
Math 191 Homework 11: Easier Putnam problems
Due: Monday, November 20, 2017

Below are some relatively easy (#1-2) problems from recent Putnam exams, in chronological
order. Solve at least 8 of them; aim for more if your goal on the Putnam is more than 20 points.
You can also try other Putnam problems from 1985 or later, provided that you don’t already
know how to solve them. Complete proofs are required for all problems. As always, you must
write your solutions up by yourself, and you must cite any ideas that aren’t your own.

1. (1968 A1) Prove that 22
7
− π =

∫ 1

0
x4(1−x)4
1+x2 dx.

2. (1988 B2) Prove or disprove: If x and y are real numbers with y ≥ 0 and y(y+1) ≤ (x+1)2,
then y(y − 1) ≤ x2.

3. (1992 B1) Let S be a set of n distinct real numbers. Let AS be the set of numbers that
occur as averages of two distinct elements of S. For a given n ≥ 2, what is the smallest
possible number of elements in AS?

4. (1994 A1) Suppose that a sequence a1, a2, a3, . . . satisfies 0 < an ≤ a2n + a2n+1 for all
n ≥ 1. Prove that the series

∑∞
n=1 an diverges.

5. (2000 A2) Prove that there exist infinitely many integers n such that n, n + 1, n + 2 are
each the sum of the squares of two integers. [Example: 0 = 02+02, 1 = 02+12, 2 = 12+12.]

6. (2000 B1) Let aj, bj, cj be integers for 1 ≤ j ≤ N . Assume for each j, at least one of
aj, bj, cj is odd. Show that there exist integers r, s, t such that raj + sbj + tcj is odd for
at least 4N/7 values of j, 1 ≤ j ≤ N .

7. (2001 B1) Let n be an even positive integer. Write the numbers 1, 2, . . . , n2 in the squares
of an n×n grid so that the k-th row, from left to right, is (k−1)n+1, (k−1)n+2, . . . , (k−
1)n+ n. Color the squares of the grid so that half of the squares in each row and in each
column are red and the other half are black (a checkerboard coloring is one possibility).
Prove that for each coloring, the sum of the numbers on the red squares is equal to the
sum of the numbers on the black squares.

8. (2005 B1) Find a nonzero polynomial P (x, y) such that P (bac, b2ac) = 0 for all real
numbers a. (Note: bνc is the greatest integer less than or equal to ν.)

9. (2008 A1) Let f : R2 → R be a function such that f(x, y) + f(y, z) + f(z, x) = 0 for
all real numbers x, y, and z. Prove that there exists a function g : R → R such that
f(x, y) = g(x)− g(y) for all real numbers x and y.

10. (2009 A1) Let f be a real-valued function on the plane such that for every square ABCD
in the plane, f(A) +f(B) +f(C) +f(D) = 0. Does it follows that f(P ) = 0 for all points
P in the plane?



11. (2010 B1) Is there an infinite sequence of real numbers a1, a2, a3, . . . such that am1 + am2 +
am3 + · · · = m for every positive integer m?

12. (2010 B2) Given that A, B, and C are noncollinear points in the plane with integer
coordinates such that the distances AB, AC, and BC are integers, what is the smallest
possible value of AB?

13. (2011 A1) Define a growing spiral in the plane to be a sequence of points with integer
coordinates P0 = (0, 0), P1, . . . , Pn such that n ≥ 2 and:

• the directed line segments P0P1, P1P2, . . . , Pn−1Pn are in the successive coordinate
directions east (for P0P1), north, west, south, east, etc.;

• the lengths of these line segments are positive and strictly increasing.

[Picture omitted.] How many of the points (x, y) with integer coordinates 0 ≤ x ≤
2011, 0 ≤ y ≤ 2011 cannot be the last point, Pn, of any growing spiral?

14. (2011 A2) Let a1, a2, . . . and b1, b2, . . . be sequences of positive real numbers such that
a1 = b1 = 1 and bn = bn−1an − 2 for n = 2, 3, . . . . Assume that the sequence (bj) is
bounded. Prove that S =

∑∞
n=1

1
a1···an converges, and evaluate S.

15. (2013 B1) For positive integers n, let the numbers c(n) be determined by the rules c(1) = 1,
c(2n) = c(n), and c(2n+ 1) = (−1)nc(n). Find the value of

∑2013
n=1 c(n)c(n+ 2).

16. (2013 B2) Let C = ∪∞N=1CN , where CN denotes the set of those ‘cosine polynomials’ of
the form f(x) = 1 +

∑N
n=1 an cos(2πnx) for which: (i) f(x) ≥ 0 for all real x, and (ii)

an = 0 whenever n is a multiple of 3. Determine the maximum value of f(0) as f ranges
through C, and prove that this maximum is attained.

17. (2014 A1) Prove that every nonzero coefficient of the Taylor series of (1−x+x2)ex about
x = 0 is a rational number whose numerator (in lowest terms) is either 1 or a prime
number.

18. (2014 B1) A base 10 over-expansion of a positive integer N is an expression of the form
N = dk10k + dk−110k−1 + · · · + d0100 with dk 6= 0 and di ∈ {0, 1, 2, . . . , 10} for all i. For
instance, the integer N = 10 has two base 10 over-expansions: 10 = 10 ·100 and the usual
base 10 expansion 10 = 1 · 101 + 0 · 100. Which positive integers have a unique base 10
over-expansion?

19. (2015 A2) Let a0 = 1, a1 = 2, and an = 4an−1− an−2 for n ≥ 2. Find an odd prime factor
of a2015.

20. (2016 A1) Find the smallest positive integer j such that for every polynomial p(x) with

integer coefficients and for every integer k, the integer p(j)(k) = dj

dxj p(x)|x=k (the j-th
derivative of p(x) at k) is divisible by 2016.

21. (2016 B1) Let x0, x1, x2, . . . be the sequence such that x0 = 1 and for n ≥ 0, xn+1 =
ln(exn − xn) (as usual, the function ln is the natural logarithm). Show that the infinite
series x0 + x1 + x2 + · · · converges and find its sum.
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