
RESEARCH STATEMENT

FORTE SHINKO

My research is in descriptive set theory and its connections to dynamical systems and geometric
group theory.

1. Introduction

1.1. Descriptive set theory. Descriptive set theory is the study of “definable” subsets of Polish
spaces and maps between them, for various notions of definability. Most commonly, we take
“definable” to mean Borel, where a Borel set is an element of the σ-algebra generated by the
open subsets of a Polish space, and where a Borel function X → Y is one under which the
preimage of every open set is Borel. Other common notions of “definable” include analytic and
Baire-measurable.

By restricting one’s study to definable sets, it is possible to prove more structural theorems
than in the general setting. For instance, the continuum hypothesis holds for Borel sets, that is to
say, every Borel subset of R is either countable or of size continuum. This is in stark contrast to
arbitrary subsets of R, where the existence of a subset A ⊆ R with ℵ0 < |A| < |R| is independent of
ZFC. Another benefit is the absence of pathologies obtained from the Axiom of Choice and other
non-constructive arguments, such as the existence of a basis for R as a Q-vector space, which is
possible due to the Axiom of Choice but not in a definable way, in that there is no Borel basis.

1.2. Borel equivalence relations. Over the past 40 years, descriptive set theory has seen a
wide variety of connections with areas outside of logic, such as ergodic theory, operator algebras,
geometric group theory, and more recently, computer science. One important concept which has
emerged in these applications is that of a Borel equivalence relation, that is, an equivalence
relation E on a standard Borel space X such that E is a Borel subset of X2. Many classification
problems in mathematics arise as Borel equivalence relations, such as the classification of finite
rank torsion-free abelian groups up to isomorphism, or the classification of unitary operators on the
infinite-dimensional Hilbert space up to conjugacy.

The most important notion in Borel equivalence relations is Borel reduction, which lets one talk
about the relative hardness of two problems, analogous to polynomial time reduction in complexity
theory. Given Borel equivalence relations E and F on X and Y respectively, a Borel reduction is a
Borel map f : X → Y such that x E x′ iff f(x) F f(x′). Informally, it says that if one can classify
up to F -equivalence then one is also able to classify up to E-equivalence by applying f . If there
is a Borel reduction from E to F , one says that E is Borel reducible to F , denoted E ≤B F .
The “simplest” class of Borel equivalence relations are the smooth equivalence relations, which are
those Borel equivalence relations E which Borel reduce to =R, the equality relation on R. In other
words, there are concrete invariants that exactly classify the elements of X up to E-equivalence. For
instance, Ornstein’s isomorphism theorem says that Bernoulli shifts are classified up to isomorphism
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by their Kolmogorov-Sinai entropy, and thus isomorphism of Bernoulli shifts is a smooth equivalence
relation, with the Borel reduction being the map which sends a shift to its entropy.

1.3. Countable Borel equivalence relations. A large part of my research is focused on count-
able Borel equivalence relations (CBER), which are Borel equivalence relations with every
class countable. An important source of examples arises as follows: given a countable group Γ with
a Borel action on a standard Borel space X, the orbit equivalence relation EXΓ is defined by
x EXΓ x′ iff ∃γ[x′ = γ · x]. This is a CBER, and in fact, a theorem of Feldman and Moore shows
that every CBER on X is the orbit equivalence relation of some Borel action of a countable group
on X. In this way, the theory of CBERs is very intimately connected with the study of countable
groups and their Borel and measurable aspects. Amenability plays an important role in the study
of hyperfiniteness (defined below), and the use of property (T) groups allows us to invoke such
powerful theorems as Popa’s cocycle superrigidity theorems.

The Borel reducibility preorder ≤B on CBERs looks like the following:

=0

=1

=2

...

=N

=R

E0

everything else

E∞

where the relations in this diagram are defined as follows (starting from the bottom):

• =X is the equality relation on the space X.
• E0 is the eventual equality relation on 2ω defined by

x E0 y ⇐⇒ ∃n∀m ≥ n [xm = ym].

• E∞ is the orbit equivalence relation induced by the shift action of F2 on 2F2 . This is a
universal CBER, that is, for every CBER F , we have F ≤B E∞.
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2. Hyperfinite Borel equivalence relations

A relatively low class (in terms of Borel reduction) of CBERs is that of the hyperfinite CBERs.
A CBER E on a standard Borel space X is hyperfinite if it satisfies any of the following equivalent
conditions:

(1) there is an increasing sequence (En)n of finite Borel equivalence relations on X such that
E =

⋃
nEn (an equivalence relation is finite if every class is finite);

(2) there is a Borel Z-action on X such that E = EXZ ;
(3) E ≤B E0,

From the image above and the third characterization of hyperfiniteness, we see that the hyperfinite
CBERs are exactly the next level of complexity after the smooth CBERs, which justifies the view
that the hyperfinite CBERs have relatively low complexity.

Other examples of hyperfinite CBERs arise from boundary actions of countable groups. For
instance, we have shown in [HSS20] that if Γ is a cubulated hyperbolic group. then action of Γ on its
Gromov boundary ∂Γ is hyperfinite, generalizing the classical result of Dougherty-Jackson-Kechris
[DJK94, Corollary 8.2] that the tail equivalence relation Et on 2ω is hyperfinite. The same result for
arbitrary (finitely generated) hyperbolic groups has been obtained by Marquis and Sabok in [MS20].

In a completely different direction, we have shown recently that hyperfinite CBERs arise from
the cosets of a countable normal subgroup:

Theorem 1. [FSb] If G is a Polish group and Γ is a countable normal subgroup, then G/Γ is
hyperfinite (where we write G/Γ to mean EGΓ ).

In particular, if Γ is a countable group, then Out(Γ) is hyperfinite.

This was a surprising result since generally, a nontrivial construction taking a countable group
Γ to a CBER will reflect some of the complexity of Γ. For instance, if a countable group Γ is
non-amenable, then the shift action of Γ on 2Γ is not hyperfinite, and it is an important open
question as to whether this characterizes (non)-amenability.

The analogous question in the case of locally compact groups is still open. The generaliza-
tion of hyperfiniteness to this setting is hypersmoothness, where a Borel equivalence relation is
hypersmooth if it is an increasing union of smooth Borel equivalence relations.

Question 1. Let G be a Polish group, and let H be a Borel subgroup which is Borel isomorphic to
a locally compact Polish group. Is G/H hypersmooth?

3. Topological realizations

For this section, we will mostly be concerned with aperiodic CBERs, that is, CBERs with every
class infinite.

Although notions such as Borel reduction and Borel equivalence relations do not remember the
Polish topology, one can often use the topology to prove purely Borel results. A characteristic
instance of this is that if Γ is a countable group acting by homeomorphisms on a Polish space X
with every equivalence class dense, then EXΓ is not smooth. As a corollary of this result, if Γ is a
countable group acting on a compact Polish space with infinite orbits, then EXΓ is not smooth.

A CBER E on a Polish space X is minimal if every E-class is dense. An aperiodic CBER E
on X has a minimal action realization if there is a countable group Γ and a Polish Γ-space Y
such that EYΓ is minimal and Borel isomorphic to E. By the fact above, if E has a minimal action
realization, then it is not smooth.

The converse is still open:



RESEARCH STATEMENT 4

Question 2. Does every non-smooth aperiodic CBER have a minimal action realization?

We have shown that there is a positive answer if we do not require the group action. Say that
a CBER E has a minimal realization if there is a minimal CBER F on a Polish space Y such
that E is Borel isomorphic to F . This is similar to the minimal action realization, without the
requirement of a group action.

Theorem 2. [FKSV21, Theorem 3.1] Every aperiodic CBER E has a minimal realization.

This already has Borel consequences, such as the existence of certain marker systems and
stationary measures, see [FKSV21, Section 3].

In the case of group actions, we know that every hyperfinite CBER has a minimal action realization,
but other than some other special cases, the question is still wide open.

An aperiodic CBER E on X has a compact action realization if there is a countable group Γ
and a compact Polish Γ-space Y such that EYΓ is Borel isomorphic to E.

Question 3. Does every non-smooth aperiodic CBER have a compact action realization?

We can prove various cases here, including the hyperfinite CBERs, free parts of Bernoulli shifts,
and universal compressible CBERs (e.g. arithmetic equivalence on 2N), but the general case is again
wide open, and will be addressed in future research.

Clinton Conley asked the weaker question of whether every E has a Kσ realization, i.e. whether
it is isomorphic to a Kσ CBER, where a Kσ set is one which is a countable union of compact sets.
We have answered this question in the positive:

Theorem 3. [FKSV21, Theorem 3.9.1]. Every aperiodic CBER has a Kσ-realization.

A natural setting for realizations is in the context of subshifts. Given a group Γ and a Polish
space X, a subshift is a closed Γ-invariant subspace of XΓ, where the Γ-action on XΓ is the shift
action. If K is a subshift, let EK denote its orbit equivalence relation.

We can realize a universal CBER as a subshift:

Theorem 4. [FKSV21, Corollary 3.6.6] There is a minimal subshift K of 2F3 such that EK is a
universal CBER.

A CBER E on X is compressible if there is a family (fC)C , indexed by the E-classes C, of
proper injections fC : C → C, such that the function X → X defined by x 7→ f[x]E (x) is Borel. By
Nadkarni’s theorem, this is equivalent to the non-existence of an invariant Borel probability measure
for E. We characterize amenable groups in terms of compressible subshifts:

Theorem 5. [FKSV21, Theorem 3.7.1] Let Γ be a countable group. Then Γ is non-amenable iff
there is a subshift K of 2Γ such that EK is compressible.

A natural consideration in this context is the space of all subshifts. For a Polish space X, let
Sh(X) denote the standard Borel space of subshifts of XF∞ . If X is compact, then Sh(X) has a
compact Polish topology compatible with the Borel structure. Every CBER arises as EF for some
F ∈ Sh(RN), so we think of Sh(RN) as a universal space of CBERs. Similarly, every CBER with
a compact action realization arises as EK for some K ∈ Sh([0, 1]N), so we think of Sh(RN) as a
universal space of CBERs with a compact action realization.

We compute the descriptive and topological complexity of various classes of subshifts. A CBER
E on X is measure-hyperfinite if for every Borel probability measure µ on X, there is a µ-conull
subset Y of X such that the restriction E�Y of E to Y is hyperfinite. A subshift K is smooth
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(resp. hyperfinite, measure-hyperfinite) if its orbit equivalence relation EK is. A subshift K is
free if the action Γ y K is free. The most important results are summarized in the following table:

Φ {K ∈ Sh([0, 1]N) : K has property Φ}
smooth meager Π1

1-complete

hyperfinite ? Σ1
2

measure-hyperfinite comeager Π1
1-complete

free measure-hyperfinite comeager Gδ

It is a major open question to determine that the descriptive complexity for hyperfiniteness is
not just Σ1

2, but in fact Σ1
2-complete, and we suspect that the set of hyperfinite subshifts is

comeager. It is surprising that although the set of measure-hyperfinite subshifts is Π1
1-complete,

the set of free measure-hyperfinite subshifts is Gδ. This uses the nontrivial equivalence between
measure-amenability and topological amenability, see [FKSV21, Appendix A].

The fact that the smooth subshifts are Π1
1-complete has the following implication for compact

action realizations:

Theorem 6. [FKSV21, Theorem 3.8.12] For every x ∈ 2N, there is a non-smooth aperiodic subshift
F ∈ Sh(RN), such that for every K ∈ Sh([0, 1]N), there is no ∆1

1(F, x) isomorphism of EF with EK .

This means that even if Question 3 has a positive answer, that is, even if every non-smooth
aperiodic CBER has a compact action realization, there is no “effective” way to obtain this realization.

4. Lifts of Borel actions

Let E be a countable Borel equivalence relation on X. A Borel permutation of X/E is
a bijection f : X/E → X/E such that the set {(x, x′) ∈ X2 : f([x]E) = [x′]E} is Borel. Let
SymB(X/E) denote the group of Borel permutations of X/E. We are concerned with the problem
of lifting Borel permutations to Borel isomorphisms on the space X. More precisely, a Borel
automorphism of E is a Borel isomorphism T : X → X such that x E x′ iff f(x) E f(x′). Let
AutB(E) denote the group of Borel automorphisms of E. Every T ∈ AutB(E) induces a Borel
permutation of X/E sending [x]E to [T (x)]E , and a Borel permutation of X/E induced by a Borel
automorphism of E is called outer. The outer automorphism group of E, denoted OutB(E),
is the subgroup of f ∈ SymB(X/E) which are outer.

For a countable group Γ, an action Γ y X/E by Borel permutations is called a Borel action,
which is equivalently a homomorphism Γ→ SymB(X/E). We say a Borel action lifts if it factors
through the map AutB(E)→ SymB(X/E) described above. We show that for compressible CBERs,
every action lifts:

Theorem 7. [FKS, Theorem 3.5] Let Γ be a countable group and let E be a compressible CBER.
Then every Borel action Γ y X/E lifts.

If E is not compressible, there can be elements of SymB(X/E) which are not outer, and thus
there are Borel actions on X/E which do not lift. For this reason, it is interesting to restrict the
setting to that of outer actions. An outer action of a countable group Γ is a Borel action Γ y X/E
by outer permutations, in other words, a homomorphism Γ → OutB(E). A common situation
where this arises is the following: if Γ y X is a Borel action of a countable group on a standard
Borel space, and N / Γ is a normal subgroup, then the action Γ y X descends to an outer action
Γ→ OutB(EXN ).
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Let G be the class of countable groups for which every outer action Γ→ OutB(E) lifts for every
CBER E. We have shown that G contains a wide variety of groups:

Theorem 8. [FKS, Section 7]

(1) G contains all amenable groups.
(2) G contains all amalgamated products of finite groups.
(3) G is closed under subgroups.
(4) G is closed under free products.

The first point generalizes a result of Feldman, Sutherland and Zimmer in the measurable setting,
see [FSZ89, Theorem 3.4]. An interesting feature of the proof of the second point is that it uses
Tarski’s theory of cardinal algebras (see [Tar49]), which is starting to see applications in the study
of countable Borel equivalence relations, for example in [Shi21], where we apply cardinal algebras to
the study of invariant measures (see also [KM16], [Che18]).

We also have an upper bound on this class of groups.

Theorem 9. [FKS, Proposition 4.11] Every group Γ in G is treeable, that is, there is a free pmp
action of Γ on a standard probability space which is treeable (a Borel equivalence relation E on X is
treeable if there is a Borel forest T on X whose connected components are exactly the E-classes).

There are many examples of groups which are known to not be treeable, for instance, every
property (T) group, and every product Γ×∆, where Γ is infinite and ∆ is non-amenable.

We hope to characterize the class of groups in G:

Question 4. Which groups are in G? Is it exactly the class of treeable groups?

5. Dichotomies for Polish modules

Many of the cornerstone results in descriptive set theory are dichotomy theorems, which state that
either an object satisfies some countability condition, or otherwise, there is a canonical obstruction
to uncountability. The fundamental example is Cantor’s perfect set theorem, which states that a
Polish space is either countable, or it contains a copy of the Cantor space. A more modern example
is the G0-dichotomy of Kechris, Solecki and Todorčević, which states that a Borel graph G either
has countable Borel chromatic number, or there is a Borel homomorphism from a certain graph G0

with uncountable Borel chromatic number to G.
We have shown a family of dichotomy theorems for vector spaces, and more generally, modules

over certain nice classes of rings. If a Polish Q-vector space V is uncountable, then it has dimension
2ℵ0 , so it is uniquely determined up to isomorphism. However, the existence of a basis uses the
Axiom of Choice, and indeed, it turns out that many of these Polish Q-vector spaces are not Borel
isomorphic. For Polish Q-vector spaces V and W , write V v W if there is an injective Borel
homomorphism from V to W . We construct a Polish Q-vector space `1(Q), and show that it is the
obstruction to countability:

Theorem 10. [FSa] Let F be a countable field, and let V be a Polish Q-vector space. Then exactly
one of the following holds:

(1) V is countable.
(2) `1(Q) v V .

There are still many properties of the embedding order which we do not yet understand. For
instance, the above theorem shows that `1(Q) v R, but we do not know if there is anything in
between:
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Question 5. Is there a Q-vector space V such that `1(Q) @ V @ R?

Another natural question is the existence of a maximum element for the embedding order. In the
case of R and C, a positive answer is known due to Kalton [Kal77], and in the case of Z, a positive
answer is known due to Shkarin [Shk99]. In general, the answer is not known:

Question 6. Let R be a Polish ring. Is there a Polish R-module M such that for every Polish
R-module N , we have N vM?

6. Future directions

In future work, I would also like to look more into problems in Borel combinatorics, including
the very exciting recent developments which connect it with the LOCAL model for distributed
algorithms. I would also like to look more into Borel and analytic equivalence relations which are
not necessarily countable, since there are many techniques and areas explored there which do not
come up in the countable context, such as turbulence for Polish group actions, the classification of
classes of countable structures up to isomorphism, and the use of forcing.
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