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1. Notice that (p(x))n has 3n + 1 coefficients, whose sum is p(1)n = 1.1n. So the average
coefficient is 1.1n

3n+1
. This goes to infinity, for example by l’Hospital’s rule:

lim
n→∞

1.1n

3n+ 1
= lim

x→∞

1.1x

3x+ 1

= lim
x→∞

1.1x log(1.1)

3
=∞.

Since the largest coefficient is greater than or equal to the average, the largest coefficient
goes to infinity as well.

Remark: Archit Kulkarni points out that a similar argument could be used even for
q(x) = 0.3x3−0.4x2−0.1x+ 0.5, for example by plugging in the norm-1 complex number
e2πi/3 instead of 1. This takes some extra care: at first, it only gives a lower bound for
the largest coefficient in absolute value. However, a large negative coefficient would have
to be canceled by some large positive coefficients, because the sum of the coefficients is
q(1)n = 0.3n > 0.

2. Solution 1. No. Suppose the cube is originally located at coordinates [0, 1]3, and color
the lattice points Z3 ⊂ R3 with a checkerboard; i.e. color (x, y, z) white if x + y + z
is even and black if it is odd. Then with each move, each corner of the cube moves
from one lattice point to another lattice point of the same color. The desired transfor-
mation would move every corner to a lattice point of the opposite color, so it is impossible.

Solution 2. Suppose for contradiction that it is possible. We use two different par-
ity arguments, first to show that it must take an even number of moves, and then to show
it must take an odd number of moves. For the former, paint the plane with a checker-
board, with the square initially resting on a light square. Every move goes from a light
square to a dark one or vice versa, so we need an even number of moves to return to
the initial square. (Or alternatively: the number of forward rolls equals the number of
backward rolls, and similarly for right and left, so the sum of all four numbers is even.)

To show the number of moves must be odd, look at the cube in a reference frame that
moves, but does not rotate, with the cube. In this reference frame, each move is a four-
cycle of faces, which is an odd permutation. We want to do a different four-cycle of
faces, which is also an odd permutation. But an odd permutation cannot be written as
a product of an even number of odd permutations, so we need an odd number of moves.



This is a contradiction.

Solution 3. Instead of the second parity argument of solution 2, we color the vertices of
the cube white and black in such a way that adjacent vertices have opposite colors. Then
every move sends every white corner to a black corner and vice versa, in the reference
frame of the cube. The desired operation switches the colors, so it must be done in an
odd number of moves.

Solution 4. Instead of the second parity argument of solution 2, we say that the faces
on the top, front, and right are visible, and we label each face with an integer, so that
the originally visible faces are odd numbers and the rest are even. Consider the sum of
the numbers on the visible faces as the cube is rotated. Each move keeps two of those
three faces visible and replaces one with its opposite. Since opposite faces have numbers
of opposite parities, the sum of the visible numbers changes parity with every move. It
started odd and must finish even, so we need an odd number of moves.

Solutions 5-7. Several other permutation parity arguments can replace the second half
of solution 2. For example, the rotations of a cube can act as permutations on the three
pairs of opposite faces, the four pairs of opposite corners, or the 12 edges; each 90-degree
rotation is an odd permutation of any of these things. In particular, the possible moves
and the target permutations are all odd permutations, so an odd number of moves are
needed.

Remark: The group of rotations of a cube is isomorphic to the symmetric group S4, and
one isomorphism is given by its action on the four pairs of opposite corners. The other
permutation parity arguments we used exhibit homomorphisms S4 → Sn for n = 6, 3, 12,
which send even permutations to even permutations and odd to odd. The homomorphism
S4 → S3 is surjective, and the others are injective.

3. There are n!− 1 impossible labelings. First suppose that all n of the labels are distinct.
Then any move will leave two balls with different labels in the same box, and they will
always remain together. So in this case, your goal is possible if and only if it has already
been achieved; the n!− 1 non-identity permutations are impossible.

On the other hand, we claim that your goal can always be achieved if at least two balls
have the same label. To achieve it, begin by consolidating balls with matching labels:
for each label that appears on more than one ball, pour all balls with that label into one
of their initial boxes. Note that once we have done this (or even made one move), there
will always be at least one empty box available to us, namely the one we most recently
poured from.

After this, use the following procedure until all balls are in the correct place. Choose
a box, A, that contains balls that belong in another box, B. If B is empty, pour A into
B. Otherwise, find an empty box C, pour B into C, and then pour A into B. Now all
balls labeled B, and only them, will be in B. This means we can ignore box B and repeat
inductively with the remaining n− 1 boxes until we accomplish our goal.

4. Solution 1. The answer is 2n− 1. Clearly it is not less than that: G must have a set of
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n vertices all connected to each other, and a set of n vertices all disconnected from each
other, and at most one vertex can lie in both sets. To construct such a G with 2n − 1
vertices, we induct on n. For n = 1, a single vertex with no edges works. Then suppose
we are given a graph G on vertex set V = {v1, . . . , v2n−1} that works for n. Build a
new graph G′ on vertex set V ′ = V ∪ {w0, w1}, where w0 is connected to nothing and
w1 is connected to all vi. Then for any 0 ≤ k ≤

(
n
2

)
, we can find an induced subgraph

with n + 1 vertices and k edges, consisting of n vertices from V along with w0. For any
n ≤ k ≤

(
n+1
2

)
, we can choose n vertices from V with k − n edges among them, and add

w1 to them. Since
(
n
2

)
≥ n− 1 for all n, this exhausts all choices of k. So 2n− 1 vertices

suffices for all n by induction.

Solution 2. As proved in solution 1, no such G exists on fewer than 2n− 1 vertices. We
give an explicit description of a graph on 2n− 1 vertices that works. Let G have vertices
a0, . . . , an−1 and b1, . . . , bn−1, with all ai disconnected, all bj connected, and ai connected
to bj if and only if j > i.

Given 0 ≤ k ≤
(
n
2

)
, we choose m ≥ 1 such that

(
m
2

)
≤ k <

(
m+1
2

)
=

(
m
2

)
+ m, and

we set ` = k −
(
m
2

)
. If k =

(
n
2

)
, then we choose the n vertices a0, b1, . . . , bn−1; otherwise,

we have m ≤ n − 1. Then the n − 1 vertices b1, . . . , bm, am+1, . . . , an−1 have exactly
(
m
2

)
edges among them, namely the ones among the bj. Adding am−` (which is valid because
0 ≤ ` < m) gives us an additional ` edges, from this vertex to bm−`+1, . . . , bm, so we have
found n vertices joined by exactly

(
m
2

)
+ ` = k edges, as desired.

Solution 3. As before, no such G exists on fewer than 2n− 1 vertices. To construct one
with 2n− 1 vertices, let the vertex set consist of the integers 1− n, . . . , n− 1, and draw
an edge between two numbers if their sum is positive. Note that this graph contains all
edges among {0, . . . , n− 1} and none among {1− n, . . . , 0}.

To get an induced subgraph with intermediate numbers of edges, we use the following
lemma: if there are k vertices among {a1, . . . , ai, ..., an}, then there must be either k or
k + 1 vertices among {a1, . . . , ai + 1, . . . , an}. (Here we are assuming that all vertices in
both sets are distinct.) Proof: the only possible change is that ai + 1 is connected to
−ai, and ai isn’t. So the number of edges increases by 1 if some aj equals −ai, and stays
constant otherwise.

To finish the proof, begin with the set {1 − n, . . . , 0}, and slide the vertices over to
{0, . . . , n− 1}, moving one vertex at a time one step at a time to the right. This will pro-
duce a sequence of induced subgraphs, starting with 0 edges and ending with

(
n
2

)
edges,

and attaining every intermediate value at least once.

Remark: The graphs constructed in the second and third solutions are isomorphic, by
identifying ai with −i and bj with j. They are also isomorphic to the graph constructed
recursively in the first solution, where w0 corresponds to an−1 and w1 corresponds to bn−1.
But there are other graphs that work: for example, in the first solution, we are free to
choose at each stage of the recursion whether there is an edge between w0 and w1.

5. Solution 1: Bob can win. We claim that Bob can play in such a way that there is equally
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much blue and red after each of his moves. This is clearly true for the first move: Bob
avoids overlapping Alice’s circle.

Suppose by induction that Bob has played his first n > 0 moves and maintained equality
of red and blue so far. If Alice plays anywhere and then Bob plays on top of her move,
then there will be at least as much blue as red, since nothing has been painted red that
wasn’t red before, and everything that was blue before remains blue. If instead Bob re-
peats his own nth move, the exact opposite will be true, so there will be at least as much
red as blue. It follows by the intermediate value theorem that Bob can equalize the colors,
since (blue area − red area) is a continuous function of the point in the plane at which
Bob places his circle. So by induction, Bob can keep the areas equal after any number of
moves, and thereby win the game.

Remark: This strategy allows Bob to win if the game is played on any convex region
in the plane, provided that Bob has enough room to avoid overlapping Alice’s first move.
For example, a circle of radius 3 or a square of side length 2

√
2 + 2 is enough. On a

smaller board, Alice wins by playing all of her moves in the center.

Remark: Some people noticed that every move increases the player’s “margin” (i.e.
player’s area minus opponent’s area) by some number in [0, 2π], and claimed that Bob
can always simply match the amount Alice increases her margin by. This is true by the
argument above, but not obvious: Bob can always increase his margin by any number
in [π, 2π], but only sometimes by numbers in [0, π). For example, he can only keep his
margin constant if he has a solid blue circle of radius 1 somewhere on the board after
Alice’s move, and Alice can prevent this if she wants.

Solution 2: Bob can win. We claim by induction that Bob can force the following
situation to hold for each n: After Bob’s nth move, the circles played so far can be
arranged into some number of clusters such that

(i) the clusters come in pairs, where a pair of clusters differ by some translation in the
plane and otherwise look identical with colors switched; and

(ii) no two circles in different clusters have their centers within 22018−n units of each
other.

In particular, if Bob can achieve this, then no two circles in different clusters will overlap
after 2017 moves, by condition (ii), so Bob will win by condition (i). To achieve it on move
1, Bob plays at least 22017 units away from Alice. Afterwards, suppose the conditions hold
after Bob’s nth move, and define two circles to be close on move n+ 1 if their centers are
within 22018−(n+1) units apart. Then if Alice’s (n+ 1)st move is not close to any existing
circle, Bob plays a circle that is also not close to any existing circle. This clearly satisfies
conditions (i) and (ii), where the clusters are as before plus a new pair of singleton clusters.

On the other hand, if Alice’s (n+ 1)st move is close to some existing circle, it can only be
close to one existing cluster C, by the inductive hypothesis and the triangle inequality.
Bob plays in the corresponding location relative to that cluster’s pair D (which is different
from C). Bob’s new circle is not close to Alice’s, because they can be translated to a pair
of existing circles in C and D, which are at least 22018−n units apart by the inductive
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hypothesis. Nor is Bob’s new circle close to any other existing circle outside D, again by
the inductive hypothesis and the triangle inequality. So if we declare Alice’s and Bob’s
new moves to be part of clusters C and D respectively, then condition (ii) is satisfied.
Since Bob matched the location of Alice’s new move, and no clusters other than C and
D were overlapped, condition (i) is also satisfied. This completes the induction, so Bob
can win.

Remark: Bob can also replace “translation” in condition (i) by “isometry” (i.e. allowing
rotations and reflections), at the cost of replacing powers of 2 by powers of 3. Otherwise,
Bob’s new move may be close to Alice’s new move.

Remark: This solution is trickier than one might expect. If the game were played on
the disjoint union of two planes, Bob would easily win by matching all of Alice’s moves
on the other plane. As it is, Bob might reasonably try playing (e.g.) 4 · 2017 units away
from Alice’s first move, thinking that this is far enough that the two moves “can’t affect
each other”, and that he can simply match whatever Alice plays thereafter. However, Al-
ice can complicate matters by always playing halfway between two existing moves. Within
approximately log2(4 · 2017) ≈ 13 moves, Alice will be able to create an overlap that Bob
won’t be able to mirror. In order to maintain symmetry, Bob needs to play exponentially
far away.

6. Solution 1: (Essentially the one found by four competitors.) Note that an is odd for
n > 1, since 2an−1 is even and 3an−1 is odd. We claim that if N satisfies the given condi-
tion, then 2N + 3N does too. To prove this, assume that N | an for all sufficiently large n.
Then for sufficiently large n, we have an+1 = 2an + 3an = 2kN + 3kN for k = an/N . Since
k is odd (it divides the odd number an, n > 1), this is divisible by 2N + 3N .

Since N = 1 works and 2N + 3N > N for all N , this gives an infinite sequence of distinct
integers 1, 21 + 31 = 5, 25 + 35 = 275, . . . that work.

Solution 2: We claim that N = 5k works for all k. First observe that all terms be-
yond a0 satisfy an ≥ 2, so the following congruences hold for all n > 0:

an+1 = 2an + 3an ≡ 0 + 1 ≡ 1 (mod 2);

an+2 = 2an+1 + 3an+1 ≡ 0 + 3 ≡ 3 (mod 4);

an+3 = 2an+2 + 3an+2 ≡ 3 + 2 ≡ 0 (mod 5),

where each line follows from the preceding one. We use this as a base case for induction
on k. Suppose that k ≥ 1 and all but finitely many an are divisible by 5k. We claim
that if n is large enough so that 5k | an, then 5k+1 | an+1; this implies that N = 5k+1 works.

To prove our claim, first observe that since ϕ(5k+1) = 4 · 5k, Euler’s theorem implies
that 24·5k ≡ 34·5k ≡ 1 (mod 5k+1). Given that 5k | an, we get that 4 · 5k | 4an and there-
fore 24an ≡ 34an ≡ 1 (mod 5k+1). So 2an and 3an are both fourth roots of unity modulo
5k+1. But one can show using Hensel’s lemma that there are exactly four fourth roots of
unity modulo any 5k+1: ±1, and a pair of integers mod 5k+1 that we call ±ζ, where ζ ≡ 2
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(mod 5). But since an ≡ 3 (mod 4) for n large enough, we have

2an ≡ 23 ≡ 3 (mod 5) and

3an ≡ 33 ≡ 2 (mod 5),

since 24 ≡ 1 (mod 5) by Fermat’s little theorem. So in fact 2an and 3an are respectively
congruent to −ζ and ζ (mod 5k+1). So 2an + 3an ≡ 0 (mod 5k+1), and we are done by
induction.

Remark: One can also prove the inductive step above by showing that all but the first
and last terms in the binomial expansion of (2 + 3)an are divisible by 5k+1, as is 5an itself.

Remark: Ben Castle, who miscalculated mod 25 while test-solving this problem, dis-
covered that 11n also works for all n. In fact, a version of solution 2 can be used to
show that for any (necessarily odd) prime N = p that works, all pk must also work. This
comes from the fact that the ring Zp = lim← Z/pnZ of p-adic integers contains a full set
of (p − 1)st roots of unity, called Teichmüller representatives, with exactly one in each
nonzero residue class modulo p; 2an and 3an will converge on some pair of additive inverses
among them.
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