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1 Introduction and outline
In this talk we will construct the cohomology theory RΓAinf

(X) and identify its étale special-
ization. This cohomology theory applies to a certain class of adic spaces X which are not
perfectoid, but it is best understood by studying perfectoid covers. These covers will not be
étale, but will be pro-étale (once we define pro-étale). So our strategy will be as follows:

1. Construct the pro-étale site Xproét.

2. Construct some interesting sheaves on Xproét.

3. Push one of our pro-étale sheaves down to a derived sheaf on the Zariski site.

4. Modify it with Lηµ.

5. Take RΓ.

6. Study the result using input from perfectoid geometry (e.g. the almost purity theorem).

2 The pro-étale site
LetX be a locally Noetherian adic space, i.e. an adic space covered by affinoid opens Spa(R,R+)
where R is strongly Noetherian or has a Noetherian ring of definition. We want to define the
pro-étale site of X.

First, we define an étale morphism of adic spaces by direct analogy to the case of schemes:
∗Notes for a talk given in Berkeley’s number theory seminar, organized by Kęstutis Česnavičius, Xinyi

Yuan, Sug Woo Shin, and Ken Ribet. Main references: p-adic Hodge theory for rigid-analytic varieties (and
corrigendum), by Peter Scholze; Integral p-adic Hodge theory, by Bhatt-Morrow-Scholze; and Notes on the
Ainf-cohomology of Integral p-adic Hodge theory, by Matthew Morrow.
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X → Y is étale if for all affinoid rings (R,R+) and square-zero ideals I ⊂ R, the following
diagram induces a unique map as indicated:

Spa((R,R+)/I) //
� _

��

X

��
Spa(R,R+) //

∃!
88

Y

where (R,R+)/I denotes (R/I, integral closure of R+/(I ∩ R+) in R/I). This gives us Xét as
a category: it is the category of all étale morphisms Y → X. We make this into a site by
declaring a cover to be a jointly surjective étale maps.

Defining Xproét will take a few tries. A first attempt: given a category C, the category pro-C is
defined to be the full subcategory of Funct(Cop, Set) consisting of functors representable by a
small cofiltered inverse limit of representable objects.1 We write objects of pro-C as U = lim← Ui,
although we emphasize that we are not asserting that the inverse limit is representable, and
that an object in pro-C does not include the data of such an inverse limit. (We could however
do so at the cost of modifying the definition of morphisms.) Notice that we can associate a
natural topological space to U = lim← Ui, namely |U | = lim← |Ui|.

Unfortunately, pro-Xét is too large: we want pro-étale neighborhoods to look like one étale
neighborhood U0 → X followed by a cofiltered inverse limit of finite étale surjective maps
Uj → Ui, but pro-Xét allows inverse systems of infinitely many non-finite and non-surjective
maps. So instead, we say that U ∈ pro-Xét is pro-étale over X if U is isomorphic in pro-Xét

to an object of this form, and we letXproét be the full subcategory of pro-étale objects in pro-Xét.

Finally, we must define the coverings in Xproét. This is somewhat hairy due to the possi-
bility of uncountable inverse limits; in fact, Scholze’s original definition was wrong and had
to be corrected later. (In particular, don’t worry too much about the details—we care almost
exclusively about the countable case.) We say that a collection of maps {fi : Ui → U} in
Xproét is a covering if it satisfies two conditions. First, the induced maps |Ui| → |U | must be
jointly surjective. Second, for each i, we require that Ui → U can be written as an inverse limit
lim←µ<λ in Xproét along some ordinal λ, with U0 → U étale, and such that for all µ > 0, the
map Uµ → limµ′<µ Uµ′ is finite étale and surjective. (Here, we say that a morphism in Xproét is
étale, respectively finite étale and surjective, if it is the pullback in Xproét of a morphism in Xét

with the same properties.)

Example 1. Suppose X is defined over Spa(K,OK) with K perfectoid of characteristic 0, and
suppose U ∈ Xproét can be presented as lim← Ui → X, where Ui = Spa(Ri, R

+
i ), U0 → X is

étale, and all maps Ui → Uj are finite étale surjective. We say that U is affinoid perfectoid if
for R+ = ̂lim→R

+
i and R = R+[1/p], (R,R+) is a perfectoid affinoid K-algebra. In this case,

one can show that Spa(R,R+) ∼ lim← Spa(Ri, R
+
i ).

The pro-étale site comes equipped with a morphism of sites ν : Xproét → Xét, where ν∗ :

1Scholze’s Definition 3.1 puts the “op” in the wrong place.
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Sh(Xproét)→ Sh(Xét) forgets all inverse limits that aren’t representable by a single étale cover,
and ν∗ is its left adjoint. As with all morphisms of sites, ν∗ is left-exact, and ν∗ is exact.2

3 Some pro-étale sheaves
Let X now be a locally Noetherian adic space over Spa(Qp,Zp). (We will later be interested in
X over Spa(K,OK) for K/Qp a perfectoid field. The main thing for now is that p should be a
topologically nilpotent unit on X.)

We will now define a series of important sheaves on the pro-étale site of X. First, we have
structure sheaves

OX = ν∗OXét and (1)
O+
X = ν∗O+

Xét
, (2)

where OXét(U) = OU(U), and similarly for O+
Xét

. But these are the wrong things to con-
sider. For example, for U = lim← Spa(Ri, R

+
i ) → X an affinoid perfectoid neighborhood, then

OX(U) = lim→Ri, which is generally not p-adically complete. We want everything to be
p-adically complete, so naturally, we take p-adic completions:

Ô+
X = lim

←r
O+
X/p

r, and (3)

ÔX = Ô+
X [1/p]. (4)

We similarly have a tilted structure sheaf,

O+[
X = Ô+[

X = lim
←ϕ
O+
X/p; (5)

this one doesn’t need to be completed, since p is zero on it. Note that all of these constructions
are defined on the level of sheaves, and the question of whether their sections on a general
U ∈ Xproét behave as one might guess is subtle.

Finally, since we are trying to construct a cohomology theory over Ainf , we define

Ainf,X = W (Ô+[
X ), (6)

by setting Ainf,X(U) = W (Ô+[
X (U)); this is already a sheaf. Notice that when we are over

Spa(K,OK), Ainf,X is a sheaf of algebras over W (O[K) = Ainf(OK); this will be a crucial ingre-
dient in the construction of RΓAinf

(X).

Aside: one can also define period sheaves corresponding to Binf , B+
dR, BdR, etc. We won’t

need these today.

A useful result, analogous to the situation for affine schemes, is the following:
2Recall that when defining kernels of sheaf morphisms, we literally just take the kernel on each open set; but

when defining cokernels, we need to sheafify. Because of this, “forgetting” from Xproét to Xét preserves kernels,
but it may not preserve cokernels, as the two sheafifications may disagree.
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Lemma 2. If U ∈ Xproét is affinoid perfectoid, then H i(U, Ô+
X) is an almost zero OK-module

for i > 0.

4 RΓAinf
(X) and its étale specialization

We are now ready to construct the cohomology theory we’ve been building up to all semester.
As we will see in the coming weeks and months, this has the remarkable property of specializing
to all known integral p-adic cohomology theories (of a smooth proper variety over OK) along
various specializations of Ainf : p-adic étale cohomology of the generic fiber, crystalline coho-
mology of the special fiber, and de Rham cohomology of the full integral model over OK . This
will allow us to obtain some interesting comparisons between the torsion in these cohomology
theories.

Fix a perfectoid field K of characteristic 0 endowed with a fixed choice of ζpr for all r. (The
choice is just for convenience; the constructions will end up being independent of it.) Let O be
the ring of integers, with the p-adic topology. Let X/ SpfO := Spa(O,O) be a smooth proper
formal scheme. (For our purposes, a formal scheme is just an adic space covered by affinoids of
the form Spa(R,R); this is smooth over O if and only if R is flat and p-adically complete and
R/p is smooth over O/p.)

Since Spa(O,O) has two points, the generic point Spa(K,O) (where p is a topologically nilpo-
tent unit) and the special point Spa(k, k) (where p = 0; k has the discrete topology), we can
consider the generic fiber X and special fiber Xk of X. Note that the generic fiber X, not the
full integral model X, plays the role of X from the previous sections: in order to define our
period sheaves, we had to be on the generic fiber.

We want to turn our pro-étale sheaves on X into Zariski sheaves on X, so we use the pro-
jection ν : Xproét → XZar that intersects Zariski open subsets with the generic fiber and views
them as pro-étale neighborhoods. (Note that here we’re using the Zariski site where earlier we
used the étale site. Bhatt-Morrow-Scholze notes that everything would still work if we con-
tinued to use the étale site, but Zariski is enough.) Since ν∗ is left-exact but not necessarily
right-exact, we will also use its derived functor Rν∗ when working on the derived category.

We are now ready to define the object AΩX:

AΩX = Lηµ(Rν∗Ainf,X) ∈ D(XZar). (7)

Namely, we push Ainf,X forward from Xproét to XZar, in the derived sense, and then kill off
some cohomology by applying Lηµ. (Recall the construction of µ: the system ζpr gives rise
to an element ε = (1, ζp, ζp2 , . . . ) ∈ O[. Taking the Teichmüller lift and subtracting 1, we get
µ = [ε] − 1 ∈ Ainf . Notice that changing our choice of ζpr only changes µ by a unit, so Lηµ is
independent of it.) Finally, we define the cohomology theory RΓAinf

(X) by

RΓAinf
(X) = RΓ(XZar, AΩX), (8)
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the derived global sections of AΩX on the Zariski site.

Informally, AΩX should be thought of as a “universal deformation” of the cotangent complex
Ω• = (OX → Ω1

X/OK
→ Ω2

X/OK
→ · · · ) that lives over Ainf instead of OK . This makes it

plausible that specializing AΩX along θ : Ainf → OK should recover the de Rham cohomology
RΓ(Ω•). We will make this more precise over the next two talks.

Theorem 3. RΓAinf
(X) is a perfect complex in D(Ainf), and there is a canonical quasi-isomorphism

RΓAinf
(X)⊗Ainf

Ainf [1/µ] ' RΓét(X,Zp)⊗Zp Ainf [1/µ]. (Recall that the localization Ainf → Ainf

is called the étale specialization of Ainf .)

Proof. (Sketch, assuming K = K for the last step.) We omit the proof that the complex is
perfect, as this relies on some of the other comparison theorems. The étale comparison comes
from a chain of isomorphisms in D(Ainf [1/µ]):

RΓAinf
(X)⊗Ainf

Ainf [1/µ] ' RΓ(Rν∗Ainf,X)⊗Ainf Ainf[1/µ] (9)
' RΓ(Xproét,Ainf,X)⊗Ainf Ainf[1/µ] (10)
' RΓét(X,Zp)⊗Zp Ainf[1/µ]. (11)

The last step comes from an almost quasi-isomorphism

RΓét(X,Zp)⊗Zp Ainf → RΓ(Xproét,Ainf,X), (12)

using almost mathematics with respect to the ideal W (m[) of Ainf; this becomes an actual
quasi-isomorphism once we invert the element µ ∈ W (m[).

5 Almost purity theorem
We now sketch how perfectoid covers and the almost purity theorem are useful in the compu-
tation of AΩX. First, we state Scholze’s version of Faltings’ almost purity theorem:

Theorem 4. If R is a perfectoid K-algebra and S/R is finite étale, then S is a perfectoid
K-algebra, and S◦ is almost finite étale over R◦.

To apply this to the setup of the previous section, we note that locally on X, there exists
an étale3 map X = Spf R → Ĝd

m = SpfO〈T±11 , . . . , T±1d 〉. Then we base change along the
perfection of the formal torus:

R∞ := R⊗̂O〈T±1
i 〉
O〈T±1/p

∞

i 〉. (13)

Note that this comes with an action of the Galois group Zdp, where we use our choice of ζp∞ . It
follows formally from the almost purity theorem that we have an almost quasi-isomorphism of
continuous group cohomology

RΓcont(Zdp,Ainf(R∞))→ RΓproét(X,Ainf,X). (14)

It turns out that after applying Lηµ to both sides, this miraculously becomes an actual quasi-
isomorphism, the right-hand side becomes RΓAinf(Spf R), and the left side becomes something
that can be computed explicitly.

3Is this finite étale?
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