
Math 191 Homework 8: Number theory
Due: Monday, October 30, 2017

The problems are weighted by (approximate) difficulty. Solve at least 13 points worth of pro-
blems; don’t count problems whose solutions you’ve seen before. Complete proofs are required
for all problems. As always, you must write your solutions up by yourself, and you must cite
any ideas that aren’t your own.

1 point

1. (1988 B1) A composite (positive integer) is a product ab with a and b not necessarily
distinct integers in {2, 3, 4, . . . }. Show that every composite is expressible as xy + xz +
yz + 1, with x, y, z positive integers.

2. Find all integers n such that n ≡ 1 (mod 3), n ≡ 2 (mod 5), and n ≡ 3 (mod 7). (Try
to do this as efficiently as possible.)

3. An integer is called squarefree if it is not divisible by any squares other than 1. Prove
that there exist 100 consecutive integers none of which are squarefree.

2 points

4. (2005 A1) Show that every positive integer is a sum of one or more numbers of the form
2r3s, where r and s are nonnegative integers and no summand divides another. (For
example, 23 = 9 + 8 + 6.)

5. (1989 A1) How many primes among the positive integers, written as usual in base 10, are
alternating 1’s and 0’s, beginning and ending with 1?

6. Prove that the equation a2 + b2 = 3c2 has no integer solutions other than a = b = c = 0.

7. (2013 A2) Let S be the set of all positive integers that are not perfect squares. For n
in S, consider choices of integers a1, a2, . . . , ar such that n < a1 < a2 < · · · < ar and
n ·a1 ·a2 · · · ar is a perfect square, and let f(n) be the minimum of ar over all such choices.
For example, 2 · 3 · 6 is a perfect square, while 2 · 3, 2 · 4, 2 · 5, 2 · 3 · 4, 2 · 3 · 5, 2 · 4 · 5, and
2 · 3 · 4 · 5 are not, and so f(2) = 6. Show that the function f from S to the integers is
one-to-one.

8. Show that the product of four consecutive positive integers cannot be a square.

3 points

9. What is the greatest common divisor of the numbers n2017−n, as n runs over all integers?



10. Prove that for all n > 0, there are exactly two solutions to x2 ≡ −1 (mod 5n). (This is a
special case of what’s called Hensel’s lemma, but don’t just quote Hensel’s lemma—prove
it yourself.)

11. Prove that there are infinitely many integer solutions to a2 − 2b2 = 1. (This is a special
case of Pell’s equation, but prove it yourself. Possible hint: look at a + b

√
2 ∈ Z[

√
2].)

12. Suppose that n is a positive integer such that one of n and n+ 1 is a power of 2, and the
other is a power of 3. Prove that n = 1, 2, 3, or 8. (Again, do this by yourself, without
quoting any big theorems like Mihăilescu’s proof of Catalan’s conjecture.)

13. (Related to 1985 A4 and 1997 B5.) Let m and n be any positive integers. Prove that the
sequence (n, nn, nnn

, . . . ) is eventually constant modulo m.

14. (2014 B3) Let A be an m × n matrix with rational entries. Suppose that there are at
least m + n distinct prime numbers among the absolute values of the entries of A. Show
that the rank of A is at least 2.

4 points

15. (2008 B4) Let p be a prime number. Let h(x) be a polynomial with integer coefficients such
that h(0), h(1), . . . , h(p2 − 1) are distinct modulo p2. Show that h(0), h(1), . . . , h(p3 − 1)
are distinct modulo p3.

16. (2010 A4) Prove that for each positive integer n, the number 101010
n

+ 1010n + 10n − 1 is
not prime.

5 points

17. (1991 B5) Let p be an odd prime and let Zp denote (the field of) integers modulo p. How
many elements are in the set

{x2 : x ∈ Zp} ∩ {y2 + 1 : y ∈ Zp}?
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