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1 Introduction
Let Fm denote the mth Fermat number 22m + 1, and let p be any prime divisor of Fm. It is a
well-known fact that if m > 1, then p has the form k · 2n + 1 for some odd k and n ≥ m + 2.
Divisors of Fermat numbers are quite hard to find. To date, it is known that Fm is prime for
0 ≤ m ≤ 4 and composite for 305 particular other values of m; among the composite ones, two
have no known factors and the rest have a total of 349 known factors (listed in [6]), the largest
being (193·23329782+1)|F3329780. Little else is known about the factorizations of Fermat numbers.

One often searches for Fermat divisors by first looking for prime numbers of the form p = k·2n+1
with k reasonably small, and then testing whether these primes divide a Fermat number. This
property is easy to check: a prime p divides Fm if and only if the multiplicative order of 2 mod-
ulo p is exactly 2m+1; this can be tested with m successive squarings modulo p. In particular, p
divides some unspecified Fermat number if and only if the order of 2 modulo p is a power of 2,
which happens if and only if 2 is a kth power mod p. Exactly 2n of the k · 2n nonzero residues
mod p have this property, so a rough heuristic suggests that among primes p = k · 2n + 1 for
fixed k, about one out of k should be Fermat divisors.

In 1906, Morehead ([7]) discovered some more subtle behavior for k = 3, namely that a prime
p = 3 · 2n+1 with n even cannot be a Fermat divisor. Primes of this form with n odd do seem
to follow the 1/3 heuristic, so the true probability of p = 3 · 2n + 1 dividing a Fermat number
should be closer to 1/6.1 Indeed, of the 49 known primes p = 3 · 2n + 1, n is odd in 21 cases,
and eight of these are Fermat divisors.

The purpose of this note is to document as many corrections to the 1/k heuristic as possi-
ble. For some values of k, we will be able to prove Morehead-like results preventing certain
primes from being Fermat divisors; for other k, we will state heuristics suggesting some other
nonzero probability. We summarize these results in Heuristic 8.1.

Notation. We will always let p denote a prime, and k and n will be the unique integers such
that k is odd and p = k ·2n+1. We will assume throughout that k > 1, since a prime p = 2n+1
is necessarily either a Fermat prime or 2.

1A warning though: it’s probably not true that half of such primes have n odd, since congruence conditions
on n affect the divisibility properties of p. For example, 3 · 2n +1 is divisible by 5 if and only if n ≡ 3 (mod 4).
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2 The case of perfect powers
Before discussing Morehead’s result, we first mention a more elementary correction to the 1/k
heuristic for certain perfect powers k.

Lemma 2.1. As always, let p = k · 2n + 1 be a prime with k odd. Suppose k = dq
m, where q is

a prime, d is divisible by q, and m ≥ 0. Then 2 is a qm-th power modulo p.

Proof. By definition, we have dqm · 2n ≡ −1 (mod p). Since q is necessarily odd, −1 is a qm-th
power mod p, so 2n is as well. But n is not divisible by q: if it were, then p would be a sum
of qth powers (dqm−1

2n/q)q + 1 and would therefore have the proper factor dqm−1
2n/q + 1. This

implies that 2 is also a qm-th power mod p; one way to see this is as follows.

Being a qm-th power in Z/pZ is equivalent to being a p−1
qm

-th root of unity. We know that 2n is
a qm-th power, so (2n)(p−1)/q

m ≡ 1 (mod p), and so the order of 2 mod p divides n(p− 1)/qm.
But it also divides p − 1, so it divides gcd(n(p − 1)/qm, p − 1) = (p − 1)/qm. So 2 is a qm-th
power.

Exactly p−1
qm

of the nonzero residues mod p are qm-th powers,2 and all elements with power-of-
2 order are among them. This suggests that such primes p are qm times more likely to be Fermat
divisors than the 1/k heuristic would suggest. This correction can be applied simultaneously
for multiple different primes q, leading to the following improved heuristic.

Heuristic 2.2. (Perfect power correction) Suppose k = dm, where d is odd and not itself a
perfect power. Factor m as

∏
i p

ei
i ·
∏

j q
fj
j , where the primes pi do not divide d and the primes

qj do. Then the probability that a given prime p = k · 2n + 1 is a Fermat divisor should be∏
j q

fj
j

k
.

This heuristic predicts, for example, that primes with k = 33 = 27 have a 1/9 chance of
being Fermat divisors, and primes with k = 55 = 3125 have a 1/54 = 1/625 chance. We will
have more to say about k = 27 later, but for now we remark that there are three known Fermat
divisors with these values of k: (3125·2149+1)|F147, (27·2455+1)|F452, and (27·2672007+1)|F672005.

3 Reminders on cubic reciprocity
Most of our remaining results will rely on the law of cubic reciprocity, so for easy reference
we now collect a few statements of cubic reciprocity in the forms in which it will be used.

2It is worth mentioning here that k = dq
m

is divisible by qm, and even by qm+1, as the exponent qm is greater
than or equal to m+ 1.
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Our basic reference for statements of cubic reciprocity is [2], §4A. Note that we follow Cox’s
definition that a prime π ∈ Z[ω] is primary if π ≡ ±1 (mod 3); this differs from [4] and some
other sources, which require π ≡ −1 (mod 3).

The law of cubic reciprocity takes place in the ring of Eisenstein integers Z[ω]; here ω is the
cube root of unity e2πi/3 = −1+

√
−3

2
, which satisfies the equation ω2 + ω + 1 = 0. The following

lemmas follow easily from Theorem 4.12 and the supplement (4.13) in [2].

Lemma 3.1. Let π be an Eisenstein prime relatively prime to 3. Assume that π ≡ 1 (mod 2).
Then 2 is a cube modulo π if and only if π is primary.

Proof. Since π is relatively prime to 3, there is a unique ζ ∈ {1, ω, ω2} such that ζπ is primary;
fix this ζ. Since π ≡ 1 (mod 2), we have N(ζπ) = N(π) 6= N(2). Then by cubic reciprocity,
2 is a cube in Z[ω]/(π) = Z[ω]/(ζπ) if and only if ζπ is a cube in Z[ω]/(2). Since π is a cube
modulo 2, this happens if and only if ζ is a cube mod 2. But 1 is a cube in Z[ω]/(2), while ω
and ω2 are not.

Remark: This is equivalent to Proposition 9.6.1 in [4]. A similar statement is true with 2
replaced by any primary Eisenstein prime ρ, provided that ρ - 3N(π) and N(ρ) 6≡ 1 (mod 9)
(to ensure that ω and ω2 are not cubes).

Lemma 3.2. Suppose m is a positive integer not divisible by 3, and π ∈ Z[ω] is a primary
prime congruent to 1 modulo m. Then m is a cube modulo π.

Proof. Factor m as a product
∏

i ρi, where each ρi is a primary prime. (Since m is a rational
integer, no nontrivial roots of unity are needed in this factorization.) Then since π is congruent
to 1 mod m, it is a cube mod each ρi, and it is relatively prime to each N(ρi). By cubic
reciprocity, it follows that each ρi is a cube mod π, so their product m is as well.

Lemma 3.3. Let p = a2 + 27b2 be prime, with a, b ∈ Z. Then 3 is a cube mod p if and only if
b is divisible by 3.

Proof. First, a cannot be divisible by 3, so by replacing a by ±a we may assume that a = 3c−1
for some c ∈ Z. Then p factors over the Eisenstein integers as p = ππ, where π is the primary
prime

π = a+ 3b
√
−3 = a+ 3b(1 + 2ω) = (−1 + 3c+ 3b) + 6bω. (1)

The supplements to cubic reciprocity ([2], 4.13) imply that the cubic residue symbol of 3 =
−ω2(1− ω)2 mod π is: (

3

π

)
3

=

(
−1
π

)
3

·
(ω
π

)2
3
·
(
1− ω
π

)2

3

(2)

= 1 · ω2(c+3b) · ω4(c+b) (3)
= ω6c+10b = ωb. (4)

So 3 is a cube in Z[ω]/(π), or equivalently in Z/pZ, if and only if b is divisible by 3.
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4 The case k = 3d2

We now turn to Morehead’s theorem. It has been observed by Golomb ([3], §4) and Suyama
([9]) that Morehead’s result generalizes to integers k = 3d2 provided that d is not divisible by
3. For completeness, we give the proof, which is essentially a translation of Morehead’s original
argument into more modern language.

Theorem 4.1. Suppose p = k · 2n+1 is prime, where n is even and k = 3d2. Then 2 is a cube
modulo p if and only if d is divisible by 3. In particular, if d is not divisible by 3, then p cannot
divide a Fermat number.

Proof. Let p be as above, and set m = n/2. Recall that p divides a Fermat number if and only
if 2 is a kth power modulo p. Since k is a divisible by 3, a necessary condition for this is that
2 must be a cube mod p. We will check whether this is true using cubic reciprocity combined
with an understanding of how p splits in Z[ω].

We have p = 1 + 3(d · 2m)2 = (1 + d · 2m
√
−3)(1 − d · 2m

√
−3), where

√
−3 = 1 + 2ω ∈ Z[ω].

Call these two factors π and π respectively. Notice that π ≡ 1 (mod 2), since m > 0. By
Lemma 3.1, it follows that 2 is a cube in Z/pZ = Z[ω]/(π) if and only if π is primary. But π is
congruent to 1 modulo

√
−3, so it is primary if and only if it is congruent to 1 modulo 3. This

happens if and only if 3|d.

When d is divisible by 3, this does not determine whether 2 is a kth power, and in particular
whether p divides a Fermat number.3 In this case, we get the following heuristic:

Heuristic 4.2. (Cubic reciprocity correction) If p = 3d2 · 22m + 1 with d odd and divisible by
3, then the probability that p is a Fermat divisor should be the probability that a randomly
chosen cube modulo p is a kth power, namely 3/k = 1/d2.

One can combine this correction in the obvious way with the perfect power correction for
primes q > 3, for example when k = 755 and n is even. However, when the perfect power
correction applies with q = 3, that already tells us that 2 is a cube mod p, so it subsumes the
present correction. In §6, we will identify some more subtle behavior in this case.

5 The case k = 9d4

Theorem 5.1. Suppose p = 9d4 · 2n+1 is prime, where n ≡ 2 (mod 4). Then 2 is a cube mod
p if and only if d is divisible by 3. In particular, if 3 - d, then p is not a Fermat divisor.

Proof. Set n = 4m + 2. In order to use cubic reciprocity, we take advantage of a different
factorization in Z[ω]. Set

π = (1− 3d2 · 22m+1) + 2m+1d
√
−3 ∈ Z[ω], (5)

3Indeed, the prime number 243 · 24 + 1 = 3889 does not divide a Fermat number, while 243 · 2495732 + 1
divides F495728.
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and let π be its complex conjugate. Then one can check that p = ππ. We also have π ≡ 1
(mod 2), so by Lemma 3.1 it follows that 2 is a cube modulo π if and only if π is primary. But
π is congruent to 1 modulo

√
−3, so π is primary if and only if it is congruent to 1 modulo 3,

which happens if and only if 3|d.

Remark 5.2. If n ≡ 0 (mod 4) and 5 - d, then 9d4 · 2n + 1 cannot be prime, as it is divisible by
5. So the conclusion of Theorem 5.1 remains true under the hypothesis that n is even and d is
divisible by neither 3 nor 5.

Aside. The factorization p = ππ above is a special case of the aurifeuillean factorization
4x4 + 1 = (2x2 + 2x + 1)(2x2 − 2x + 1). In a certain sense, it is a shadow of a factorization
in the larger field Q(ζ12) = Q(i,

√
−3), and for this reason the proof of Theorem 5.1 may be

regarded as an instance of dodecic (12th-degree) reciprocity rather than “only” cubic reciprocity.

To explain this, set ρ = 1 + 2md(1 + i)
√
−3 ∈ Q(ζ12). The norm of ρ is the product of its

four algebraic conjugates:

NQ(ζ12)/Q(ρ) = (1 + 2md(1 + i)
√
−3)(1 + 2md(1− i)

√
−3)

(1− 2md(1 + i)
√
−3)(1− 2md(1− i)

√
−3) (6)

= 1 + 9d424m+2 = p. (7)

Combining the first two and last two terms (or equivalently norming down to Q(
√
−3)) recovers

the factorization p = ππ. Similarly, combining terms in the other possible pairings yields the
factorizations of p in Q(i) and Q(

√
3):

p = (1 + 3d222m+1i)(1− 3d222m+1i) (8)

=
(
(1 + 22m+1 · 3d2)− 2m+1d

√
3
)(

(1 + 22m+1 · 3d2) + 2m+1d
√
3
)
. (9)

When d is divisible by 3, Theorem 5.1 suggests the following heuristic:

Heuristic 5.3. (Dodecic reciprocity correction) If p = 9d4 · 24m+2 +1 with d odd and divisible
by 3, then the probability that p is a Fermat divisor should be the probability that a randomly
chosen cube modulo p is a kth power, namely 3/k = 1/3d4.

6 Overlap cases
In this section, we will take a closer look at the situations where more than one of our correc-
tions apply to the same value of k. For convenience, we first introduce the following notation.
Given a prime p = k · 2n + 1, we say that the “perfect power case” PP applies for some odd
prime q if k is a q-th power that is divisible by q. We say that the “cubic reciprocity case” CR
applies if n is even and k is 3 times a square, and we say that the “dodecic reciprocity case”
DR applies if n ≡ 2 (mod 4) and k is 9 times a fourth power.

Note that the cases CR and DR cannot overlap, as 3d2 is never a square and 9d4 always
is. Moreover, both of these corrections are independent of the case PP for q 6= 3. So we will
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only need to study how the case PP with q = 3 interacts with CR and DR. In each case, we
will prove an analogue of Morehead’s result for a new infinite class of values of k, and we will
state an improved heuristic in the remaining cases.

6.1 The case k = 27d6

If the cases PP with q = 3 and CR apply simultaneously, then k must have the form 27d6 for
some odd d. Our first result in this case is as follows.

Theorem 6.1.1. Let p be a prime of the form 27d62n+1, where n is even and d is not divisible
by 3. Then 2 is not a ninth power modulo p, and in particular p does not divide a Fermat
number.

Proof. Suppose for the sake of contradiction that 2 is a ninth power mod p. Then 2n is as well,
and so is −1/2n ≡ 27d6. Then at least one of the cube roots of 27d6 in Z/pZ is a cube. But
Z/pZ has a full set of ninth roots of unity, so in fact all three cube roots are cubes, including
in particular 3d2. Applying Lemma 3.2 with π = 1 + 3d32n/2

√
−3 and m = d tells us that d is

a cube in Z[ω]/(π) = Z/pZ. But applying Lemma 3.3 with a = 1 and b = d32n/2 tells us that
3 is not a cube. This is a contradiction.

To state our next correction, we record a converse of sorts to Theorem 6.1.1:

Proposition 6.1.2. Suppose p = k · 2n + 1 is a prime with k = (3d2)3
s and n even, where

d, s ≥ 1. Suppose also that either 3|d or s > 1. Then 2 is a 3s+1-st power mod p.

Proof. By construction, k = 33
s
d2·3

s can be expressed as 27c2, where c = 3(3
s−3)/2d3

s . The
condition that either 3|d or s > 1 means that c is a multiple of 3. So Lemma 3.3 with a = 1
and b = c · 2n/2 tells us that 3 is a cube mod p, and as before Lemma 3.2 tells us that d is as
well. Thus 3d2 is a cube, and so k is a 3s+1-st power. We have 2n ≡ −1/k (mod p) by the
definition of p, so 2n is also a 3s+1-st power, and as in the proof of Lemma 2.1 it follows that 2
is as well.

Heuristic 6.1.3. (Hybrid perfect power-cubic reciprocity correction) If p = 27d62n + 1 where
n is even and d is divisible by 3, the probability that p divides a Fermat number should be
three times the probability given by the perfect power correction.

The reason for this is that Proposition 6.1.2 applies under these hypotheses, and it gives us
one more power of 3 than Lemma 2.1 did.

6.2 The case k = 729d12

If the cases PP with q = 3 and DR apply simultaneously, then k must have the form 729d12

for some odd d. In this case we will be able to imitate all of our results for k = 27d6. The
proofs will be similar.

Theorem 6.2.1. Suppose p = k · 2n + 1 is a prime with k = 729d12 and n = 4m+ 2, where d
is not divisible by 3. Then 2 is not a ninth power mod p, and in particular p is not a Fermat
divisor.
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Proof. Suppose for the sake of contradiction that 2 is a ninth power mod p. Then 2n is as well,
and so is −1/2n ≡ 729d12 (mod p). Then at least one of the cube roots of 729d12 in Z/pZ is a
cube. But Z/pZ has a full set of ninth roots of unity, so in fact all three cube roots are cubes,
including in particular 9d4.

Since p = 9 · (3d3)4, the factorization (5) above takes the form p = ππ, where π is the pri-
mary prime

π = (1− 27d6 · 22m+1) + 2m+1 · 3d3
√
−3. (10)

Applying Lemma 3.2 with this π and m = d tells us that d is a cube in Z[ω]/(π) = Z/pZ. But
applying Lemma 3.3 with a = 1 − 27d6 · 22m+1 and b = 2m+1 · d3 tells us that 3 is not a cube.
It follows that d4 is a cube but 9 is not, which contradicts the fact that 9d4 is a cube.

As before, we have a “converse” proposition which leads to an improved heuristic when 3|d:

Proposition 6.2.2. Suppose p = k · 2n+1 is a prime with k = (9d4)3
s and n = 4m+2, where

d, s ≥ 1. Suppose also that either 3|d or s > 1. Then 2 is a 3s+1-st power mod p.

Proof. We first rewrite k as 729c4, where c = 3(3
s−3)/2d3

s . Then the factorization (5) takes the
form p = ππ, where π is the primary prime

π = (1− 27c2 · 22m+1) + 2m+1 · 3c
√
−3. (11)

In particular, we have p = a2 + 27b2 with a = 1 − 27c2 · 22m+1 and b = 2m+1c; notice that the
condition that 3|d or s > 1 implies that 3|c and therefore 3|b. By Lemma 3.3, it follows that 3
is a cube mod p. By Lemma 3.2, d is as well. So 9d4 is a cube mod p, and therefore k = (9d4)3

s

is a 3s+1-st power. Then modulo p we have 2n ≡ −1/k, so 2n is also a 3s+1-st power. But as
before, n cannot be divisible by 3, since if it were then p would be a sum of cubes and would
therefore be composite. It follows that 2 is a 3s+1-st power modulo p, as desired.

Heuristic 6.2.3. (Hybrid perfect power-dodecic reciprocity correction) If p = 729d122n + 1
where n ≡ 2 (mod 4) and d is divisible by 3, the probability that p divides a Fermat number
should be three times the probability given by the perfect power correction.

7 Other reciprocity laws
In this section, we will argue that in a certain limited sense, the cubic and dodecic reciprocity
methods we have used do not generalize to any other higher-degree reciprocity laws. Before
making this precise, we attempt to briefly explain what makes the number 3 special.

The proof of Morehead’s theorem relied on the convenient coincidence that Q(
√
−3) = Q(ζ3).

The former is where the primes p = 3 ·22m+1 factor algebraically, and the latter is where cubic
reciprocity takes place. In order to mimic the proof for primes of some form k · 2am+b + 1 =
(k · 2b)(2m)a + 1 with a, b, k fixed and m varying, we would need to be able to explicitly write
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down a prime divisor π|p in some suitable cyclotomic field, where π has norm p.4

In general, we can factor (k · 2b)(2m)a + 1 by extracting a-th roots of −k · 2b, but the field
Q( a
√
−k · 2b) will typically have little to do with Q(ζk). Besides Q(

√
−3) = Q(ζ3), however,

there is also the curious equality of fields Q( 4
√
−36) = Q(ζ12). This gives rise to the dodecic

reciprocity argument for primes of the form p = 36d424m + 1 = 9d424m+2 + 1.

We now specify what kind of generalization we would like. Suppose we are given an odd
integer k and a congruence condition n ≡ b (mod a), and we want to study whether primes
p = k · 2n + 1 are Fermat divisors using degree-r Eisenstein reciprocity for some r. Recall that
p = k ·2n+1 is a Fermat divisor if and only if 2 is a k-th power modulo p, so degree-r reciprocity
can only be useful if gcd(r, k) > 1. Because k is odd, this implies that r is not a power of 2.

Since degree-r reciprocity takes place in the cyclotomic integer ring Z[ζr], ζr = e2πi/r, we
would like to be able to factor our primes algebraically in this ring. By “factoring” we mean
exhibiting a prime element π ∈ Z[ζr] with

N(π) =
∏

σ∈Gal(Q(ζr)/Q)

σ(π) = p, (12)

so that Z[ζr]/(π) = Z/pZ. By “algebraically” we mean that this factorization should be given
by polynomials that are uniform across all n ≡ b (mod a).

More precisely, let f(x) be the polynomial Nxa + 1, where N is the positive integer k · 2b.
Then the prime candidates p = k ·2am+b+1 = (k ·2b)(2m)a+1 are the values of f(x) at x = 2m.
We assume that f(x) is irreducible, as otherwise at most finitely many of its values will be
prime. We want to have a polynomial g(x) ∈ Z[ζr][x] such that∏

σ∈Gal(Q(ζr)/Q)

gσ(x) = f(x), (13)

where gσ denotes the polynomial g with coefficients twisted by σ. (This product can be inter-
preted as the norm in the extension of function fields Q(ζr, x)/Q(x).) Then we could recover
π as g(2m). Notice that this algebraic integer π necessarily generates the field Q(ζr), since
otherwise its norm p would be a perfect power.

The following conditions seem to be necessary to give us a generalization of Morehead’s the-
orem. The first condition makes it possible (but does not guarantee) that infinitely many p
are prime; the second gives an explicit factorization of p in Q(ζr), so that degree-r Eisenstein
reciprocity can be used; and the third ensures that the r-th power character of 2 modulo p
provides information about its k-th power character.

Question 7.1. For what triples of positive integers (r, a,N) do the following conditions hold?
4Class field theory guarantees the existence of an ideal of norm p—and Q(ζr) has class number 1 for some

small r, making this ideal principal—but we really need to be able to write π down.
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1. The polynomial f(x) = Nxa + 1 is irreducible over Q.

2. There exists a polynomial g(x) ∈ Q(ζr)[x] such that
∏

σ∈Gal(Q(ζr)/Q) g
σ(x) = f(x).

3. The integers r and N have a nontrivial odd common factor.

We will answer this question only in the case where the polynomial g(x) is linear. In this
situation, we can essentially say what g(x) is: since the roots of f(x) are the a-th roots of
−1/N , it follows that (up to scaling and choice of a root) we have g(x) = 1 − a

√
−Nx. Since

the field Q(ζr) is generated by g(2m) = 1 − a
√
−N · 2m for some m, it follows that it is also

generated by the single element a
√
−N . We now claim that this almost never happens:

Proposition 7.2. Suppose r, a, and N are positive integers such that the polynomial f(x) =
Nxa + 1 is irreducible over Q, r is not a power of 2, and the field K = Q(ζr) is generated by
a single a-th root of −N . Then we must have (r, a,N) = (3, 2, 3d2), (6, 2, 3d2), or (12, 4, 36d4)
for some d.

Proof. First we assume that r is even, which sacrifices no generality because we have Q(ζr) =
Q(ζ2r) when r is odd. (In particular, the cases r = 3 and r = 6 both correspond to cubic
reciprocity, and the case r = 12 corresponds to dodecic reciprocity.) Calculating the degree
[K : Q] in two ways gives us ϕ(r) = a, where ϕ is Euler’s totient. Since K is Galois over Q, it
must contain all of the a-th roots of −N , and by dividing these it must contain all a-th roots
of unity. So we have Q(ζa) ⊆ Q(ζr). Since Q(ζr) contains only r roots of unity (this uses our
assumption that r is even), we have a|r. So in fact r is divisible by ϕ(r).

We claim that the condition ϕ(r)|r implies that r is not divisible by any primes other than 2
and 3. To prove this, suppose r has prime factorization

∏
i q
ei
i , and recall that ϕ(r) = r ·

∏
i
qi−1
qi

.
The given condition implies that the ratio r

ϕ(r)
=
∏

i
qi
qi−1 is an integer. The numerator of this

fraction is squarefree, so the denominator must not be divisible by 4. But every odd qi con-
tributes at least a factor of 2 to the denominator, so there can be at most one odd qi. If there
is such an odd prime q, then the denominator q − 1 must divide 2q. Since q − 1 is coprime to
q, it must also divide 2, and so q = 3.

We now know that r can be divisible by only the two primes 2 and 3, and since it is even
and not a power of 2 it must be divisible by both. So a = ϕ(r) = r/3. Next we suppose that
3|a. In this case, if N is a cube, then Nxa + 1 is a sum of cubes and therefore reducible. But
if N is not a cube, then K = Q( a

√
−N) contains Q( 3

√
−N), which is not Galois because it has

one real and two complex embeddings. This implies that it cannot be contained in the abelian
number field K, which is a contradiction. So we must not have 3|a. This leaves us with the
case where a is a power of 2 and r = 3a.

Say a = 2t and r = 3a. We are given that a
√
−N lies in Q(ζr). But a

√
−N is just a

√
N

multiplied by some primitive 2a-th root of unity. It follows that a
√
N lives in some cyclotomic

field, namely the lcm(r, 2a)-th. It is proved in [10] that a root higher than the second of an in-
teger N > 1 can essentially never be in a cyclotomic field—namely, it cannot be in a cyclotomic
field unless N is a perfect power and the root simplifies trivially. In our situation, it follows that
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N must be a 2t−1-st power. Moreover, if q is a prime such that q divides N and qa does not,
then q is ramified in Q( a

√
−N) = Q(ζr), so q|r and thus q = 2 or 3. Since a

√
−daN generates

the same field as a
√
−N , we may now assume without loss of generality that N = 1, 2t−1, 3t−1,

or 6t−1. The upshot of this is that a
√
−N appears in the following list:

a
√
−N = ζ2a

a
√
N (14)

∈ {ζ2t+1 , ζ2t+1

√
2, ζ2t+1

√
3, ζ2t+1

√
6}. (15)

Now, ζ2t+1 does not live in Q(ζr). But
√
2,
√
3, and

√
6 are in Q(ζ24), and therefore in Q(ζr) if

t ≥ 3, because we have:
√
2 = ζ8 + ζ−18 , (16)
√
3 =

ζ3 − ζ−13

i
, and (17)

√
6 =
√
2 ·
√
3, (18)

for suitable choices of roots of unity. If t ≥ 3, it follows that none of our four choices are in
the desired field Q(ζr), which is a contradiction. This forces (r, a) = (6, 2) (which we recall is
equivalent to (3, 2)) or (12, 4). To complete the proof, we examine which N can appear in these
two cases. Among the elements

ζ4, ζ4
√
2, ζ4
√
3, ζ4
√
6, (19)

only ζ4
√
3 =
√
−3 is in Q(ζ6) = Q(ζ3). Similarly, among

ζ8, ζ8
√
2, ζ8
√
3, ζ8
√
6, (20)

only ζ8
√
2 = 4

√
−4 and ζ8

√
6 = 4

√
−36 are in Q(ζ12). The first of these does not satisfy our

conditions because f(x) = 4x4 + 1 factors as (2x2 + 2x + 1)(2x2 − 2x + 1), but the second
does.

Remark 7.3. It may seem somewhat artificial for us to require r and N to share an odd factor
in Question 7.1. In fact, degree-r reciprocity can still say something interesting about the order
of 2 modulo p when r is a power of 2. But it will only tell us about how 2-divisible this order
is. Accordingly, it would tell us about which Fermat numbers a given prime may divide, but
not about whether it may divide one at all.

In fact, we have already alluded to an example of this: the proof that Fermat divisors p =
(k · 2n + 1)|Fm must satisfy n ≥ m + 2 when m > 1 follows from a supplement to quadratic
reciprocity. More generally, the triple (r, a,N) = (2t+1, 2t, d2

t
) for t ≥ 0, d ≥ 1 satisfies the first

two conditions of Question 7.1, and this can tell us about the order of 2 modulo primes of the
form p = (d · 2m)2t + 1.

8 Summary
We now collect all our results into one “master heuristic”, which summarizes our corrections to
the 1/k heuristic in the cases PP, CR, andDR defined in §6, as well as the various interactions
between them.
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Heuristic 8.1. Let p = k · 2n + 1 be a prime, with k > 1 odd. The probability that p is a
Fermat divisor should be as follows:

• If none of PP, CR, and DR applies, then probability 1/k.

• If only PP applies, then the probability given by Heuristic 2.2.

• If CR applies, then DR cannot. In this case:

– If 27 - k, then p is not a Fermat divisor by Theorem 4.1.

– Otherwise, if PP does not apply, then probability 3/k as in Heuristic 4.2.

– If PP applies for some q but not for q = 3, then 3 times the result of Heuristic 2.2.

– If PP applies for q = 3, then k = 27d6 for some d. Then:

∗ If 3 - d, then p is not a Fermat divisor by Theorem 6.1.1.
∗ Otherwise, 3 times the result of Heuristic 2.2, according to Heuristic 6.1.3.

• If DR applies, then:

– If 729 - k, then p is not a Fermat divisor by Theorem 5.1.

– Otherwise, if PP does not apply, then probability 3/k as in Heuristic 5.3.

– If PP applies for some q but not for q = 3, then 3 times the result of Heuristic 2.2.

– If PP applies for q = 3, then k = 729d12 for some d. Then:

∗ If 3 - d, then p is not a Fermat divisor by Theorem 6.2.1.
∗ Otherwise, 3 times the result of Heuristic 2.2, according to Heuristic 6.2.3.

Moreover, this probability should not depend on any congruence conditions on n beyond the
conditions mod 2 and 4 in the definitions of the cases CR and DR.

We now ask whether the heuristic above is the best one possible; that is, whether it predicts
the true proportion of Fermat divisors among the primes with a given k and a given congruence
condition on n.

Question 8.2. Fix a positive odd integer k and a congruence class b mod a, with 4|a. Suppose
there exist infinitely many primes k · 2n + 1 with n ≡ b (mod a). Does Heuristic 8.1 correctly
predict the asymptotic proportion of these that are Fermat divisors?

Remark 8.3. It seems extremely difficult to prove that there are infinitely many primes p =
k · 2n+1 for any single value of k, and we are not aware of any k for which this has been done.
There are however infinitely many values of k, called Sierpiński numbers, for which there are
no primes. It is also believed that there are only finitely many primes with k = 1, namely 2
and the five known Fermat primes.
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9 Further directions
Most searches for Fermat divisors have been optimized according to the 1/k heuristic. That is,
one estimates the probability that k · 2n + 1 is a prime Fermat divisor in terms of the prime
number theorem and the 1/k heuristic, and one tests the ordered pairs (k, n) in order of largest
expected payoff per unit computational cost. The corrections to the heuristic that we have dis-
cussed suggest some modifications to this way of searching for special values of k. For example,
our heuristics predict that primes with k = 27 and n odd should have a 1/9 chance of being
Fermat divisors. So it may be worth searching more deeply for such primes, compared to other
nearby values of k. It is apparently a lucky coincidence that numbers 27 · 2n + 1, along with
27 · 2n − 1 and 121 · 2n ± 1, have indeed been tested especially deeply.

Another interesting value of k is 39 = 19683—the smallest k to which Heuristic 6.1.3 ap-
plies. Primes of the form 39 · 2n + 1 should have a 1/37 chance of being Fermat divisors when
n is odd and 1/36 when n is even. It is unclear how far the sequence 39 · 2n+1 has been tested
for primality to date. A search using the program OpenPFGW shows that 39 · 2n + 1 is prime
for

n = 1, 5, 8, 32, 50, 400, 536, 592, 676, 866, 1157, 1300, 1661, 1730, 2440, 7046,

9698, 16180, 16226, 22330, 26990, 206005, 238780, 278941,

and no other n ≤ 300000. None of these are Fermat divisors. But it may be worth searching
further.

It would be interesting to know if one can prove Morehead-like results for other values of
k, either increasing or excluding the chance that certain primes are Fermat divisors. It has
been observed, for example, that nine of the 25 known primes p = 5 ·2n+1 are Fermat divisors,
which is almost double the expected 1/5 proportion. The likelihood of this happening by chance
is about 4.7%. However, these Fermat divisors don’t exhibit any obvious patterns modulo any
small number, aside for the congruence conditions that are necessary for p to be prime. For
example, both Fermat divisors and non-divisors appear among every permissible residue class
mod 2, 3, 4, and 5.5 So if there is a reason for the relative abundance of Fermat divisors with
k = 5, it seems that it would have to be an entirely different reason from those discussed here.

Yves Gallot also reports some interesting behavior for k = 25 and 49. For k = 25, there
are 28 primes with n < 105, and in only two cases is 2 even a fifth power modulo p. For k = 49,
there are 19 primes with n < 1.5 · 106, and 2 is not a seventh power modulo any of them. Each
of these has around a 5% likelihood of happening by chance, and together they may suggest
some more interesting behavior when k = q2 for a prime q > 3.

When studying the statistics of Fermat divisors, one practical difficulty is that collecting more
5There are no primes p = 5 ·2n+1 with n even or congruent to 2 (mod 3), and only the prime 11 with n ≡ 1

(mod 5), because those congruence conditions imply that p is divisible by 3, 7, or 11 respectively. Looking at
some slightly larger moduli, the two known primes with n ≡ 2 (mod 7) are both Fermat divisors; and in the
residue classes 3 mod 7, 6 mod 7, 4 mod 9, and 6 mod 9 there are respectively one, two, two, and three known
primes but no Fermat divisors.
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data requires finding prime numbers of the form p = k · 2n + 1, often with n very large. There
are at least two distributed computing projects currently searching for such primes. PrimeGrid
searches those with 3 ≤ k ≤ 9999 and n in the millions, as well as primes of various other forms.
FermatSearch searches specifically for Fermat divisors in a wide range of k- and n-values. We
hope that the data produced by both of these projects will shed more light on the subject.

13



References
[1] Ray Ballinger and Wilfrid Keller, “List of primes k · 2n + 1 for k < 300”. Updated July 15,

2019. Available at http://www.prothsearch.com/riesel1.html.

[2] David A. Cox, Primes of the Form x2 + ny2 (2nd edition), 2013.

[3] Solomon W. Golomb, “Properties of the sequence 3 · 2n+1”. Mathematics of Computation,
vol. 30, no. 135 (July 1976), 657-663.

[4] Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory
(2nd edition), 1990.

[5] I. Jiménez Calvo, “A note on factors of generalized Fermat numbers”. Applied Mathematics
Letters 13 (2000), 1-5.

[6] Wilfrid Keller, “Prime factors k · 2n + 1 of Fermat numbers Fm and complete factoring
status”. Updated May 3, 2019. Available at http://www.prothsearch.com/fermat.html.

[7] J. C. Morehead, “Note on the factors of Fermat’s numbers”. Bulletin of the American
Mathematical Society, vol. 12, no. 9 (June 1906), 449-451.

[8] OpenPFGW, developed by Chris Nash and Jim Fougeron, and main-
tained and improved by Mark Rodenkirch. Current version available at
https://sourceforge.net/projects/openpfgw/.

[9] H. Suyama, “A note on the factors of Fermat numbers II”. Abstracts of Papers Presented
to the American Mathematical Society, vol. 5 (1984), 132.

[10] Rajat Tandon, “Roots are not contained in cyclotomic fields”, Resonance, vol. 6, no. 4
(April 2001), 78-83.

14


