proof of Lemma 3.17, we find that A; =
) 241

—2 by (LoLy ?,f'“. The formula for Az is derived similarly. ®
im0

(2)

For algebras of types Cr(ll) and D,°° the realization of the generalized KdV in the form

of a system (7.1) is found in exactly the same way. In the case of the algebras Bnl), Az([21-1’
and Dnl the arguments are somewhat more involved, since det A = 0. In the next subsection

we treat the case Dx(\1 which is the most complicated, since the zero eigenvalue of the matrix
A is multiple (multiplicity 2).

7.3. We denote by G the standard realization of the algebra of type Dél) corresponding
to a vertex cgm, 1 <m < n — 1 (see Appendix 2). We note that if (z g)eG, atMat (2n —2m, C[A,
A1), 86Mat (2m, C[A, A7), then a@®)=a(—4), §())=58(—1), B)=—B(—H), YM=—v(—H) . We
henceforth write matrices of order Zn in the form (: g) , where the orders of o and 6 are equal,
respectively, to 2n — 2m and 2m. The operator &, corresponding to the pair (G, cy) has the

d

n
form S————d;-—{—-(%' (l]lz)-*_A' where A=§E, (the form of é]'_ is indicated in Appendix 2), the

matrices ai(x) are upper triangular, and a6 (21—2m), a,60(2m).
We shall formulate some properties of the matrix A that we need below.

LEMMA 7.4, 1) The eigenvalues of A are roots of degree 2n — 2 in A% and zero (having

. def
multiplicity two). 2) B((M!)*=KerA®ImA . 3) The matrix P;}»'zAZ"‘Z is the projector onto
ImA. P does not depend on A, and the first and (2n — 2m + 1)-th columns of P have the form

def def )
q;l;(l, 0,...,0) and ¢2e=(0, ...,0,1,0,...,0), respectively. 4) The centralizer of A in G 1is
2n—2m

generated as a vector space over C by the elements A and A?'F, i€Z. Here Ak for k < 0 is
def
defined by the formula A=A E=DT s 0,

def -
1
F= P (en—m,2n—m + €n—m41,20—m1 + (— l)"e2n—m,n~m +

+ (‘—' 1)n32n——m+1,n—m+l) —€n—m,2n—m+1 +(— l)nﬂe?n—m,n——m-i-l -

1
'y (én—m+1,2n—m + (‘— 1)"32n—m+l.n—m)-

5) For k < 0, AK does not contain positive powers of A; the first and (2n — 2m + 1)-th columns
of AK contain only strictly negative powers of A. ®
We denoteby W the set of columns of the form (uj,...,upn)t such that LEB((MY) for i =

def
15000520, uj(}) = ui(-A) for i < 2n — Zm, ui(A) = —uj (=) for i > 2n — 2m. We set Wz_-—jMV/l,
It iS C].ear that B((K'l))2"=“71@“72, S(W[)CW“ X(‘VI)CWI for al]. XEG-

According to Proposition 6.2, there exists a series T such that the operator Q=TT
has the form

=gt A+ 2 FATE 4 T gh R,

1= {0

where f,, g6€B. We shall need the following properties of T.
LEMMA 7.5. 1) T(W{) = Wj. 2) T(pi) — ¢i is a series in strictly negative powers of A.
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Proof. Since T = eU, where

that T does not contain positive

where @ are upper triangular matrices with ones on the main diagonal.

assertion 2)., @

We set W,/=7-1(W,NImA),

that .8 (W,')C‘Vi', g (W‘”)C‘V.l”
vertible on wi.

module in the same way as this was

LEMMA 7.6.

Proof. It suffices to verif

R
in the form Z IR/PTV:, f€B,

j=—o0

This can easily be seen directly.

W,
AW )W, , it follows that W,=(V,NKerA)®(W;NImA) , and hence
Moreover, it is not hard to show that the operator & is in-
On W} we introduce by means of the operator £ the structure of a B((D™'))-

Any element of W'
B((D"1)), and ¢; is the projection

it follows
alo)
0 o)

From this we obtain

UeG, Since UE6G-,

powers of A while the free term of T has the form (

it follows that T(Wi) = Wj.

"=T-1(W,NKer A). Ker A®@Im A=W, ,®W, and

W,=W/eW/. 1t is clear

Since B((A )" =

done in part 3.4.

can be represented uniquely in the form A- wl, where A €
of y; onto wl

that any element of W,NImA can be represented uniquely

y

where P is the projector onto ImA such that Ker P = Ker A.

It is only necessary to note that PTY; = ¢; + Ri, where

Ri is a series in strictly negative powers of A (this follows from assertion 2) of Lemma 7.5

and assertion 3) of Lemma 7.4).

According to Lemma 7.6, there exist pseudodifferential symbols L; and L, such that Li-

Y1 = AP2, L2z = A1.
LEMMA 7.7. Ly and Lz have the forms Ry., and Ry, respectively (see part 7.1).
Proof. 1In analogy to the way this was done in the proof of Lemma 7.2, it can be shown
that L¥ = —Lj, and L; = A(Pj), where
DOvvevnes |
S RETPPP 0
01, "zrseeead
D
Pi=a;(z)+ w D
) 01. D
% 1%0
", 4 'D
0 o'

It remains to find the order and

form fD-'f, f€B. Let, say, i =

def
venient to go over from the matrix P; to the matrix P,=SP,S7!, where S=F —-¢

2f‘«'.n—m+1‘n—m+l‘f‘elz—rrx n—m+1+"en—m+1 n—m

n—m+ 1. We denote the matrix

leading coefficient of Lj and also prove that (L;)- has the
1. We recall that P; has dimension 2n — 2m. It is con-

def 1
9 ’—m,/;——m_

and then in P permute the columns with indices n — m and

obtained as a result of this by Pl It is clear that A(P;) =

A(Fl) . P]_ has the form P, = Q(X)—}-(E—en—m n—m = €n—mil,n—m+1 + €n—m —mAl T+ Cp—mi n—m)D 4
29—2m—|
}5 €it1,i— €n—m+1.n—m , where the matrix q(x) is upper triangular. From this it is not hard to

i=1

2n—2m

deduce that (Lji)+ has the form D2n-2m+l }Ezq(x)l)ﬁ and (Li1)- has the following structure.

1=0

Let ;ﬂ==(A"‘4”), where Ajj are blocks of order n — m. We write A(A;;) in the form :S¢QLN
. ]

Ay Ay
and A(A22) in the form ED"b,.

Then (Li)-

= —a¢D " 'by. It remains to note that A, = diag (1,

1, —1,1, —

, (— e X Al diag (1, —1,1, —1,

v (— D™ whence A (Ag)) =(—1)""" (A (An)*

and hence by=(—1)"mtlg,

We set fa

of fi1 constructed on the basis of the matrix P we denote by f;.
L,

Thus, (L,).=(—1)""a,D'a, W

and f{ do not change under gauge transformations of

from the set of classes of gauge equivalence of operators (L1, Lz, f1, f2), where f:€B

= {0 Mg,, where ag is the same as in the proof of the lemma.

The analogue

It is easy to see that Lj

Thus, we have constructed a mapping
and

Li are skew-symmetric pseudodifferential symbols with leading coefficient 1 such that
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(Li)-=f:D4f;, ordL,=2n—2m—1, ord L2=2m—1. Later (see Proposition 8.5) it will be shown that
this mapping is bijective. We note that the mapping from the set of classes of gauge equiv-
alence of operators £ into the set of pairs (Li, L) is not bijective, since, knowing Lj, it
is possible to recover fi only up to sign.

In part 7.1 an assertion was formulated t?at the generalized KdV corresponding to a
classical Kats—Moody algebra distinct from An reduces to the system (7.1), wl ?ere A1 and A
are expressed in terms of fractional powers of LiL, and L;Ly. In the case D this asser-—
tion needs refinement: the generalized KdV in question must correspond to an element uEesy,

(1)

having the form u=2b,A2‘”, b€C (we note that in all cases except D, ° any element of 3
N

has this form; see Apﬁendix 2).

Proposition 7.8. Suppose the operator & satisfies Eq. (6.5), where u=2b,A2/“, b€C.

J=0
2/+l k
Then L, and L, satisfy the system (7.1), where A;=@M)., Ml————Zb(LqL )22, 2=—2 b, x
2j+1 j=0
(LiLy)en=2,

. The proof is entirely analogous to the proof of Proposition 7.3. However, because the
yi are not entirely explicitly defined the proof of the formula P¢-¥; = Aij-y; is nontrivial.
It is based on the following lemmas.

LEM:M.A 7.9. Dl"Vl,(:W!v,, D,"V{'CW‘”.
Proof. We denote by V. the operator on W acting according to the formula Vi(w) = D¢'w
[i.e., V,-—— —9w),]. Since [Vy 8=0, it follows that [TY,T7!, Q]=0. From this it is

easily deduced that [TVtT_l, Al = 0, and hence the kernel and image of A are invariant under
TV T !. Using assertion 1) of Lemma 7.5, we find that 7, T7'(W)cW, whence the lemma fol-
lows., ®

LEMMA 7.10. (M-$i)y = My-y; for any MeB (D).
Proof. (M-9),—M, ¥ = (M-$i— M, ), = (M.-p,— M,-P)),, vhere §=y,—P. It remains to

verify that (84,),=0 for /<0, (¥y),=0 for j=0. It suffices to prove that ,(530."7‘15,)+=0

for j<0, (801T$,)+=0 for j 2 0. We have TIp,:PTqu, Ty,==(E—P)Ty,, where P is the same as

in Lemma 7.4. Therefore from assertion 2) of Lemma 7.5 and assertion 3) of Lemma 7.4 it fol- !
lows that (T}),=0, (T9),=¥+ Since TYEKerA, the equality (T¢i)+ = O implies that (& T),=
0 for j > 0. The equality (8/T¥;),=0, where j < 0, follows from assertion 5) of Lemma 7.4. ®

The formula D¢- tj)]_ = Aj wl is induced from these lemmas as follows. It [follows from Lemma
7.9 that D¢+ by = m (Dg* wl), where w;:Wj > w1 is the projector with kernel W By definition,

Dy, Dyyy=—H, ¢=—(#y;),, where .9¢=2 b,T-'A%*'T. Since & (W/)=0, it follows that #¢,=
j=0

4§, Since #y,=—M- q;, (see the proof of Proposition 7.3), we have D,y =m; (M, \p)+) Ap-

plying now Lemma 7.10, we find that Dt- Pi = mi(Af-vi) = Aj-Uj-

If u has the form 2 b,A¥*' , then, as before, the corresponding generalized KdV reduces
to the system (7.1), but unfortunately in this case we do not know an explicit formula for
Ay and As. In the simplest nontrivial case A; = f,D7 1fy, Az = £1D7 5.

7.4. 1In part 7.1 a rule was formulated for determining the types of the operators L,
and L, corresponding to a given pair (G, cp), where G is a classical Kats—Moody algebra and
cp 1s a vertex of its Dynkin scheme. However, in the case of algebras G of low rank and also
in the case where cp 1s an extreme vertex this rule cannot be understood literally. We there-
fore present a table (Table 4) in which for each pair (G, cp) the types of the corresponding

: " def def def
operators Ly and Ly are indicated. 1In this table it is understood that Py=D, Qy=1, R,=D".
The vertices of the Dynkin scheme of G are numbered as in Table 2.

It was noted in part 7.1 that if Li and L; satisfy the system (7.1), then the operator

def .
L:—e_-l,zLl satisfies the equation dL/dt = [A;, L]. It is clear that if one of the operators
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TABLE 4

G Cm Ly LZ

A‘zz,'\ n3t fgm<n Pr-m am
A,n, n>t lgmgn Qn-m Rm
n—— m =04 Qn Ro
87 nxt 2Em<n Prn.m Rm
" o—— m =0, s Pn Ro
T ogmsn Qn-m Am
Din" ny3 igmsEn-2 Rn-m Rm
” ” m-o,1 Rn_ Ro

n " m=n-1,n Ro Rn
D nyd 0sm<n Pr-m Pm

L; belongs to type Po, Qo, or Ro (this condition is almost equivalent to cp being an extreme
vertex) the system (7.1) is equivalent to this equatiom.

In conclusion we consider conservation laws for generalized KdV. In analogy to Proposi-
tion 3.20, it can be proved that in the case of classical Kats—Moody algebras distinct from
D(l) the densities of the conservation laws H;j considered in Proposition 6.6 up to constant
multlples and addition of total derivatives are equal to res (L1L2)1/k where k = ord (L L2).
In the case of Dél) the situation is as follows. We write the element HEC= (R, 8), considered

in Prop051t1on 6.6, in the form H= Zh,A—(”‘H)—}—Zg, —(+NF . where h,, g€B (see Lemma 7.4).
fe=) ' i=0 2{ 41

Then up to a constant multiple and addition of total derivatives hj is equal to res(L,L,) * .

Unfortunately, we do not know a general formula expressing g;j in terms of L, Lz, fi1, f2 (the

f; are the same as in part 7.3). We note only that up to a multiple and total derivatives

go 1s equal to f;f,.

8. HAMILTONIAN MANIFOLDS M (@)

In part 6.5 for any semisimple Lie algebra & we defined a manifold  (®) equipped with
two Hamiltonian structures. Moreover, ./ (8{(k)) is by definition the manifold denoted in part
h—1
3.6 by A. We denote by M(sl (k) the set of operators of the form Dk-{-zulD‘, ueB, In
i=0
part 3.3 we constructed a bijection F:/#4(8l(k))—>M(s!(k)), and in part 3.7 it was shown that the
first and second Hamiltonian structures on J (8{(k)) go over under the mapping F into the cor-
responding Gel'fand—Dikii structures on M(8!(£)). In the present section for each classical
simple Lie algebra @ we define a manifold M(®) consisting of scalar differential [and in
the case @=0(21) pseudodifferential] operators of special form’ and a bijective mapping
F: /X (8)—->M(®). Moreover, the Hamiltonian structures on M(®) corresponding to the first
and second Hamiltonian structures on J () will be found.

We recall (see part 6.5) that the definition of the manifold .#(®) and the Hamiltonian
structures on it involves the Weyl generators of 8 , an invariant scalar product on @, and
an element e of the center of the algebra n. For all classical algebras @ we use the Weyl
generators presented in Appendix 1 and the scalar product (X, Y) = tr (XY). We shall indicate
the element e each time.

8.1. We begin with the simplest case G=s!(k). It is easy to see that A (3l (k) (8! (k).

k=2
We set M(sl(k))= {[)" +2 u;DYueB,!. It is clear that the bijection ' J (8!(k))—>M (8!(k)) cons—
i=0

tructed in part 3.3 maps A (¢'(k)) onto M (sl (&)

We denote by {-, +}1 and {-, -}2 the Poisson brackets on M(!(k)), corresponding to the
first and second Hamiltonian structures on J (¢{(k) (as the element e in the definition of
the first Hamiltonian structure we take the matrix ey, k as in Sec. 3). We shall find the
explicit form of these brackets. For this it suffices for any integral symbols X, YEB, (D)
to find {lx, Irh and {lx, lr}, where Ix:M(sl(k))—>C 1is defined by the formula [x(L)=Tr(XL).

It is not hard to see that if ¢ and ¢ are functionals on J (8{(k) and ¢ and ¢ are their

restrictions to J (s{(k)), then {9, ¢}, and (P, ¢}, are equal to the restrictions to .4 (¢! (k) of

’Mikhailov [65] pointed out the connection between the types of scalar differential operators
and the types of the classical simple Lie algebras.
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the functionals {9, ¢}y and (9, ¢},. It therefore follows from Theorem 3.22 that {lx,Irh and
{lx, lr); are defined by formulas (2.16), (2.17).

8.2. Now let 8=0(2n+1)={A€gl(2n+1)|0(A)= A} , where ¢ is the automorphism of gl(2n,+1)
given by the formula ¢(A) = —diag(l, —1,...,1).AT.diag(l, —1,...,1). The Borel subalgebra in &
will be denoted by b s while b denotes the set of all upper triangular matrices {(we recall
that dyg=">()®). The meaning of the notation ng and n is similar. Since bgcyp, ngen, while
the elements I for the algebras & and g[l(2n+ 1) coincide (namely, 1‘=Se,-+,,,) , there is the

i=1
natural mapping ¢: 4 (8)— A (8((2n+1)). Since o(b)=b, o(®)=n, o(/)=7, it follows that o in-
duces a mapping A (8{(2n+1)) = A (81 (2.4 1)), which we also denote by o.

LEMMA 8.1. @ maps 4 (8) in one-to-ome fashion onto the set of elements of (sl (22} 1)),
invariant under o.

Proof, We denote by b, the set of matrices (ayg) such that ayg = 0 for B —a # i. For
any 1 2 0 we choose a vector subspace V,cb, so that b,=[/, 5,,}®V, and o(V{) = Vi (for ex-
ample, for Vi it is possible to take the one-dimensional subspace generated by the matrix
2'z+‘1‘—l def . def

}_‘ ejj+1]. We set V=(?V,. It is clear that by=|[/, 1g|®V?, where V°={AeV|o(A)=A}.
j=1
cording to Proposition 6.1, it is possible to replace 4 (9!(2n+1)) by C”(R/Z, V) and A (8)
by C®(R/Z, VO) after which the assertion of the lemma becomes obvious. ®

We henceforth identify J (¢(21-}1)) with its image in 4 (s80(22-+1)). We recall that the
bijective mapping constructed in Sec. 3F: A (81(2141)>M(8!(2n}1)) assigns to a class of
gauge equivalence of the operator d/dx + I + q the operator L. = —(A(P))*, where P = 1 + q +
diag (D, D,...,D) (see part 3.3). If q is replaced by o(q), then P is replaced by —diag (1,
—1,...,1)-PT.diag (1,~1,...,1), and hence (see Lemma 3.13) L is replaced by —L*. Thus, the
mapping FoF-1:M@l(2n+1))>M(@1(2n+1)) takes L into —L*. From Lemma 8.1 we therefore obtain
the following result.

Proposition 8.2. F maps A (°(22+1)) in one-to-one fashion onto the set /VI('>(2n.—l-1))a——e-f
(LEM (81 (20 + D) |L* = ~L}.

Remark 1. It is clear that the mapping F: 4/ (°(2n+41) >M(c(22+1)) and the mapping in-
verse to it are given by differential polynomials.

Remark 2. Let  be the Cartan subalgebra of o(21+1). Composition of the Miura trans-
formation w:C*(R/Z, §)—A (°(2n4-1)) and the mapping F: .//t(n(2n+1))—>M(o(2n+1)) takes the
MAtTix diag(f1, --+r far O — fur++ey —J1) into the operator L=(D+f)---(D+f)D(D—f)--

(- £1).

We denote by {-, -}1 and {+, -}2 the Poisson brackets on M(¢(22+1)), corresponding to
the first and second Hamiltonian structures on J (¢(22+41)) [for e we take (ey,zn + ez’mﬂ)/
2]. We shall find the explicit form of these brackets. For this it suffices for any inte-
gral symbols X,Y€B((D™") to find {lx,Ivh and {Ix,ly}),, where [x:M(o(2n+1))->C 1is defined
by the formula [x(L)=Tr(XL). Moreover, it may be assumed with no loss of generality that
X* = X, Y% = Y [indeed, the formula TrZ* = —Tr Z valid for any ZeB((D™"), implies that if

L* = —L, then Tr(XL)—Tr(X+X L)1

il

Proposition 8.3. Let LeM(o(2t-+1)), X, YEB((D™), ord X <0, ordY <0, X*=X, Y*=Y . Then

{ix, Iy} (L)="Tr (L-(Y DX — XDY)), (8.1)
{x, Il (D=Tr (LY),LX —XL(YL),). 8.2)

We note that since L* = —L, X* = X, Y* = Y, it follows that Te(L.(Y DX—XDY))=2Tr x
(LYDX), Tr(LV)LX—XL(YL),)=2Tr({LY),LX).

Proof. From formula (3.17) it follows that if the functiomals [ [, ./Il(len—’rl)—»C are
invariant under o and ; and I, are their restrictions to 4 (¢(2n-+1)), then {l;, 12}z is equal
to the restriction of {71, Z2}2 to A (°(9n+1)) [to see this it suffices to note that if o(q) =
q, then for a suitable normalization of the gradient o(gradg,)=grad,/, , whence grady, ¢C*” (R/Z,
0(2n451)) and hence gradql,=gradql_,‘]. Theref_ore, if ¢, and "9, are functionals on M(gl(?n-}—
1)) such that @,(L)=9,(—L*) and ¢ and ¢ are their restrictions to M(®(2n+1)), then
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{9, 9y}, is equal to the restriction of {¢, ®,), to M(o(22+1). Setting now @,(L)=Tr(XL),
@ (L)=Tr(YL) , we obtain (8.2). Since the element e for the algebras o(22+1) and gl(22+1)
do not coincide, equality (8.1) cannot be proved in a similar way. It is not hard, however,
to deduce (8.1) from (8.2) by arguing in the same way as at the end of the proof of Theorem
3.22. Here we use the following simple assertion: if to the operator d/dx + I + q(x), where
q{(x) is an upper triangular matrix in o(2z--1), there corresponds LEM(o(2n-1)), then to the
operator d/dx + I + q(x) — e there corresponds L + D. ®

8.3. We consider the case @-59(2n)_{AegI(2n)|o(A)_A} where o is the automorphism of
81(21), given by the formula ¢(A4)=—diag(l, —1,..., 1, —1). A" .diag (1, —1, 1, —1). Lemma 8.1
also holds in this case. In particular, ./I[(SD(Qn)) can be considered a subset of W (8!(2n))-
The following assertion is proved in the same way as Proposition 8.2, 8.3 [and even somewhat
more simply since the elements e in the definition of the first Hamiltonian structure for the al-
gebras sp(2n) and gl(2n) coincide].

Proposition 8.4. 1) The mapping F: /4 (81(2n)—>M (81(2n)) maps A ($v(2n)) in one~to-one fash-
def .
ion onto the set M(sy(2n)={LEM(8\(2n))|L*=L}. The mapping F:H# (v (2))—>M (P (21)) and the

mapping inverse to it are given by differential polynomials.

2) Let $ be the Cartan subalgebra of 9y(2n). Composition of the Miura transformation
pe C°°(R/Z H)— A (39 (2n)) and the mapping F: ./I{(sv(2n))—+M(5D (2n)) takes the matrix diag(fi,-+-sSm
., —f1) into the operator L=(D+f1) ... (D+ f)(D—fa)--- (D—[)).

3) We denote by {-, +}1 and {-, -}2 the Poisson brackets on Msp(2n)), corresponding to
the first and second Hamiltonian structures on A (39(2n)) (for e we take e1,z2n). For any
integral symbol X€Bo(D-')}) we define Ix:M(sp(2n))—C by the formula [,(L)=Tr(XL). Then for
any LeéM(sp(2n)) and any skew-symmetric integral symbols X, YéBo(D-')) the following equali~
ties hold:

L3

{lx, ey (L)=Tr (L [V, X])=2-Tr LV X),
T, Il D) =Tt (LY).LX — XL (YL),)=2Ts (LV),LX)

Remark. The analogue found in [27, 44] of the interpretation of the first Gel'fand—
Dikii bracket as the Kirillov bracket also holds for the first Hamiltonian structures on
M(sp(2n)) and M(o(2n+1)). In the case 5p(2n) it is necessary to consider the Kirillov
bracket for the Lie algebra of skew-symmetric integral symbols. In the case o(2n41) it is
necessary to consider the Lie algebra of symmetric integral symbols with the unusual commu-~

def
tator [X, Y]=XDY—YDX.

8.4. We consider, finally, the most difficult case ®=0(2n). We denote by M(0(2n))
the set of pairs (L, f), where f€Bo, LEBo((D™Y)), L*= —L, L_=fD-4f, ord L=2n—1, and the leading
coefficient of L is equal to 1. 1In part 7.3 (see the proof of Lemma 7.7) we essentially con-
structed a mapping F:/(0(2n))—=M(0o(2n)).

Proposition 8.5. 1) F is bijective. The mappings F and F ® are given by differential
polynomials.

2) Let £ be the Cartan subalgebra of o(21). Composition of the Miura transformation
p:C"(R/Z, §)—~ A (9(2n)) and the mapping F:H (0(2n)>M(9(2n)) takes the matrix diag(fy, - - - Sne

—fn .-, —[1) into the pair (L, f£), where L=(D+f1)...(D+fo) D' (D—fo) : (D—S1), [=
(=1) 11inP (1), where P—{(D -+ f)) --- (D+ f.).
3) We denote by {+, -}; and {-, -}2 the Poisson brackets on M (?(21)), corresponding to

the first and second Hamlltonlan structures on .ll(o(Qn)) [for e we take (e1 sn-1 * ez,?_n)/Z].
For any integral symbol X€B,((D-'), such that X* = X we define [y: M(n(2n,))—>C by the formula

- def
Ix(L, f)=Tr(XL). Moreover, for any sEB, we set A (L, f)=§s(x)f(x)dx. Then
xER/Z

{Lx, Ih (L, /)=2T1 (LY DX),

U dh=0, f, bh=5 { s(0)# (Ddx
*GR/Z

{Ix, lrh (L, /)=2Tr(LY),LX), {r, Ixho(L, f)=Tr(LX fD"s),
Ao Mo (L, S)= —;— Tr (L£Ds).
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We shall only outline the proof. Assertion 2), of course, is proved by direct computa-
tion. The difficulty in the proof of the remaining assertions as compared with the analogous
assertions for 0(2n+41) (see part 8.2) is connected with the fact that the matrices I for
0(2n) and gl(2n) do not coincide, and hence there is no natural mapping . (0(2n))—4 (g1(2n)).
In order to overcome this difficulty, we define a new manifold 4’, in which J#(0(2n)) is
imbedded in a natural way. For this we consider operators £ of the form

8= +14q, g6C™(R/Z, B), (8.3)

where I is the sum of the Weyl generators Xj of the algebra o(2n) (see Appendix 1) and B

is a set of matrices (ayg) of order 2m such that gug = 0 for a > B and (o, B) = (n + 1, n).
We denote by 3 the set of matrices (a,g) of order Zn such that agg = 0 for a > 8 and, more-
over, an p+; = 0. It is easy to verify that if 8 has the form (8.3) and Se€C”(R/Z,®R), then
eS€e—$ also has the form (8.3). Such transformations we call gauge transformations. The
set of classes of gauge equivalence of operators £ of the form (8.3) we denote by A’'. We
recall that 9(2n)={A€sl(2n)0(A)= A} , where ¢ is the automorphism of 8!(2n), given by the for-
mula o(A)= —diag(l, —1,..., (=", (=11, (=17, .., 1) AT diag(1, —1, ..., (=1, (=1L, (=17 ..., 1),
Since o(f)=/, o(B)=D, c(M)=N, it follows that ¢ induces a mapping JA’ —.#’, which we also
denote by o. In analogy to Lemma 8.1 it can be shown that the natural mapping from J(°(2n))
into the set of elements J’, fixed under ¢ is bijective., We denote by M' the set of qua-
druples of the form (L, £, g, h), where f,g, #€B;,, and L is a pseudodifferential symbol of
order 2n — 1 with leading coefficient 1 such that L. = £(D + h)"'g. We define the mapping
Fl: MM, assigning to the class of the operator d/fdx + I + q(x) the following quadruple

def
(L, f' g’ h) a) L—"'—-A(P), where P=diag(D. D,---,DH—(]-}-].: b) l=%(qn,n+qﬂ+l.rz+l)"‘4n+1,n—"

—};q,,,,,ﬂ,where qi,j are the elements of the matrix q; c) let Ajj be the same as in the proof

of Lemma 7.7; we write A(A1;) in the form zaj(D—{—ll)’, and A(A32) in the form Z(D-{—h)fbj H
i i

def def
then f=i"a,, g=(—1)""'i"s, . It is not hard to verify that F' is well defined and is bijective,

whereby the elements of the matrix q corresponding to the quadruple (L, f, g, h) can be chosen
in the form of differential polynomials in f, g, h and the coefficients of L; the mapping
F'-o-(F')~1:M' + M' acts by the formula (L, £, g, h) > (-L*, g, £, —h). From this we obtain
assertion 1) of Proposition 8.5.

On A’ we consider the Poisson bracket given by formula (3.17) and carry it over to

M' by means of the mapping F'. For any integral symbol X€By((D™')) we define [x:M'—-C by
the formula Ix(L, f, g, B)=Tr(XL). Moreover, for any s€B; we define functionals ¢, and yg

by the formulas 9,(L, f, g, h)=S F(x)s(x)dx, o, (L, 1,8 h)= S g(x)s(x)dx. Computations anal-
SER/Z xEGR/Z

ogous to those done in the proof of Theorem 3.22 but more involved show that {p , @ }={},, P}=0,

@, v}, f, g B=TrLt(D+h)'s), {@,03L, fo 8 ) =TrLXf(D4hY's), {4 Ix}(L, f. 8 )=

—Tr (XLg(D+h)'sy» {Ix, y}(L, f. g W=Tr((LY),LX —L(YL),X). The derivation from these formulas

of assertion 3) of Proposition 8.5 is analogous to the proof of Proposition 8.3.

8.5. We note that since o(3)=s((2), o(4)=3[(2)X(2), o(5)==sp(4), o(6)==s!(4) (see part 5.1),
there are the canonical bijections fi:ME(QSM(@ @), fo:ME(2)XME)SM (@), Fa:M (v (4)s.
M (0(8)), fa:M(E!(4)3M(0(6). It is not hard to obtain the following explicit formulas: f) (p? +
u) = D342(uD+ Du); fo(D*+u, D24 v)=(D3 4+ (a4 0)D+ D(u+v)--(u—v)D N (a—w), . —v); foD*+uD?*+
D2u )=D8+%(uD34 D3u)+2(sD+Ds), where s=u?—u"—v; fi(D*4uD?>+ D%+v+wD+ Dw)=(D*+

def
2(up® + D3u)+2(sD - Ds)—4wD'w, 2iw), S=ud—u"—u.

We call a mapping of Hamiltonian manifolds f:M; + M; almost Hamiltonian if for any func-
tionals @, ¢: Me—C {f*q, f*¢}=A-f*{p,¥}, where A is a number not depending on ¢ and ¥ (we
recall that f is Hamiltonian if A = 1). It is clear that the mappings fi, 1 € 1 € 4 are
almost Hamiltonian relative to the first and second Hamiltonian structures. They are not
Hamiltonian, since the isomorphisms si(2) 3 0(3), sl(2) Xgl(2)>0(4) , etc. preserve the scalar
product only up to a constant multiple (in addition, under these isomorphisms the elements e
in the definition of the first Hamiltonmian structure go over into one another again up to a
multiple).
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8.6. 1f @, is the automorphism of the semisimple Lie algebra t induced by an auto-
morphism g, of its Dynkin scheme (see part 5.1), then @, (/)=/, P (})="0, P, (8)=n , and hence ¢,
induces a mapping S A (8)—> (8). It can be shown that if g is a simple algebra, them ¢,
preserves the scalar product, and hence the mapping S, is Hamiltonian relative to the second
Hamiltonian structure (relative to the first structure it is almost Hamiltonian). Among the
Dynkin schemes of the classical Lie algebras A, and D, have nontrivial automorphisms (see
Table 1). It is not hard to verify that to the nontrivial automorphism of Ap there corre-
sponds the mapping M(s!l(n+1))—>M@E!(n+1)), acting by the formula L—(—1)*"'L*, while to the
automorphism of the scheme of Dp changing the places of cp and cp-; there corresponds a map-
ping M(o(2n))>M(0(2n)), taking (L, £) into (L, —£). 1In the case of an algebra of type D
the group of automorphisms of the Dynkin scheme is isomorphic to S3. We shall not present
the formulas giving the action of S3 on M(2(8)). We note only that the set of points of M
(0(8)) fixed under the action of S3 is none other than M (%), where ¥={X¢o(8)|Vo€S,, o(X)=X}.
It is not hard to verify that ¥ is a simple Lie algebra of type Gz2. Computations show that

M(¥) is the set of all operators of Bo[D] of the form D7+uD5+D5u+(——2u”) D3—|-—D3(——
2u") + vD + Dv.

9. EXAMPLES OF GENERALIZED KdV and mKdV EQUATIONS

In this section we present some examples of generalized KdV and mKdV corresponding to
classical Kats—Moody algebras distinct from sl(k C[A,A"1]. The generalized KdV are hereby
considered as equation for gcan (see part 6.2). The form of gcan is chosen so that the sim-
plest equation of the corresponding series has minimal possible order.

Table 5 is devoted to generalized mKdV for which the type of the algebra G and the Hamil-
tonian H is shown that leads to the simplest equation of the series {the generalized mKdV
du, 0 6H . k ]

corresponding to the Hamiltonian H(uj,...,uk) has the form T 5;_SET’“=]’

We further indicate the Hamiltonian for mKdV corresponding to Dsl) and having the form
d . . .
8 =[P (F)", 8], where F is the same as in Appendix 2. H in this case is equal to —4(u/u, +
u1 Uglly— Uy 1y — U\l Ually).

Examples of generalized KdV are presented in Tables 6 and 7. Table 6 is devoted to
equations corresponding to pairs (G, cy) such that after removal of the vertex ¢y of the
Dynkin scheme G decomposes into unconnected points. In this case the algebra @ (see part
6.1) is isomorphic to the direct product of several copies of sl(2) . Therefore, for suitable
choice of the 'coordinate system" uj,...,ux the generalized KdV corresponding to the Hamil-
tonian H and the second Hamiltonian structure has the form

%4 A (D3+2(w, D4 Du) gy i=1, .0, k, (9.1)

where A,6C. We mention that the operator D3 + 2(uiD + Duj) corresponds to the second Hamil-
tonian structure on M(3!(2)), and the occurrence of the factors \j{ is connected with the fact
that the isomorphism G3sl(2)X ... X#I(2) does not preserve scalar products. The simplest
example of an equation admlttlng the form (9.1) is the KdV equations for which k = 1, Xy = 1,

= u?/2. 1In Table 6 for each pair (G, cp) of this type the factors Aj and Hamlltonlan H are
presented that correspond to the simplest equation of the series.

The simplest generalized KdV corresponding to algebras of types A$?, A{®, BY) are pre-
sented in Table 7. We recall that each generalized KdV possesses the Lax representation

“pm =|[s#cn, gean], where %"= ﬁ—A—Fq““ (see part 6.2). For each equation Table 7 shows the

form of the matrix q%@1. The matrix A is equal to the sum of all canonical generators ej.
The explicit form of the ej is indicated in Appendix 2.
Remark 1. The equations of Table 7 corresponding to the pairs (Aéz),co 049);CJ, (A(”

CQL (B?’,cﬂ after linear changes of unknowns and scale transformations can be written in
the Hamiltonian form (9.1) (see Table 6). The remaining two equations, which are of a rather
simple form, have a very complicated Hamiltonian form.

Remark 2. Tables 6 and 7 contain all the simplest generalized KdV corres%onding to al-
gebras G of ranks 1 and 2 except the equations corresponding to (A,SZ) » Cg) and (A, 2), c1). In
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TABLE 6

6 |c AL H
A g | A4 3(u])? —16u?
A ey | 2421 3w )l"'ll,3
A ey [A4=A0%1 | u+uj-2uu,
TABLE 5 AP ey [A=1,20=4] 1Bu? + ul -12uu,
5 m AQ ¢, 1i;f=1' ufsul-ul-1uuy+6u,us+buyu,
AS T 3ty -5(u)? +15(u))?ul + ub 81 e {22205 | uZ+ujz-fusu,
AT Jwp?eufudvujuf 8 ¢, ﬂ:}ﬁzt UyUp-uyuy U uy +ul
AP Teulfe 4ud)? + bujub+ Juyus-subul +udvud-3ulul 20| o, [rAes | @G, + Uy + iyt gug) -
BY | 8(ui)Z-4(up)?+ Rubul-u-ud « 6ulul w92 =ay=a4=1] +a (u uy—u,uy—uus +uquy), ape €

TABLE 7
6 |cm| Simplest generalized KdV geen
i% CilUgUzzzax + 0utgee +25 u¢u¢g+20u’u¢ ‘u(ﬁLz + ezls);_"

: =
AT Col ug=lrpzzr+5Ulpor + Siglpr + Sulip] -uey,

Ag co {1;:-:-1;::1 tUVp + Upl -uez's ;"w&ve,,u\;"
A{;. N {‘:fm’x . —iu(e,‘ye;lu-oZe.,,:Ze,,,z)‘);:’
4= Vprr +2UDE U Y L+ 5 ey 05,4- 2831 -280,2}8
B, {ue=u:u + ULy +Vz “i"-(ez,s* es.u)C'_';
‘ Vp==2Upep—UVy Fv(ELw+eys)b
8z, {ut:um T e s i “"-’nz*°c,s*29u,1+2fs,z)§i§ :
2 V= ~2¥ppp—Uly (e gty q-L0yy~Deg

these two cases it is possible to choose £ so that the simplest equations of the series
have third order. However, due to the complexity of the formulas, we note here only that
both these equations have the form

Up=Uyped Ul Dy,
V= OV T Ol yll o - Oale28h A~ Oy (UT,— VL),

where the coefficients oj appropriate to each equation belong to Q[/g_].

10. TWO-DIMENSIONALIZED TODA LATTICES

10.1., In this subsection we recall the definition of the two-dimensionalized Toda lat-
tice corresponding to a Kats—Moody algebra, and for it we present the Zakharov—Shabat repre-
sentation found in [61]. 1In the next subsection, following [65, 72, 12], we consider local
conservation laws and the connection of the Toda lattices with generalized mKdv.

Let G be a Kats—Moody algebra with canonical generators ej, f{, hi, 0 S i< r. On G
we fix a nondegenerate, invariant, symmetric, bilinear form coordinated with the canomnical

def
gradation G=§Gl (see Proposition 5.20). We set §=G% We recall that the elements hj

generate § as a vector space, and there is exactly one linear relation (5.12) between them.

For any i, 0 € i € r we denote by aj the linear functional on §, such that [h, ej] =
aj(h)ej for all hEH (the a; are called simple roots of the algebra G). It is clear that
[(h, £fi] = —j(h)f;. We note that a3 (hy) = Ajj, where (Aij) is the Cartan matrix.

We call the two-dimensionalized Toda lattice corresponding to G the equation

'—oi:apr=2 e h, g (x, T)ES. (10.1)

im0

This name is also sometimes applied to the system of equations

9 4
ax—:;;_—_epoAI,uj, 0igr, u;(x, t)€C. (10.2)

/=0

We shall discuss the connection between (10.1) and (10.2). There is a mapping from the
set of solutions of (1U.2) into the set of solutions of. (10.1) given by the formula
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‘p=2 uh;. Due to relation (5.12) this mapping is not bijective. However, for any solution
1=0
Y or Eq. (10.1) it is not hard to find all solutions (ug,...,uy) of the system (10.2) such
r

02y,

0x07T

that 2:&,11::11)?. Namely, for u, it is possible to take any solution of the equation
1=

ex ) and after ug has been chosen the remaining u{ are found uniquely from the relation
r
2“1h1=‘i’ fit is not hard to see that the uj found in this manner satisfy (10.2)]. Thus,
Eq. (10.1) is almost equivalent to (10.2).

We further present the Lagrangian form of Eq. (10.1):

o T def(h;, A
dxar=grad U (y), U(¢)=2 a‘eaz(‘l’)’ ai=.(_2_’)._ (10.3)
i=0
The equivalence of (10.1) and (10.3) follows from the following well-known lemma.

. 2(_!/, hl) .
LEMMA 10.1. For any yEH, a,(y)_m.
Proof. (y, hi) = (y, lei, £1i1) = ({y, eil, £f1) = a;(y)(ej, £i). Setting y = hj and
using the equality oj(h;) = Aji = 2, we obtain (hj, hj) = 2(ei, f;), whence the lemma fol-
lows. W

axp —=grad U (y), U(\l))=2 c,e®™ for any ¢,€C reduces to (10.3)

=0
by means of a transformation of the form =1+, T==at, where €9, acC.

Remark. The equation

Finally, we present the Zakharov—Shabat form of Eq. (10.1):

o 0 /]
Q] — —eg—V. —. [
[8, 8]=0, g=e~¥ Oox e‘b+A_0x+q’/+A’ (10.4)
—_— a _ —
2=F+e v. Aet,
def def
where A—E e, A Zfl, and, strictly speaking, e ~VAe¥ must be understood to be e~@d¥(R).

1=0
The equivalence of (10.1) and (10.4) follows immediately from the relations [ej, £71 = (‘Sijhj,
[h, £;] = —a; (h)E;.
Remark 1. Equation (10.4) admits the more symmetric form [e-‘b/zao; eV/2 4 gt/2Ne—V/2 g2 x

9 -
9 o-vr2 —0/2A /2 | .
37 € -+ e—%2Ae ] =0.

Remark 2. If we interpret A, A, and Y(x, 1) as elements of a "genuine" Kats—Moody al-
gebra G (see Remark 2 following Proposition 5.8), then relation (10.4) is equivalent to the
system (10.2).

To conclude this subsection we clarify the origin of the term "two-dimensionalized Toda

lattice." The Toda lattice is properly the system of equations ib,=—§l%, i6Z , where U =
— Y%V (it was investigated in [33, 52, 53]). From this infinite system there are two

ways to obtain finite systems: a) require that Yj4n = ¢{ for some n (the periodic Toda lat-
tice); b) require that $p = Yu4+; = O for some n (the corresponding system of equations for
YlyeoasPy 1s called the nonclosed Toda lattice). The two-dimensionalization consists in
replacing 9 2/3t? by the operator 3%/8x3tT. The two- dlmen51ona11%ed periodic Toda lattice is
essentially equivalent to Eq. (10.1) for an algebra G of type Ay"’/, while the two-dimensional-
ized nonclosed Toda lattice is equivalent to the system (10.2) for the case where (AlJ) is

the Cartan matrix of an algebra of type An— The history of two~dimensionalization of the
perlodlc Toda lattice and passage from IX¢! ) to arbitrary Kats—Moody algebras can be traced

in [30, 36, 45, 61, 64, 46, 55]. Concerning the nonclosed Toda lattice and its generaliza-
tions see [28, 29, 37, 44, 61].
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10.2., The relation between two-dimensionalized Toda lattices and generalized mKdV cor-
responding to the same Kats-Moody algebra G is based on the fact that on operator & of the
form (6.7) after the substitution ¢=1v, 1is converted into an operator £ of the form (10.4).

Proposition 10.2. Let Hi be the densities of conservation laws for generalized mKdV
considered in Proposition 6.6. Then Hi, considered as differential polynomials in ¥, are
densities of conservation laws for (10.1).

The proof is essentially the same as that of Proposition 1.5.

We recall (see Sec. 6) that Hi has degree of homogeneity i + 1 if it is assumed that
deggig== . Moreover, Hj = 0 if and only if the remainder on division of i by the Coxeter
number of G is an exponent.

Definition. It is said that the equation

2 £ (b Yo Y Wer Vs brere ) (10.5)

is a symmetry for the equation
F(‘P» 'qJX! 1*pT! 'prxv \p«\'ﬁ 1p‘t‘h"')=0v (10.6)

if the derivative with respect to t of the left side of (10.6) computed by Eq. (10.5) vanishes
on substituting for ¥ any solution of Eq. (10.6).

Remark. If the set of solutions of Eq. (10.6) is thought of as a submanifold McW,
where W is the manifold of all functioms Y(x, T), and Eq. (10.5) is considered a vector field
v on W, then the definition presented above can be reformulated very briefly: v must be tan-
gent to M.

We recall (see Proposition 6.8) that a generalized mKdV has the form g¥==g;_f(q,q*,qu...y
After the substitution q = yx it acquires the form g¥=_f(¢x,¢xx,¢XLp_.,). This equation for
p by abuse of language we call, as before, a generalized mKdV.

Proposition 10.3. The generalized mKdV corresponding to the algebra G are symmetries
for Eq. (10.1).

This proposition can be derived from Proposition 10.2 by means of a Hamiltonian formalism
(see [72]). We present a direct proof.

Proof. We recall (see part 6.4) that a generalized mKdV has the form §§==pp@Q+,9L

= . . d o
where wu€8%. It must be shown that if [8, 8]=0, then the derivative 718, 8], computed by the

generalized mKdV is equal to zero. For this it suffices to verify that §§==[¢(u)ﬂ §L
LEMMA 10.4. [8, ¢ (&)]=0.

Proof. Let U and &, be the same as in Proposition 6.2. We set g=e¢-2U(Q). We recall

def — = . .
that @=e2U(Q), ¢ ()=e—24Y(4). Since [, 8]=0, it follows that [&, ¢]=0. From this it is
easy to deduce that & has the form §==§£ﬁ—v(x, 1), v (x, V€S . Therefore, [2, #]=0 , and hence
[L, 9 «)]=0. M

From the lemma it follows that [P (u)*, @]= —[P(4)", 8]. The degree of the left side (in'
the sense of the canonical gradation) is not less than —1, while the degree of the right 51§e
is not more than —1. Therefore, [@(u)*, RL]C> (R, G, and if cp(u)_—_z A, ,where " A, €C~(R?, GY),

1

o X a¥ d — .
then [P (u)", L]=[Ao. e~%Ae%]. On the other hand, = _-Lay, e—mAgw], In the course of the
proof of Proposition 6.8 it was shown that generalized mKdV as an equation for q has the form
dq/dt = —dAg/3x. Therefore, as an equation for y it has the form dy/3t = —Ag.  Thus,
dg

3;==[@(uYﬂ @}, as was required to prove. B

The conservation laws considered in Proposition 10.2 are only half of the known local
conservation laws for Eq. (10.1). In order to obtain the second half it is necessary, roughly
speaking, to interchange x and 1. The same pertains to the symmetries considered in Proposi-
tion 10.3.
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APPENDIX 1

CLASSICAL SIMPLE LIE ALGEBRAS

In this appendix for each classical simple Lie algebra @& we list the system of Weyl
generators Xj, Y, Hi, 1 £ 1 < n (the numbering of the generators corresponds to the number-
ing of the vertices in Table 1). 1In all cases the realization and the system of Weyl genera-
tors are chosen that the Borel (Cartan) subalgebra of @ is equal, respectively, to the inter-
section of @ with the set of all upper triangular (diagonal) matrices.

We recall that XT denotes the matrix obtained from X by transposition relative to the
secondary diagonal.

Type Ap, n 2 1
—sl(n+1)_{AeMat(n+l C)|tr A=0} . System of Weyl generators: X;==¢€it1.i» Yi=€1,141, H,=
€it1,i+1—€4, 1, 1 <i <.
Type B,, n 2 1

def def
6—=o(2n-+1)={AeMat(2n4+1,C)| A= —SA"S-!, S=diag(1, —1,..., —1, 1). System of Weyl gener-
ators: X;=eiy1,i+e€mro—i 21—, ' Vi=e 114 €t1—1. 20421, H=—e1+e1ir1—empr1—1.2041—1+
€21, 2mp2—1, E=1, 2, ..o,n—1; Xp=¢Cur1.n+ €ar2.041, Yn=2(€n,n41+ €ny1.n42), Ho=2(€ns2,n42— En,n)-

Type Cp, n 2 1

def def
G =sp(21) = {A€Mat (2n, C)| A= —SATS, S =diag(l, —1,...,1, —1) . System of Weyl gen-
erators: X;=¢€i+11tmpi—iz—~i,» Yi=€r 41t €m-r2n41—1, Hi=—e€i 1+ €i41,141—€2u—i 20— 1+ €2n41—1, 204111
i=12..., ”——1; Xn=en+l.m Ya =E€n,nt1, H,,= “en,n‘l‘en+1.n+1-

Type D, n 2 3

def det . .
8 = »(2n) — {A6Mat (21, C)| A= —SA'S, S =diag (1, —1,..., (— 1)y, (=i, (—1), ..., D).
System of Weyl generators: X;=ei41,1+ €mt1—1,20—1, Yi=6€1,141+ €20t 20411, H,; =—e;, 1} €itr1,141—
X 1
eon—i,on—1t €2yt 20411, L=1, ..., n—1; X,.=7(€n+1.n_1 + €nyo.n), Yn=2(en-1.n+1 + €nns2), H,=
~—€n—1,n—1—€n,n+ €nt1,nt1+ €ny2,ny2. For m = 2 all formulas remain in force, but the Dynkin scheme

is not connected, so that the algebra ©(4) is semisimple rather than simple. Since the Dyn-
kin scheme of 0(4) consists of two vertices not connected by edges it follows that o(4)==8[(2)X

s1(2).
APPENDIX 2

CLASSICAL KATS—MOODY ALGEBRAS

In this appendix for each classical Kats—Moody algebra we present 1) a realization of G
in the form L(¥, C) , where C is the Coxeter automorphism; 2) a basis of the vector space
3def='{xEG|[A, x]=0} and the eigenvalues of the matrix A in the realization; 3) the standard
realization of G.

We shall consider part 3) in more detail. Generally speaking, for each vertex cp of the
Dynkin scheme of G we ought to present the corresponding standard automorphism 0,:%—%. In
constructing the standard realization corresponding to cp we actually replace % by an algebra

%, of the form R,UR,', where Ry is a permutation matrix, so that op is an automorphism of
def
%, rather than %. Ry is chosen so that the elements of the semisimple algebra ®&={x€

U |Om(x)=x} have block-diagonal form. Further, we do not consider all vertices of the Dyn-
kin scheme (for our purposes it suffices that each vertex be carried by some automorphism of
the Dynkin scheme into one of the vertices considered). For all vertices cp considered we
indicate ¥,, Opy, 6, and also the canonical generators e,EL(QI,,,, G.). Due to the special choice
of the matrices Ry the algebras § and b (see part 6.1) in all cases are equal, respectively,
to @NDiag and @GNt, where t is the set of upper triangular matrices.

In this appendix o(k) and 9p(2n) are the same as in Appendix 1. The number of the
canonical generators of the Kats—Moody algebras corresponds to the number of the vertices
of the Dynkin schemes in Table 2.
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1
Type A,(l),n>1

def 21
U—sn1), CEO=SXS", S=diag(l, o,..., &), where w=e”, h=n-+t1.
System of canonical generators: ey=eéi,ntil, fo=Erp1.18"sy hy=e€1,1—€nt1,nt1} €= E€141,iC, fi=
e i+&7Y, h=e i —ei Ii=1,..., n.
Eigenvalues of A equal to Cwi, i=0, 1,...,n. Basis in '8 is formed by Ai, where {€Z,
i is not divisible by n + 1.

Standard realization corresponding to ¢g:Uy= Y, 6,(X)=X. In this realization &p =
e),n+1hs €1 = ej+y,j. for i = 1,...,n,

2
Type Agn)’ n =2 1
def 2l
Y—st@ut1), C(X)=—SX7S7, S—diag(l, —0, @4..., —o¥, &™), o=e?, h=dn+2.
System of canonical generators: ey=ei 2416, fo=Cwm+1,187"y Bg=e1,1—€2n+1, 20415 €r=(Cs31,1+
€2n42—1, 2n+|—1) C, f1=(61,1+1+ €2n41—1, 2,,+2._1) C'l, ’l,.= —ez,1+el+l. +1 = e2n+l—'-i. 2n+1—1 -+ €2n4-2—1, 20421,
i=1,...,n—1; en=(en+l.n+en+2. a+1) G, fn=2(en.n+1+en+1.n+2)ckl. hn=2(—'en.n+en+2. n+2)'

Eigenvalues of A equal to ?;wzi, i=0,1,...,2n. Basis in 3 formed by A2i+1, where
i6Z, 2i+1 is not divisible by 2n + 1.

Standard realization corresponding to c:¥ =9, 6,(X)=—QX7Q"!, where Q = diag (1,
—1,...,—1, 1). Order of oq equal to two, @=p(2n-+1). In this realization e=28y, 21k ;3
er=eis1.it€mpr—t, tmpi—ty L=l I

Standard realization corresponding to ¢, m=1,..., n: U, =%, o0,(X)=—QX7Q!, where

0 .
Q=(ﬂ 8). a=diag (i, —iyee., —ii€gt(2n—2m+1),p=diag(1,—1,...,1,—1) €41(2m). Order of oy equal
to four, @={(8 g), ago (2n—2m--1), besy (%)} .® In this realization €p=€—m42, Jm—m41} E,-:-
Con—mi2—), tn—ml—] + €on—mi2tj, m—mirdsy S =1l,00e, m— 1 em = (€1, 2041 + €20—2m+42, 20-2m41) A3 Cmay=
€41, ;4 e2m—2mio—g, 2n—2mt1—Jr j=1..., n—m.
Type A(zi)_l, n 22
def ot

¥ =s1(2n), C (X)=—SX7S"!, S=diag(l, —o, 0%..., a¥? , —a¥), w=ek, h=4n—2 .

System of canonical generators: 'eo=%(e1,2n_1+eg, 98 fo=2(2m—1,1+€2m )L, Rg=e,1+€22—
€on—1, 2n—1—€2n, 23 €1= (Cix1,1 + €2my1-1.22-1)C, Fr=(€1 141 4 et i) Bi=—e e, i —
é‘ln—l.2n—i+e2u+l—l.2n+l——h i=l: ey n_.]; en=en+l.nc, fn=e/z,-n+lc>l; hu=_elx.n+elx+l.n+1'

The eigenvalues of A are equal to 0, ¢, e%,..., 0. A basis in the space 8 is formed

. def
by A2“2"‘21‘,,tr (A E, i€Z, where for i<Q A'==L#AMI*A £%0 (we note that trA*!s:0 only
if 21 + 1 is divisible by 2n — 1).
The standard realization corresponding to £5:¥%=9HY, 6. (X) = —QXTQ', where Q = diag (1,

~1,...,1, —=1). The order of G, is equal to two, G =3y (2n). In this realization Eo=% X
(€1, 2n—1-+ €2, 20) A3 E;=ez+|.1+€2n+1—1,2n_1, i=1,..., n—1; en=~Eatl, n-

Standard realization correspounding to ¢,:%, = U, 0, (X)= —QX7Q"!, where Q==diag(l, —1,...,
(=D, (=1, (—D#*2,..., —1, 1). The order of on is equal to two, 8=0(2n). In this real-
ization Za=—;—(e,,+,,,,_l+e,,+z, 25 Ei=en+l-—l,n—l+en+l+l.n+h i=1,...,n—1; én=el.2nx-

Standard realization corresponding to ¢, m=2 3,..., n—1: A, =% 0, (X) = —QX7Q",

where Q = (g 06), a=dlag(—i, i,.... —i, i)Ggt(2n—2m), B =diag(l, —1, oo, (=D (= 1)
(—1™2,. .., 1)€gt{2n). The order of oy is equal to four, @3={(g g), atsy (21 —2m), b€s (2m)]. In

8The fact that ®oo(2n—2m+1)Xsp(2m) follows from the general theory of Kats—Moody algebras (we
recall that the Dynkin scheme of @ is obtained from the Dyukin scheme of G by removing the
vertex cp and the edges continuous to 1it).
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. . . ~ 1 ~ . .
this realization e0=‘§ (3211—m+|, 2n—m—1-+ €2n—m+2, 2n—m); €)= €n—mi1—j, 20—m—j +em_mt14j, —myjs =
L...,m—1; epy=(1,0F Co2m41, 20—2m) A; Emyj =041, jF Cou—tmir—j, 2um2m—is j=1,00., B—m—1; e, —
en-m+1,n-m*

1
Type Brg ), nz?2
def 2
Y=o(2n+1), C(X)=8SXS", S=diag(l, o, *%..., 0¥, 1), o=e’, h=2n.
. 1 B}
System of canonical generators: &= 5 (e1, 2n+-es, 2241) &, lLy=2(eon, 1+ €oup1,2) &7, Bo=e1,1+€2,2—

€21, 2n—€2n41, 2n+13 € = fo=(€i41, 1 + €my2—1, 2+1-1) &, fz=(€i, i1t €1y, 2ago—) 57, By =—e €, 11—
@nt1—1i, m+1—i T €2m+2—1, 2n42—1i, i=1,... ,n—1; e, = (eu+1‘ n+enya, u+l) g, fa = 2(311. a4l + Entr, n+2) gL, hy =
2(en+2. n+'2_e-'1-")'

The eigenvalues of A are equal to O, &, @f,..., @ 1{. A basis in 3 is formed by A¥"!, i6Z,
def

where for i<Q A =U-RANIRRE B0

Standard realization corresponding to c¢u: =%, G(X)=X, B =,(2z-+ 1). In this real-
ization Eog%(el,zn-f-e'z,zn.{-l)}»: er=eis1, 1+ €ntr—i, mp1—1, E=1,..., 1.

Standard realization corresponding to ¢, m=2,...,n ﬂmg{Xeal(Qn—{—l)]X: _RXTR'l},

where R=(g o) a=diag(l, —1,..., =1, Desl@n—2m + 1), P=disg(—1,1,..., (=D (=),

(— 1™, L0 —1)6al(@2m); o,(X) = QXQ™', where Q=diag(—1, —1,..., —1, 1,1,...,1). The order of
2n—2m+1

Om 1s equal to two, @={(8 g), aeo (2n —2m - 1), beo(2m)}. In this realization Eo=-%(eg,,_,,,+g,2,,_m—|—

32'1—m+3.2n—m+!); Ej = €2a—m424],—m+1+j €2—rn 42— 1, 2—m+1—js J=L ..., m—1; Em = (€1,2n4+1 +

€2n—2m42,2n—-2m41)Ms i =€) 41, i €Con—2ma2—j 2a—2mi1—js J =1, +r ey B—mm,
N
Type Cr(1 ), n =1

2ni
def pui
Y=sp(2n), C(X)=SXS!, §=diag(l,o, 0 ...,0""), o=, £1=2n.
System of canonical generators: ey=ei 2.8, fo=em &', By=e1,1 — eonon; €, = (€it1.1 +
eriri—t,20=1) 5 i = (€141 F-€20—1,2041-1) 5, By= =€y, 1+ i1, 101 — €ane 1 20— 1+ €onr—i b=ty =1, ..., 0 —1;

en=€n+1,u§, fn=en.n+1§’l, hn="—en.n+en+l,n+l-

The eigenvalues of A are equal to i;mi, i=0,1,...,2n — 1. A basis in 3 is formed by
AR (e,

Standard realization correspouding to ¢y:¥y=%U, G(X)=X, @=s59(2n) . In this realization
eg==0),2h} €;=€iy1,i +Comp1—t20 sy i=1,..., n—1: €n="Cuy1.n- et

Standard realization corresponding to ¢, m=1,...,n—1: QIm—_—{XegI(Qn),X:_RXTR"},

where R = (ga)‘ a=diag(l, —1,...,1, —Desl(2:n—2m), B=diag(l, —1,..., 1, —1)es!(2m); O {X)=

- . 0
QXQ~?1, where Q=diag(—1, —1,..., —1,1,1,...,1). The order of oy is equal to two, @={(8 b)’
21—2m
agcsy (2".'—2”1): besy (2”1)}- In this realization €3= €2n—mi1,20—m) €; = 8%—mti+].2n—mt] T C2i—mti—j I—im— >
_{:=1, e, m—1; e, = (€1,21 + €2n—2m11,20—2m) A} Cmsy = €j41,j T €l 2nti—jla—2mn—j: j=1,...,n—m—1;

en=E€n_myl1,n—m-

Type DS, n 2 3

2ni

def priid
Y=0(2n), C(X)=SXS!, S=diag(l, @, ..., 0", 0", 0 ..., 0"3, 1), o=e? , h=21—2,

. 1
System of canonical generators: eo=—2—(e1,2,,_1—{—e2,2,,)€, fo=2(em—1,14€2,2) 8", ho=e; -+ eso—

€2n—1:21—1—€21.205 €; ==(€141,1 + €ont1—1,21—1)C, 1=(€1,141 + ezn—t.2n+1—1)c"l, hy=—e;, + €it1,i41—
. . ] -
€m—1,9m—1 == emp1—t, 211, E=1,...,0—1; en=§(3n+l.n—l + en+2.n)c1 fn = 2(e‘n—l.n+l -1- en,n+2) £, }2,,=

—€n—1,0-1—€n,nt €ni1,041+ Cniz i
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The eigenvalues of A are equal to O (of multiplicity two), {, of, ..., ®?3f . A basis in

. def
3 is formed by A¥*!, i6Z, where for i < 0, AQ‘”;E""’AQ‘”""", k>0 and [rvefF, jGZ. Here
F = (D+(—1)H(DT’ (D=el.n"‘23I.n+1—‘262n.n+432n,n+1-

Standard realization corresponding to c¢: % =%, 6,(X)=X, 8=0(2r). In this realization

~ 1 .z . ;
60=7(el.2n—1+e2.2n)x1 €r=¢€iy1,i+ €111, L—_—‘l, e, n—1; €n=%(6n+1,n—1+en+2.n)-
f
Standard realization corresponding to Cn, m=2,3, ..., n—2 ‘limie: {Xeg((Qn)]X—_—_RXT/\“-I},
0
where R=(B 0), a =dlag(l, —1,..., (==, (=)=t L, 1)esl(2n — 2m), p =diag(—1, 1, ...,
D" (=17, .., —1Esl(2m); 0, (X)=QXQ!, where Q=dizg(—1, —1,.... —1, 1, L,.... ). The
2n—2m
order of oy is equal to two, 8= (g 2), ago (2n —2m), beo(2m)} . In this realization Eo=% x
(ezn—m+l,2n—m—1 -+ e?n-—m+2.2n——m) H E] =egn_m+1+j,2n—m+j+32u—m+1—/.2n—m_1, _]=1, cey,m—1; Em'=(gl.2" +
€2n—2mi1,2n—2m) M} e:,,*j = ej41,j + m_2my1—jam-2m—j) j=1,...,n—m—1; E,,=% (en—m+1,n—m—1+ Cnemt2,n—m)-
Type Dr(nz-z’ n 22
def
Y={Xesl (2n+2) | X = —RXTR1}), R=diag (I, —1, ..., (=)™, 0,0, (—1)*, ..., )+ (—1) entrur2—
def n 2n2

€ni2.nt1,  C(X)=8X§-, S—i—dlag(w, @, ..., 0n —1, 1, o2 et L o) p=¢k, h=2142

System of canonical generators: €y=/(€1a42+ €nt2.2m42)8y fo=2(€nt2.1+ Cont2,ns2) 7Y, Ag=2(€11—
anr2.20+2); €r=(€r41,1 -+ Comnpar,042-1)8, fri=(er1:1+ ot 2n3-) 0"y Bi=—ei it eiqy 10—
€2n42—1,2n4+2—1 + €2m43—1,2n43—1, E=1, .00, n—1; ep=(nt1,n+ €nt3,nt1) , fn=2(nnt1+ €ny1.n43) &1, Hp=2
(—'en.n +e"+3-"+3)'_

The eigenvalues of A are equal to twl, 1 = 0,...,2n + 1. A basis in 8 is formed by
A% 6.

Standard realization corresponding to Cp,, m=0,1,...,n: le‘:{XegI(Qn—|—2)|X= —-RXTR'I} ,
where R_—:(g 9, a=diag(l, —1, ..., Dest(2n—2m1), p=diag (—1, 1, ..., —1)e8t@m+1); Om (X)=QXQ",

where Q=diag(—1, —1,..., —1, 1, 1,...,1). The order of oy is equal to two, @={(g 2).0(5“(2’1—

2m--1), beo (2m+1)}._ In this realization ’éj=ezn_m+2_j_2n_m+1.—j+92u.—m+3+j,2n—m+2+j: J==0,1,..., m—1;

em=(€1,20+2 + Cm—2mi2.2m—2m+1}Ni  €muy =€jt1,j b €m—mi2—j 2m—tmt1—js J= Le..,n—m.
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HIGHER REGULATORS AND VALUES OF L-FUNCTIONS

A. A. Beilinson uDC 512.7

In the work conjectures are formulated regarding the value of L-functions of mo-
tives and some computations are presented corroborating them.

INTRODUCTION

Let X be a complex algebraic manifold, and let K(X), Hi (X, Q) be its algebraic K-groups

and singulary cohomology, respectively. We consider the Chern character ch: K{(X)®Q-@.
H% ’(X Q). It is easy to see that there are the Hodge conditions on the image of ch: we

have ch (K;(X)) C@(WWHﬁ—’ (X, Q))r'](F‘HZ' j(X, C)), where W,, F° are the filtration giving the
mixed Hodge structure on /g (X). For example, if X is compact, then ch (Kj (X)) = 0 for
j > 0. It turns out that the Hodge conditions can be used, and, untangling them, it is pos-
sible to obtain finer analytic invariants of the elements of K, (X) than the usual cohomology
classes. For the case of Chow groups they are well known: they are the Abel—Jacobi—Griffiths
periods of an algebraic cycle. Apparently, these invariants are closely related to the values
of L-functions; we formulate conjectures and some computations corroborating them.

In Sec. 1 our main tool appears: the groups Hé(x,l(i)) of "topological cycles lying in
the i-th term of the Hodge filtration." These groups are written in a long exact sequence

—>Hj—l X C / N BT ] 4 1727 C
@ (X, C)=>Hgp (X, Z(i) +~ Ha (X, Z)oF'Hg (X, C)—....

On Hzp we construct a U -product such that &g becomes a ring morphism, and we show that
Hgp form a cohomology theory satisfying Poincaré duality. Therefore, it is possible to apply
the machinery of characteristic classes to Mz [22] and obtain a morphism ch g:K;(X)®
Q >®Hg / (X, Q). The corresponding constructions are recalled in Sec. 2. Let H2i—’(X

Q (i))cK;(X)8Q be the eigenspace of weight i relative to the Adams operator {2]; then chg
defines a regulator — a morphism I, H/ X, Q(l))—>H@(X Q(#). [1t is thought that for any
schemes there exists a universal cohomology theory H’ ‘e (X, Z(i)), satisfying Poincare duality
and related to Quillen's K-theory in the same way as in topology the singular cohomology is
related to K-theory; H'y, must be closely connected with the Milnor ring.] In the appendix
we study the connection between deformations of chg and Lie algebra cohomologies; as a
consequence we see that if X is a point, then our regulators coincide with Borel regulators.
There we present a formulation of a remarkable theory of Tsygan—Feigin regarding stable co-
homologies of algebras of flows. Finally, Sec. 3 contains formulations of the basic conjec-—
tures connecting regulators with the values of L-functions at integral points distinct from
the middle of the critical strip; the arithmetic intersection index defined in part 2.5 is
responsible for the behavior in the middle of the critical strip. From these conjectures
(more precisely, from the part of them that can be applied to any complex manifold) there
follow rather unexpected assertions regarding the connection of Hodge structures with alge-
braic cycles. The remainder of the work contains computations corroborating the conjectures
in Sec. 3. Thus, in Sec. 7 we prove these conjectures for the case of Dirichlet series;
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