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Riemann zeta function

We start by recalling the definition and some well-known properties of the
Riemann zeta function. If s = σ + it is a complex number with
σ = Re(s) > 1, we define

ζ(s) =
∞∑
n=1

1
ns
,

where ns := es log n. This series is absolutely convergent, so it gives a
well-defined function from a half-plane of C to C.
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Euler product

A first observation is that we can factor the expression above as an infinite
product over primes, called an Euler product:

∞∑
n=1

1
ns

=
∏
p

(
1 +

1
ps

+
1
p2s + · · ·

)
=

∏
p

1
1− 1/ps

.

One must take some care when working with infinite products of infinite
sums like this, but everything does converge correctly.
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Analytic continuation

Riemann proved that the ζ(s) has an analytic continuation to C \{1}; that
is, a (necessarily unique) holomorphic function ζ : C \{1} → C that
restricts to our previously defined function on the region Re(s) > 1.

Near s = 1, ζ(s) blows up as 1
s−1 + γ + O(s − 1), where γ ≈ 0.577 is the

Euler-Mascheroni constant.
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Functional equation

Riemann also proved a functional equation:

π−s/2Γ
( s
2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

Here, Γ is the gamma function, given by (the analytic continuation of)

Γ(z) =

∫ ∞
0

tz−1e−t dt.

The gamma function is much easier to understand than the zeta function;
one of the breakout sessions this afternoon will study its properties.
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Special values of ζ(s)

The zeta function encodes arithmetic information about the integers. Let’s
look at some of its particular values.

n -4 -3 -2 -1 0 1 2 3 4 5
ζ(n) 0 1

120 0 − 1
12 −1

2 pole π2

6 ≈ 1.202 π4

90 ≈ 1.037

Some patterns to note:
“Trivial” zeroes: ζ(n) = 0 when n is a negative even integer.
The rational values for non-positive integer inputs are given by the
formula ζ(1− n) = −Bn/n, where Bn denotes the nth Bernoulli
number.
For n > 0 even, ζ(n) is determined by ζ(1− n) via the functional
equation; it is a nonzero rational multiple of π2n.
The values at positive odd integers seem to have no simple formula.
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Special values of ζ(s), continued

Rearranging the functional equation gives:

ζ(s) =
π−(1−s)/2Γ

(1−s
2

)
ζ(1− s)

π−s/2Γ
(
s
2

)
This determines the value of ζ on positive even integers but not positive
odds:

ζ(2) =
π1/2Γ(−1/2)ζ(−1)

π−1Γ(1)
=
π1/2 · (−2

√
π) · (−1/12)

π−1 · 1
=
π2

6

ζ(3) =
π1Γ(−1)ζ(−2)

π−3/2Γ(3/2)
=

π1 · ∞ · 0
π−3/2 · (

√
π/2)

= indeterminate

(Here we are using the fact that Γ has poles at 0,−1,−2, . . . .)
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Dirichlet characters

We now take a step back and modify the definition of ζ(s) to construct a
new function L(χ, s), which will turn out to encode information about a
larger field than Q, in this case Q(i). Although we will focus on one
function for concreteness, we emphasize that the following discussion can
be made much more general.

For n ∈ Z, define

χ(n) =


1 if n ≡ 1 (mod 4),

−1 if n ≡ 3 (mod 4),

0 if n is even.

This is a Dirichlet character; i.e. a completely multiplicative function on Z
that is periodic mod some m (here m = 4) and equal to zero on inputs
that are not relatively prime to m.
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Dirichlet L-function L(χ, s)

We then define our L-function by the Dirichlet series

L(χ, s) =
∞∑
n=1

χ(n)

ns

= 1− 1
3s

+
1
5s
− 1

7s
+ · · · .

This again converges absolutely for Re(s) > 1.
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Euler product for L(χ, s)

As with ζ, this has an Euler product, but now different primes behave
differently in it:

L(χ, s) =
∏
p=2

1 ·
∏

p≡1 (mod 4)

(
1 +

1
ps

+
1
p2s + · · ·

)

·
∏

p≡3 (mod 4)

(
1− 1

ps
+

1
p2s − · · ·

)

=
∏

p≡1 (mod 4)

(
1

1− 1/ps

)
·

∏
p≡3 (mod 4)

(
1

1 + 1/ps

)
.
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L(χ, s) and Q(i)

Now we are ready to see the connection between L(χ, s) and the arithmetic
of Q(i). Consider the product L(χ, s) · ζ(s):

L(χ, s)ζ(s) =
∏
p=2

1
1− 1/ps

·
∏

p≡1 (mod 4)

(
1

1− 1/ps

)2

·
∏

p≡3 (mod 4)

(
1

1− 1/p2s

)
=

∏
0 6=p⊆Z[i ]

prime ideals

1
1− 1/(Np)s

=
∑

0 6=a⊆Z[i ]
ideals

1
(Na)s
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L(χ, s) and Q(i), continued

This is the natural analogue of ζ(s) for the number field Q(i), so we will
call this function ζQ(i)(s). So we have shown the identity:

L(χ, s) =
ζQ(i)(s)

ζ(s)
.

Remark: We can analogously define the Dedekind zeta function ζK for an
arbitrary number field K . When K/Q is an abelian (Galois) extension, ζK
will factor as a product of [K : Q] Dirichlet L-functions, including ζ(s)
itself.
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Features of L(χ, s)

This L-function also has:
analytic continuation (to all of C, with no pole at 1)

a slightly different functional equation:

(4/π)s/2Γ

(
s + 1
2

)
L(χ, s) = (4/π)(1−s)/2Γ

(
(1− s) + 1

2

)
L(χ, 1− s)

The generalized Riemann hypothesis (open problem), which predicts
that all zeroes of L(χ, s) with real part between 0 and 1 must have
real part 1

2 , for all Dirichlet characters χ.
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Special values of L(χ, s)

n -4 -3 -2 -1 0 1 2 3 4 5
L(χ, n) 5

2 0 −1
2 0 1

2
π
4 ≈ 0.916 π3

32 ≈ 0.989 5π5

1536

Observations:
Values at negative integers are still rational. In fact, there is a formula
for them in terms of “generalized Bernoulli numbers”.
The roles of negative evens and negative odds have been switched,
and similarly positive evens and positive odds. This is because the
gamma-factors in the functional equation have poles in different
places.
The value at 1 is 1− 1

3 + 1
5 −

1
7 + · · · = π

4 , which we will now see has
a particularly special meaning.
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Analytic class number formula

Theorem (Dedekind 1894, Landau 1903)
For any number field K , we have:

lim
s→1

ζK (s)

ζ(s)
=

2r1(2π)r2hKRK

wK

√
|DK |

,

where:
r1 is the number of embeddings K ↪→ R,
r2 is the number of conjugate pairs of embeddings K ↪→ C with image
not contained in R,
hK = |ClK | is the class number of K ,
RK is the regulator of K ,
wK is the number of roots of unity in K , and
DK is the discriminant of K .
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Analytic class number formula, continued

In our situation, K = Q(i):

L(χ, s) = lim
s→1

ζK (s)

ζ(s)

=
2r1(2π)r2hKRK

wK

√
|DK |

=
20 · (2π)1 · 1 · 1
4 ·
√
| − 4|

=
π

4
.
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L-functions in general

There exist much more general things that deserve to be called L-functions.
These are functions built from Dirichlet series (or Euler products), with
terms of arithmetic or algebro-geometric interest. In general we expect
them to have:

a meromorphic continuation to C,
a functional equation relating L(s) to L(c − s) for some constant c ,
a Riemann hypothesis restricting the location of their zeroes and
poles, and
rational values—or more precisely, values that are rational multiples of
some predictable “periods” such as powers of π—at all integer inputs
where neither of the Γ-factors in the functional equation has a pole.
(Deligne’s conjecture on special values)
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Example: the L-function of an elliptic curve

If E = (y2 = x3 + ax + b) is an elliptic curve over Q, let

ap = p + 1−#E (Fp)

for each prime p, where #E (Fp) is the number of points of the reduction
of (a minimal Weierstrass model of) E modulo p.

The L-function of E is
defined approximately as

L(E , s) =
∏
p

(
1− ap · p−s + p · p−2s)−1

,

with suitable corrections at the finitely many primes of bad reduction.
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Birch and Swinnerton-Dyer conjecture

Conjecture (Birch and Swinnerton-Dyer)
For every elliptic curve E/Q,

ords=1L(E , s) = rank E (Q).

Moreover, there is a formula for the leading coefficient in terms of
arithmetic invariants of the curve:

lim
s→1

L(E , s)

(s − 1)r
=
|XE/Q| · ΩE · RE ·

∏
p|2∆ cp

|E (Q)tors|2
.
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