Special values of L-functions

Ravi Fernando

University of California, Berkeley fernando@berkeley.edu

April 14, 2018

Riemann zeta function

We start by recalling the definition and some well-known properties of the Riemann zeta function. If $s=\sigma+$ it is a complex number with $\sigma=\operatorname{Re}(s)>1$, we define

Riemann zeta function

We start by recalling the definition and some well-known properties of the Riemann zeta function. If $s=\sigma+$ it is a complex number with $\sigma=\operatorname{Re}(s)>1$, we define

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}},
$$

where $n^{s}:=e^{s \log n}$. This series is absolutely convergent, so it gives a well-defined function from a half-plane of \mathbb{C} to \mathbb{C}.

Euler product

A first observation is that we can factor the expression above as an infinite product over primes, called an Euler product:

Euler product

A first observation is that we can factor the expression above as an infinite product over primes, called an Euler product:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right)
$$

Euler product

A first observation is that we can factor the expression above as an infinite product over primes, called an Euler product:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{s}} & =\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right) \\
& =\prod_{p} \frac{1}{1-1 / p^{s}}
\end{aligned}
$$

Euler product

A first observation is that we can factor the expression above as an infinite product over primes, called an Euler product:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{s}} & =\prod_{p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right) \\
& =\prod_{p} \frac{1}{1-1 / p^{s}}
\end{aligned}
$$

One must take some care when working with infinite products of infinite sums like this, but everything does converge correctly.

Analytic continuation

Riemann proved that the $\zeta(s)$ has an analytic continuation to $\mathbb{C} \backslash\{1\}$; that is, a (necessarily unique) holomorphic function $\zeta: \mathbb{C} \backslash\{1\} \rightarrow \mathbb{C}$ that restricts to our previously defined function on the region $\operatorname{Re}(s)>1$.

Near $s=1, \zeta(s)$ blows up as $\frac{1}{s-1}+\gamma+O(s-1)$, where $\gamma \approx 0.577$ is the Euler-Mascheroni constant.

Functional equation

Riemann also proved a functional equation:

$$
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)
$$

Functional equation

Riemann also proved a functional equation:

$$
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)
$$

Here, Γ is the gamma function, given by (the analytic continuation of)

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t
$$

The gamma function is much easier to understand than the zeta function; one of the breakout sessions this afternoon will study its properties.

Special values of $\zeta(s)$

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

n	-4	-3	-2	-1	0	1	2	3	4	5
$\zeta(n)$	0	$\frac{1}{120}$	0	$-\frac{1}{12}$	$-\frac{1}{2}$	pole	$\frac{\pi^{2}}{6}$	≈ 1.202	$\frac{\pi^{4}}{90}$	≈ 1.037

Special values of $\zeta(s)$

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

n	-4	-3	-2	-1	0	1	2	3	4	5
$\zeta(n)$	0	$\frac{1}{120}$	0	$-\frac{1}{12}$	$-\frac{1}{2}$	pole	$\frac{\pi^{2}}{6}$	≈ 1.202	$\frac{\pi^{4}}{90}$	≈ 1.037

Some patterns to note:

- "Trivial" zeroes: $\zeta(n)=0$ when n is a negative even integer.

Special values of $\zeta(s)$

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

n	-4	-3	-2	-1	0	1	2	3	4	5
$\zeta(n)$	0	$\frac{1}{120}$	0	$-\frac{1}{12}$	$-\frac{1}{2}$	pole	$\frac{\pi^{2}}{6}$	≈ 1.202	$\frac{\pi^{4}}{90}$	≈ 1.037

Some patterns to note:

- "Trivial" zeroes: $\zeta(n)=0$ when n is a negative even integer.
- The rational values for non-positive integer inputs are given by the formula $\zeta(1-n)=-B_{n} / n$, where B_{n} denotes the nth Bernoulli number.

Special values of $\zeta(s)$

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

n	-4	-3	-2	-1	0	1	2	3	4	5
$\zeta(n)$	0	$\frac{1}{120}$	0	$-\frac{1}{12}$	$-\frac{1}{2}$	pole	$\frac{\pi^{2}}{6}$	≈ 1.202	$\frac{\pi^{4}}{90}$	≈ 1.037

Some patterns to note:

- "Trivial" zeroes: $\zeta(n)=0$ when n is a negative even integer.
- The rational values for non-positive integer inputs are given by the formula $\zeta(1-n)=-B_{n} / n$, where B_{n} denotes the nth Bernoulli number.
- For $n>0$ even, $\zeta(n)$ is determined by $\zeta(1-n)$ via the functional equation; it is a nonzero rational multiple of $\pi^{2 n}$.

Special values of $\zeta(s)$

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

n	-4	-3	-2	-1	0	1	2	3	4	5
$\zeta(n)$	0	$\frac{1}{120}$	0	$-\frac{1}{12}$	$-\frac{1}{2}$	pole	$\frac{\pi^{2}}{6}$	≈ 1.202	$\frac{\pi^{4}}{90}$	≈ 1.037

Some patterns to note:

- "Trivial" zeroes: $\zeta(n)=0$ when n is a negative even integer.
- The rational values for non-positive integer inputs are given by the formula $\zeta(1-n)=-B_{n} / n$, where B_{n} denotes the nth Bernoulli number.
- For $n>0$ even, $\zeta(n)$ is determined by $\zeta(1-n)$ via the functional equation; it is a nonzero rational multiple of $\pi^{2 n}$.
- The values at positive odd integers seem to have no simple formula.

Special values of $\zeta(s)$, continued

Rearranging the functional equation gives:

$$
\zeta(s)=\frac{\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)}{\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right)}
$$

This determines the value of ζ on positive even integers but not positive odds:

Special values of $\zeta(s)$, continued

Rearranging the functional equation gives:

$$
\zeta(s)=\frac{\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)}{\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right)}
$$

This determines the value of ζ on positive even integers but not positive odds:

$$
\zeta(2)=\frac{\pi^{1 / 2} \Gamma(-1 / 2) \zeta(-1)}{\pi^{-1} \Gamma(1)}=\frac{\pi^{1 / 2} \cdot(-2 \sqrt{\pi}) \cdot(-1 / 12)}{\pi^{-1} \cdot 1}=\frac{\pi^{2}}{6}
$$

Special values of $\zeta(s)$, continued

Rearranging the functional equation gives:

$$
\zeta(s)=\frac{\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)}{\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right)}
$$

This determines the value of ζ on positive even integers but not positive odds:

$$
\begin{aligned}
& \zeta(2)=\frac{\pi^{1 / 2} \Gamma(-1 / 2) \zeta(-1)}{\pi^{-1} \Gamma(1)}=\frac{\pi^{1 / 2} \cdot(-2 \sqrt{\pi}) \cdot(-1 / 12)}{\pi^{-1} \cdot 1}=\frac{\pi^{2}}{6} \\
& \zeta(3)=\frac{\pi^{1} \Gamma(-1) \zeta(-2)}{\pi^{-3 / 2} \Gamma(3 / 2)}=\frac{\pi^{1} \cdot \infty \cdot 0}{\pi^{-3 / 2} \cdot(\sqrt{\pi} / 2)}=\text { indeterminate }
\end{aligned}
$$

Special values of $\zeta(s)$, continued

Rearranging the functional equation gives:

$$
\zeta(s)=\frac{\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)}{\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right)}
$$

This determines the value of ζ on positive even integers but not positive odds:

$$
\begin{aligned}
& \zeta(2)=\frac{\pi^{1 / 2} \Gamma(-1 / 2) \zeta(-1)}{\pi^{-1} \Gamma(1)}=\frac{\pi^{1 / 2} \cdot(-2 \sqrt{\pi}) \cdot(-1 / 12)}{\pi^{-1} \cdot 1}=\frac{\pi^{2}}{6} \\
& \zeta(3)=\frac{\pi^{1} \Gamma(-1) \zeta(-2)}{\pi^{-3 / 2} \Gamma(3 / 2)}=\frac{\pi^{1} \cdot \infty \cdot 0}{\pi^{-3 / 2} \cdot(\sqrt{\pi} / 2)}=\text { indeterminate }
\end{aligned}
$$

(Here we are using the fact that Γ has poles at $0,-1,-2, \ldots$)

Dirichlet characters

We now take a step back and modify the definition of $\zeta(s)$ to construct a new function $L(\chi, s)$, which will turn out to encode information about a larger field than \mathbb{Q}, in this case $\mathbb{Q}(i)$. Although we will focus on one function for concreteness, we emphasize that the following discussion can be made much more general.

Dirichlet characters

We now take a step back and modify the definition of $\zeta(s)$ to construct a new function $L(\chi, s)$, which will turn out to encode information about a larger field than \mathbb{Q}, in this case $\mathbb{Q}(i)$. Although we will focus on one function for concreteness, we emphasize that the following discussion can be made much more general.

For $n \in \mathbb{Z}$, define

$$
\chi(n)= \begin{cases}1 & \text { if } n \equiv 1 \quad(\bmod 4) \\ -1 & \text { if } n \equiv 3 \quad(\bmod 4) \\ 0 & \text { if } n \text { is even }\end{cases}
$$

Dirichlet characters

We now take a step back and modify the definition of $\zeta(s)$ to construct a new function $L(\chi, s)$, which will turn out to encode information about a larger field than \mathbb{Q}, in this case $\mathbb{Q}(i)$. Although we will focus on one function for concreteness, we emphasize that the following discussion can be made much more general.

For $n \in \mathbb{Z}$, define

$$
\chi(n)= \begin{cases}1 & \text { if } n \equiv 1 \quad(\bmod 4) \\ -1 & \text { if } n \equiv 3 \quad(\bmod 4) \\ 0 & \text { if } n \text { is even }\end{cases}
$$

This is a Dirichlet character; i.e. a completely multiplicative function on \mathbb{Z} that is periodic mod some m (here $m=4$) and equal to zero on inputs that are not relatively prime to m.

Dirichlet L-function $L(\chi, s)$

We then define our L-function by the Dirichlet series

$$
\begin{aligned}
L(\chi, s) & =\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}} \\
& =1-\frac{1}{3^{s}}+\frac{1}{5^{s}}-\frac{1}{7^{s}}+\cdots .
\end{aligned}
$$

This again converges absolutely for $\operatorname{Re}(s)>1$.

Euler product for $L(\chi, s)$

As with ζ, this has an Euler product, but now different primes behave differently in it:

$$
\begin{array}{r}
L(\chi, s)=\prod_{p=2} 1 \cdot \prod_{p \equiv 1}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right) \\
\cdot \prod_{p \equiv 3} \prod_{(\bmod 4)}\left(1-\frac{1}{p^{s}}+\frac{1}{p^{2 s}}-\cdots\right)
\end{array}
$$

Euler product for $L(\chi, s)$

As with ζ, this has an Euler product, but now different primes behave differently in it:

$$
\begin{aligned}
& L(\chi, s)= \prod_{p=2} 1 \cdot \prod_{p \equiv 1}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots\right) \\
& \cdot \prod_{p \equiv 3} \prod_{(\bmod 4)}\left(1-\frac{1}{p^{s}}+\frac{1}{p^{2 s}}-\cdots\right) \\
&= \prod_{p \equiv 1}\left(\frac{1}{1-1 / p^{s}}\right) \cdot \prod_{p \equiv 3}(\bmod 4) \\
&\left(\frac{1}{1+1 / p^{s}}\right) .
\end{aligned}
$$

$L(\chi, s)$ and $\mathbb{Q}(i)$

Now we are ready to see the connection between $L(\chi, s)$ and the arithmetic of $\mathbb{Q}(i)$. Consider the product $L(\chi, s) \cdot \zeta(s)$:

$L(\chi, s)$ and $\mathbb{Q}(i)$

Now we are ready to see the connection between $L(\chi, s)$ and the arithmetic of $\mathbb{Q}(i)$. Consider the product $L(\chi, s) \cdot \zeta(s)$:

$$
\begin{gathered}
L(\chi, s) \zeta(s)=\prod_{p=2} \frac{1}{1-1 / p^{s}} \cdot \prod_{p \equiv 1}\left(\frac{1}{(\bmod 4)}\right)^{2} \\
\cdot \prod_{p \equiv 3}\left(\frac{1}{1-1 / p^{s}}\right)^{2}\left(\frac{1}{1-1 / p^{2 s}}\right)
\end{gathered}
$$

$L(\chi, s)$ and $\mathbb{Q}(i)$

Now we are ready to see the connection between $L(\chi, s)$ and the arithmetic of $\mathbb{Q}(i)$. Consider the product $L(\chi, s) \cdot \zeta(s)$:

$$
\begin{aligned}
L(\chi, s) \zeta(s)= & \prod_{p=2} \frac{1}{1-1 / p^{s}} \cdot \prod_{p \equiv 1}^{(\bmod 4)}\left(\frac{1}{1-1 / p^{s}}\right)^{2} \\
& \prod_{p \equiv 3}\left(\frac{1}{(\bmod 4)}\right) \\
= & \prod_{\substack{0 \neq \mathfrak{p} \subseteq \mathbb{Z}[i] \\
\text { prime ideals }}} \frac{1}{1-1 /(N \mathfrak{p})^{s}}
\end{aligned}
$$

$L(\chi, s)$ and $\mathbb{Q}(i)$

Now we are ready to see the connection between $L(\chi, s)$ and the arithmetic of $\mathbb{Q}(i)$. Consider the product $L(\chi, s) \cdot \zeta(s)$:

$$
\begin{aligned}
L(\chi, s) \zeta(s)= & \left.\prod_{p=2} \frac{1}{1-1 / p^{s}} \cdot \prod_{p \equiv 1} \bmod 4\right)\left(\frac{1}{1-1 / p^{s}}\right)^{2} \\
& \cdot \prod_{p \equiv 3}\left(\frac{1}{1-1 / p^{2 s}}\right) \\
= & \prod_{\substack{0 \neq \mathfrak{p} \subseteq \mathbb{Z}[i] \\
\text { prime ideals }}} \frac{1}{1-1 /(N \mathfrak{p})^{s}} \\
= & \sum_{\substack{0 \neq \mathfrak{a} \subseteq \mathbb{Z}[i] \\
\text { ideals }}} \frac{1}{(N \mathfrak{a})^{s}}
\end{aligned}
$$

$L(\chi, s)$ and $\mathbb{Q}(i)$, continued

This is the natural analogue of $\zeta(s)$ for the number field $\mathbb{Q}(i)$, so we will call this function $\zeta_{\mathbb{Q}(i)}(s)$. So we have shown the identity:

$$
L(\chi, s)=\frac{\zeta_{\mathbb{Q}(i)}(s)}{\zeta(s)} .
$$

$L(\chi, s)$ and $\mathbb{Q}(i)$, continued

This is the natural analogue of $\zeta(s)$ for the number field $\mathbb{Q}(i)$, so we will call this function $\zeta_{\mathbb{Q}(i)}(s)$. So we have shown the identity:

$$
L(\chi, s)=\frac{\zeta_{\mathbb{Q}(i)}(s)}{\zeta(s)} .
$$

Remark: We can analogously define the Dedekind zeta function ζ_{K} for an arbitrary number field K. When K / \mathbb{Q} is an abelian (Galois) extension, ζ_{K} will factor as a product of $[K: \mathbb{Q}]$ Dirichlet L-functions, including $\zeta(s)$ itself.

Features of $L(\chi, s)$

This L-function also has:

- analytic continuation (to all of \mathbb{C}, with no pole at 1)

Features of $L(\chi, s)$

This L-function also has:

- analytic continuation (to all of \mathbb{C}, with no pole at 1)
- a slightly different functional equation:

$$
(4 / \pi)^{s / 2} \Gamma\left(\frac{s+1}{2}\right) L(\chi, s)=(4 / \pi)^{(1-s) / 2} \Gamma\left(\frac{(1-s)+1}{2}\right) L(\chi, 1-s)
$$

Features of $L(\chi, s)$

This L-function also has:

- analytic continuation (to all of \mathbb{C}, with no pole at 1)
- a slightly different functional equation:

$$
(4 / \pi)^{s / 2} \Gamma\left(\frac{s+1}{2}\right) L(\chi, s)=(4 / \pi)^{(1-s) / 2} \Gamma\left(\frac{(1-s)+1}{2}\right) L(\chi, 1-s)
$$

- The generalized Riemann hypothesis (open problem), which predicts that all zeroes of $L(\chi, s)$ with real part between 0 and 1 must have real part $\frac{1}{2}$, for all Dirichlet characters χ.

Special values of $L(\chi, s)$

n	-4	-3	-2	-1	0	1	2	3	4	5
$L(\chi, n)$	$\frac{5}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\pi}{4}$	≈ 0.916	$\frac{\pi^{3}}{32}$	≈ 0.989	$\frac{5 \pi^{5}}{1536}$

Special values of $L(\chi, s)$

n	-4	-3	-2	-1	0	1	2	3	4	5
$L(\chi, n)$	$\frac{5}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\pi}{4}$	≈ 0.916	$\frac{\pi^{3}}{32}$	≈ 0.989	$\frac{5 \pi^{5}}{1536}$

Observations:

- Values at negative integers are still rational. In fact, there is a formula for them in terms of "generalized Bernoulli numbers".

Special values of $L(\chi, s)$

n	-4	-3	-2	-1	0	1	2	3	4	5
$L(\chi, n)$	$\frac{5}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\pi}{4}$	≈ 0.916	$\frac{\pi^{3}}{32}$	≈ 0.989	$\frac{5 \pi^{5}}{1536}$

Observations:

- Values at negative integers are still rational. In fact, there is a formula for them in terms of "generalized Bernoulli numbers".
- The roles of negative evens and negative odds have been switched, and similarly positive evens and positive odds. This is because the gamma-factors in the functional equation have poles in different places.

Special values of $L(\chi, s)$

n	-4	-3	-2	-1	0	1	2	3	4	5
$L(\chi, n)$	$\frac{5}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\pi}{4}$	≈ 0.916	$\frac{\pi^{3}}{32}$	≈ 0.989	$\frac{5 \pi^{5}}{1536}$

Observations:

- Values at negative integers are still rational. In fact, there is a formula for them in terms of "generalized Bernoulli numbers".
- The roles of negative evens and negative odds have been switched, and similarly positive evens and positive odds. This is because the gamma-factors in the functional equation have poles in different places.
- The value at 1 is $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}$, which we will now see has a particularly special meaning.

Analytic class number formula

Theorem (Dedekind 1894, Landau 1903)

For any number field K, we have:

$$
\lim _{s \rightarrow 1} \frac{\zeta_{K}(s)}{\zeta(s)}=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{w_{K} \sqrt{\left|D_{K}\right|}}
$$

where:

- r_{1} is the number of embeddings $K \hookrightarrow \mathbb{R}$,
- r_{2} is the number of conjugate pairs of embeddings $K \hookrightarrow \mathbb{C}$ with image not contained in \mathbb{R},
- $h_{K}=\left|\mathrm{Cl}_{K}\right|$ is the class number of K,
- R_{K} is the regulator of K,
- w_{K} is the number of roots of unity in K, and
- D_{K} is the discriminant of K.

Analytic class number formula, continued

In our situation, $K=\mathbb{Q}(i)$:

$$
L(\chi, s)=\lim _{s \rightarrow 1} \frac{\zeta_{K}(s)}{\zeta(s)}
$$

Analytic class number formula, continued

In our situation, $K=\mathbb{Q}(i)$:

$$
\begin{aligned}
L(\chi, s) & =\lim _{s \rightarrow 1} \frac{\zeta_{K}(s)}{\zeta(s)} \\
& =\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{w_{K} \sqrt{\left|D_{K}\right|}}
\end{aligned}
$$

Analytic class number formula, continued

In our situation, $K=\mathbb{Q}(i)$:

$$
\begin{aligned}
L(\chi, s) & =\lim _{s \rightarrow 1} \frac{\zeta_{K}(s)}{\zeta(s)} \\
& =\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{w_{K} \sqrt{\left|D_{K}\right|}} \\
& =\frac{2^{0} \cdot(2 \pi)^{1} \cdot 1 \cdot 1}{4 \cdot \sqrt{|-4|}}
\end{aligned}
$$

Analytic class number formula, continued

In our situation, $K=\mathbb{Q}(i)$:

$$
\begin{aligned}
L(\chi, s) & =\lim _{s \rightarrow 1} \frac{\zeta_{K}(s)}{\zeta(s)} \\
& =\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} R_{K}}{w_{K} \sqrt{\left|D_{K}\right|}} \\
& =\frac{2^{0} \cdot(2 \pi)^{1} \cdot 1 \cdot 1}{4 \cdot \sqrt{|-4|}} \\
& =\frac{\pi}{4} .
\end{aligned}
$$

L-functions in general

There exist much more general things that deserve to be called L-functions. These are functions built from Dirichlet series (or Euler products), with terms of arithmetic or algebro-geometric interest. In general we expect them to have:

L-functions in general

There exist much more general things that deserve to be called L-functions. These are functions built from Dirichlet series (or Euler products), with terms of arithmetic or algebro-geometric interest. In general we expect them to have:

- a meromorphic continuation to \mathbb{C},

L-functions in general

There exist much more general things that deserve to be called L-functions. These are functions built from Dirichlet series (or Euler products), with terms of arithmetic or algebro-geometric interest. In general we expect them to have:

- a meromorphic continuation to \mathbb{C},
- a functional equation relating $L(s)$ to $\overline{L(c-\bar{s})}$ for some constant c,

L-functions in general

There exist much more general things that deserve to be called L-functions. These are functions built from Dirichlet series (or Euler products), with terms of arithmetic or algebro-geometric interest. In general we expect them to have:

- a meromorphic continuation to \mathbb{C},
- a functional equation relating $L(s)$ to $\overline{L(c-\bar{s})}$ for some constant c,
- a Riemann hypothesis restricting the location of their zeroes and poles, and

L-functions in general

There exist much more general things that deserve to be called L-functions. These are functions built from Dirichlet series (or Euler products), with terms of arithmetic or algebro-geometric interest. In general we expect them to have:

- a meromorphic continuation to \mathbb{C},
- a functional equation relating $L(s)$ to $\overline{L(c-\bar{s})}$ for some constant c,
- a Riemann hypothesis restricting the location of their zeroes and poles, and
- rational values-or more precisely, values that are rational multiples of some predictable "periods" such as powers of π-at all integer inputs where neither of the Γ-factors in the functional equation has a pole. (Deligne's conjecture on special values)

Example: the L-function of an elliptic curve

If $E=\left(y^{2}=x^{3}+a x+b\right)$ is an elliptic curve over \mathbb{Q}, let

$$
a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)
$$

for each prime p, where $\# E\left(\mathbb{F}_{p}\right)$ is the number of points of the reduction of (a minimal Weierstrass model of) E modulo p.

Example: the L-function of an elliptic curve

If $E=\left(y^{2}=x^{3}+a x+b\right)$ is an elliptic curve over \mathbb{Q}, let

$$
a_{p}=p+1-\# E\left(\mathbb{F}_{p}\right)
$$

for each prime p, where $\# E\left(\mathbb{F}_{p}\right)$ is the number of points of the reduction of (a minimal Weierstrass model of) E modulo p. The L-function of E is defined approximately as

$$
L(E, s)=\prod_{p}\left(1-a_{p} \cdot p^{-s}+p \cdot p^{-2 s}\right)^{-1}
$$

with suitable corrections at the finitely many primes of bad reduction.

Birch and Swinnerton-Dyer conjecture

Conjecture (Birch and Swinnerton-Dyer)

For every elliptic curve E / \mathbb{Q},

$$
\operatorname{ord}_{s=1} L(E, s)=\operatorname{rank} E(\mathbb{Q}) .
$$

Moreover, there is a formula for the leading coefficient in terms of arithmetic invariants of the curve:

$$
\lim _{s \rightarrow 1} \frac{L(E, s)}{(s-1)^{r}}=\frac{\left|\amalg_{E / \mathbb{Q}}\right| \cdot \Omega_{E} \cdot R_{E} \cdot \prod_{p \mid 2 \Delta} c_{p}}{\left|E(\mathbb{Q})_{\text {tors }}\right|^{2}} .
$$

