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1 Setup and motivation
Fix a prime p, a complete discretely valued extension K/Qp, and a completed algebraic closure

C = K̂. Then we have rings of integers OK and OC , and so on. Let X be a smooth proper
formal scheme over OC ; the case of an actual scheme defined over OK is interesting enough,
but everything works in greater generality (with no mention of K). We write the generic and
special fibers of X as X and Xk respectively.

Remark 1. Kęstutis has generalized some things to the semistable case, where Xk is allowed to
have simple normal crossings.

For such X, we can associate three integral p-adic cohomology theories: H i
ét(X,Zp),H i

dR(X/OC),
and H i

crys(Xk/W (k)). These are defined in three different ways; they depend on different parts
of X (generic fiber, full integral model, special fiber); and they are valued over three different
mixed-characteristic valuation rings.

There are various comparison theorems between these cohomology theories after tensoring up to
some p-adic period rings, but classically this involves inverting p. For example, the crystalline
comparison isomorphism

H i
ét(X,Zp)⊗Zp Bcrys

∼= H i
crys(Xk/W (k))⊗W (k) Bcrys (1)

lives over the Qp-algebra Bcrys. And this is for good reason: although both sides are equipped
with integral lattices, the isomorphism doesn’t generally identify those integral lattices with
each other.

Classically, the only way we can get isomorphisms at the integral level is with hypotheses
restricting the ramification and/or the cohomological degree. The following theorem of Caruso
is a typical result of this type:
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Theorem 2. Assume X is an actual scheme defined over OK, and that K has perfect residue
field. Let e be the ramification degree of K/Qp. There exists at least an abstract isomorphism

(H i(X,Zp)⊗Zp W (k))/pn ∼= (H i(Xk/W (k)))/pn, (2)

provided that ie < p − 1. In particular, the full torsion agrees under this hypothesis, since
sufficiently high powers of p act as 0 on the torsion.1

(The inequality ie < p− 1 is necessary because of pathologies that can happen over Zp[ζp],
or maybe an unramified extension thereof.) So assuming K is mildly ramified and the coho-
mological degree isn’t too big, some things can work integrally. But if p = 2, this is completely
useless unless you’re interested in H0.

2 Étale versus de Rham and crystalline
The main integral comparison theorem that BMS proves is as follows.

Theorem 3. For X as above, and for all integers i, n ≥ 0, we have inequalities

lengthZp
(H i

ét(X,Zp)tors/pn) ≤ lengthW (k)(H
i
crys(Xk/W (k))tors/p

n) (3)

lengthZp
(H i

ét(X,Zp)tors/pn) ≤ `OC
(H i

dR(X/OC)tors/pn), (4)

where `OC
is the normalized length with `OC

(OC/pα) = α for any α ∈ Q≥0. In particular,
choosing n sufficiently large gives inequalities between the lengths of the full torsion submodules.

A priori, I have two reasons to maybe believe this. First, one motto is that lots of patholo-
gies can happen in characteristic p geometry, especially regarding p-adic cohomology theories,
and these pathologies make the cohomology bigger rather than smaller.

For a better motto, which conveys the main idea of the proof, recall that we now have the
Ainf-cohomology theory, which interpolates between étale, de Rham, and crystalline cohomol-
ogy. (Draw the picture of SpecAinf .) Note that étale torsion appears at the bottom point
(with residue field C[), while de Rham and crystalline torsion appear at the special point (with
residue field k). The latter is a specialization of the former, and cohomology dimensions are
upper semicontinuous. Moreover, this even works for lengths of each modulo pn for all n, with
length suitably defined for the de Rham case.

Modulo some details about derived vs. ordinary tensor products, the proof in BMS (for étale
vs. crystalline; the de Rham case is done similarly in Česnavičius) boils down to the following
commutative algebra lemma about a certain type of Ainf-modules.

1Caruso’s original statement is for the derived-mod-pn versions Hi
ét(X,Z/pnZ) and Hi

crys(Xk/Wn(k)), as-
suming that either (i + 1)e < p − 1, or n = 1 and ie < p − 1. But for universal coefficient theorem reasons,
any disagreement in torsion must appear in the mod-pn picture one degree higher than in the derived-mod-pn
picture.
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Lemma 4. (Corollary 4.15(ii) in BMS.) Let M be a finitely presented Ainf-module such that
M [1/p] is free over Ainf [1/p]. Then for all n ≥ 1, we have

lengthW (C[)((M ⊗Ainf
W (C[))/pn) ≤ lengthW (k)((M ⊗Ainf

W (k))/pn). (5)

BMS shows that all Ainf-cohomology groups H i
Ainf

(X) satisfy the hypothesis; this is part of
the definition of a Breuil-Kisin-Fargues module.

3 de Rham versus crystalline
BMS also shows that for all i, H i

dR(X/OC) is torsion-free if and only if H i
crys(Xk/W (k)) is.

Rough idea of proof: assuming de Rham or crystalline is torsion-free, the Ainf-cohomology is
free, and then everything is free.

It was discovered at Arizona Winter School this year2 that this (and a bit more) can be proved by
much more elementary means. Recall that the dimensions of H i

crys(Xk/W (k))⊗W (k) FracW (k)
and H i

dR(X/OC) ⊗OC
C agree by classical results of rational p-adic Hodge theory, and that

the derived-mod-p versions H i
crys(Xk/W1(k) = k) = H i

dR(Xk/k) also agree. One might suspect
that such equalities on both the generic and special fibers would imply something integrally,
and in fact this is the case. Namely, it follows from an easy homological algebra lemma that
H i

dR(X/OC) and H i
crys(Xk/W (k)) have the same number of torsion summands. The case of zero

torsion summands recovers the remark from BMS.

Lemma 5. Let R be a rank-1 valuation domain with maximal ideal m, not necessarily discretely
valued, and let K = FracR and k = R/m. Let D• be a perfect complex of R-modules. Then the
numbers

dimK H
i(D• ⊗R K) and (6)

dimkH
i(D• ⊗L

R k), (7)

for all i, determine the numbers dimk(H
i(D•) ⊗R k) for all i, without dependence on the ring

R.

Proof. Since D• is a perfect complex, we can and do write it up to quasi-isomorphism as
a bounded complex of finite projective, thus free, modules. From the universal coefficient
theorem, we have a noncanonical isomorphism

H i(D• ⊗R k) ∼= (H i(D•)⊗R k)⊕ TorR1 (H
i+1(D•), k). (8)

Each integral cohomology group is finitely presented, so we can choose an isomorphism

H i+1(D•) ∼= R⊕a ⊕
b⊕

j=1

(R/αj), (9)

2Jesse Silliman and Matthew Morrow made the observation independently. Jesse’s proof was in the setting
of a DVR, and I reworked it into the form presented here.
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for some 0 6= αj ∈ m. This gives us an obvious two-step free resolution of H i+1(D•), from which
we compute

TorR1 (H
i+1(D•), k) = ker(k⊕b

0→ k⊕a+b) (10)
= k⊕b. (11)

So we have

dimk Tor
R
1 (H

i+1(D•), k) = b = (a+ b)− a (12)
= dimk(H

i+1(D•)⊗R k)− dimK(H
i+1(D• ⊗R K)). (13)

Finally, we can assemble all the dimensions into the equation:

dimk(H
i(D• ⊗ k)) = dimk(H

i(D•)⊗ k) + dimk(Tor
R
1 (H

i+1(D•), k)) (14)
= dimk(H

i(D•)⊗ k) + dimk(H
i+1(D•)⊗R k)− dimK(H

i+1(D• ⊗R K)).
(15)

We are given the first and last terms of this, and the middle two terms are the degree-i and
degree-(i + 1) parts of what we want. But since D• is a bounded complex, these numbers are
zero for sufficiently small or sufficiently large i, so the sums of consecutive numbers determine
the individual numbers.

To see that the lemma implies the comparison, choose D•1 and D•2 to be the complexes
computing de Rham and crystalline cohomology respectively. By the classical comparisons,
their dimensions agree when applying derived base change to either of the two fibers. So the
two values of dimkH

i(D•)⊗R k must agree. But this is just the number of cyclic summands of
the integral cohomology, including torsion and non-torsion; we know there are equally many of
the latter and therefore of the former.

4 BMS’s first example
BMS also constructed two examples that illustrate the sharpness of their results. I’ll briefly
discuss the first one, and then look at the second in some more detail.

The first example will be a smooth projective surface X/Z2 with H∗ét(X,Z2) torsion-free in
all degrees, but H2

crys(XF2/Z2)tors ∼= F2. This implies that the “de Rham torsion-free iff crys-
talline torsion-free” statement cannot extend to étale.

First let S/Z2 be a smooth “singular” Enriques surface. Here, “singular” means that the group
scheme Picτ (S/Z2) = (Pic(S/Z2)/Pic

0(S/Z2))tors is µ2 rather than the constant group scheme
Z/2Z. Such a surface can be obtained by taking the quotient of a K3 surface S̃ by a free action
of the constant group scheme Z/2Z. (Aside: over a field of characteristic 6= 2, all Enriques sur-
faces are quotients of K3’s by µ2 = Z/2Z. In characteristic 2, the “classical” ones are quotients
of some surfaces by µ2 and have Picτ = Z/2Z; the “singular” ones are the other way around;
and the “supersingular” ones are quotients by α2 and have Picτ = α2.)
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It turns out that both the étale and crystalline cohomology of S itself have torsion (just F2,
I think) in degree 2. But we can use S to construct our example, as follows. Let E/Z2 be
any ordinary elliptic curve. Then one can construct an E-torsor D → S that “contains” the
double cover S̃. This unwinds the torsion in étale cohomology, but leaves the crystalline torsion
untouched because Dk = Sk×Ek. Finally, a sufficiently general surface X ↪→ D will have both
étale and crystalline H2 isomorphic to those of D, which gives our counterexample.

Remark 6. Note that de Rham cohomology agrees with crystalline here, because X is defined
over W (k).

5 BMS’s second example and further questions
BMS’s second example is a smooth projective relative surface over OC whose second étale co-
homology has Z/p2Z torsion, but whose second crystalline cohomology has k⊕ k torsion. This
obeys the rules about lengths modulo pn, but it shows that the inequalities cannot be upgraded
to an injective or surjective morphism (after base-changing from Zp to W (k)).

Motivation: the usual way to get torsion (or some other pathologies) in a p-adic or mod-p
cohomology theory follows an idea introduced by Serre in 1958. I’ll first sketch the idea in
roughly the way it first appeared, and then fast-forward to the current setting.

Let k = k be a field of characteristic p, and G some p-group; say Z/pZ. There is a general
procedure (which I won’t go into detail about here) to construct a smooth complete intersec-
tion surface X̃/k that admits a free action by G, yielding a smooth quotient X. Since X̃ is
a complete intersection, H∗(X̃) (for some choice of cohomology theory H∗) can be controlled,
and H∗(X) is calculated by a Grothendieck spectral sequence

Ep,q
2 = Hp(G,Hq(X̃)) =⇒ Hp+q(X) (16)

The (trivial) action of G on H0(X̃) produces nontrivial higher group cohomology, which trans-
lates into pathologies in the higher cohomology (H1 or H2, depending on what pathology you’re
looking for) of X. For example, this approach can be used to create p-torsion in H2

crys, a Hodge
to de Rham spectral sequence over Fp that doesn’t degenerate at E1, and so on.

Aside: the “niceness” of the cohomology of the complete intersection X̃ can be interpreted
as X̃ being cohomologically a “good enough approximation” of a point, and thus X itself being
a “good enough approximation” of BG. This is good motivation, because the cohomology of
BG is just group cohomology of G.

In our situation, we want a surface over a mixed characteristic valuation ring with interest-
ing torsion in cohomology. We will construct the torsion by quotienting some nice smooth
complete intersection by a finite flat group scheme G/OC . This will give us p-torsion in coho-
mology that is controlled by G. In particular, if G itself degenerates in an interesting way from
the generic fiber to the special fiber, then the torsion in cohomology will too.
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We choose our finite flat group scheme G as follows. Let E/OC be a supersingular elliptic
curve, meaning that although E is smooth, all of the p(-power)-torsion of Ek is concentrated
at one point. Choose a subgroup of EC [p2] ∼= (Z/p2Z)2 that is cyclic of order p2, and let G be
its flat closure across the special fiber. Then GC is isomorphic to the constant group scheme
Z/p2Z, but Gk is concentrated in one point, and in fact it is equal to E[p], which is killed by p.

Let X be a smooth projective surface over OC arising as the quotient of a smooth complete
intersection surface by a free action of G. (One has to be a little careful constructing such
a complete intersection and an action, but it exists.) From the group cohomology argument
outlined earlier, one can show that H2

ét(X,Zp) ∼= Z/p2Z. But H2
crys(Xk/W (k)) turns out to be

k ⊕ k, which is not surprising because Gk “looks like” an infinitesimal copy of (Z/pZ)2.
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