Special values of *L*-functions

Ravi Fernando

University of California, Berkeley fernando@berkeley.edu

April 14, 2018

Ravi Fernando (UC Berkeley)

Special values of L-functions

April 14, 2018 1 / 19

We start by recalling the definition and some well-known properties of the Riemann zeta function. If $s = \sigma + it$ is a complex number with $\sigma = \text{Re}(s) > 1$, we define

We start by recalling the definition and some well-known properties of the Riemann zeta function. If $s = \sigma + it$ is a complex number with $\sigma = \text{Re}(s) > 1$, we define

$$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s},$$

where $n^s := e^{s \log n}$. This series is absolutely convergent, so it gives a well-defined function from a half-plane of \mathbb{C} to \mathbb{C} .

$$\sum_{n=1}^{\infty} \frac{1}{n^{s}} = \prod_{p} \left(1 + \frac{1}{p^{s}} + \frac{1}{p^{2s}} + \cdots \right)$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{s}} = \prod_{p} \left(1 + \frac{1}{p^{s}} + \frac{1}{p^{2s}} + \cdots \right)$$
$$= \prod_{p} \frac{1}{1 - 1/p^{s}}.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^{s}} = \prod_{p} \left(1 + \frac{1}{p^{s}} + \frac{1}{p^{2s}} + \cdots \right)$$
$$= \prod_{p} \frac{1}{1 - 1/p^{s}}.$$

One must take some care when working with infinite products of infinite sums like this, but everything does converge correctly.

Riemann proved that the $\zeta(s)$ has an *analytic continuation* to $\mathbb{C} \setminus \{1\}$; that is, a (necessarily unique) holomorphic function $\zeta : \mathbb{C} \setminus \{1\} \to \mathbb{C}$ that restricts to our previously defined function on the region $\operatorname{Re}(s) > 1$.

Near s = 1, $\zeta(s)$ blows up as $\frac{1}{s-1} + \gamma + O(s-1)$, where $\gamma \approx 0.577$ is the Euler-Mascheroni constant.

Riemann also proved a *functional equation*:

$$\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-(1-s)/2}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s).$$

Riemann also proved a *functional equation*:

$$\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s) = \pi^{-(1-s)/2}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s).$$

Here, Γ is the gamma function, given by (the analytic continuation of)

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \,\mathrm{d}t.$$

The gamma function is much easier to understand than the zeta function; one of the breakout sessions this afternoon will study its properties.

Special values of $\zeta(s)$

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

< < p>< < p>

Special values of $\zeta(s)$

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

Some patterns to note:

• "Trivial" zeroes: $\zeta(n) = 0$ when *n* is a negative even integer.

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

Some patterns to note:

- "Trivial" zeroes: $\zeta(n) = 0$ when n is a negative even integer.
- The rational values for non-positive integer inputs are given by the formula $\zeta(1-n) = -B_n/n$, where B_n denotes the *n*th Bernoulli number.

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

Some patterns to note:

- "Trivial" zeroes: $\zeta(n) = 0$ when *n* is a negative even integer.
- The rational values for non-positive integer inputs are given by the formula $\zeta(1-n) = -B_n/n$, where B_n denotes the *n*th Bernoulli number.
- For n > 0 even, ζ(n) is determined by ζ(1 − n) via the functional equation; it is a nonzero rational multiple of π²ⁿ.

The zeta function encodes arithmetic information about the integers. Let's look at some of its particular values.

Some patterns to note:

- "Trivial" zeroes: $\zeta(n) = 0$ when *n* is a negative even integer.
- The rational values for non-positive integer inputs are given by the formula $\zeta(1-n) = -B_n/n$, where B_n denotes the *n*th Bernoulli number.
- For n > 0 even, ζ(n) is determined by ζ(1 − n) via the functional equation; it is a nonzero rational multiple of π²ⁿ.
- The values at positive odd integers seem to have no simple formula.

$$\zeta(s) = \frac{\pi^{-(1-s)/2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)}{\pi^{-s/2} \Gamma\left(\frac{s}{2}\right)}$$

This determines the value of ζ on positive even integers but not positive odds:

$$\zeta(s) = \frac{\pi^{-(1-s)/2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)}{\pi^{-s/2} \Gamma\left(\frac{s}{2}\right)}$$

This determines the value of ζ on positive even integers but not positive odds:

$$\zeta(2) = \frac{\pi^{1/2} \Gamma(-1/2) \zeta(-1)}{\pi^{-1} \Gamma(1)} = \frac{\pi^{1/2} \cdot (-2\sqrt{\pi}) \cdot (-1/12)}{\pi^{-1} \cdot 1} = \frac{\pi^2}{6}$$

$$\zeta(s) = \frac{\pi^{-(1-s)/2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)}{\pi^{-s/2} \Gamma\left(\frac{s}{2}\right)}$$

This determines the value of ζ on positive even integers but not positive odds:

$$\begin{aligned} \zeta(2) &= \frac{\pi^{1/2} \Gamma(-1/2) \zeta(-1)}{\pi^{-1} \Gamma(1)} = \frac{\pi^{1/2} \cdot (-2\sqrt{\pi}) \cdot (-1/12)}{\pi^{-1} \cdot 1} = \frac{\pi^2}{6} \\ \zeta(3) &= \frac{\pi^1 \Gamma(-1) \zeta(-2)}{\pi^{-3/2} \Gamma(3/2)} = \frac{\pi^1 \cdot \infty \cdot 0}{\pi^{-3/2} \cdot (\sqrt{\pi}/2)} = \text{ indeterminate} \end{aligned}$$

Ravi Fernando (UC Berkeley)

$$\zeta(s) = \frac{\pi^{-(1-s)/2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)}{\pi^{-s/2} \Gamma\left(\frac{s}{2}\right)}$$

This determines the value of ζ on positive even integers but not positive odds:

$$\begin{aligned} \zeta(2) &= \frac{\pi^{1/2} \Gamma(-1/2) \zeta(-1)}{\pi^{-1} \Gamma(1)} = \frac{\pi^{1/2} \cdot (-2\sqrt{\pi}) \cdot (-1/12)}{\pi^{-1} \cdot 1} = \frac{\pi^2}{6} \\ \zeta(3) &= \frac{\pi^1 \Gamma(-1) \zeta(-2)}{\pi^{-3/2} \Gamma(3/2)} = \frac{\pi^1 \cdot \infty \cdot 0}{\pi^{-3/2} \cdot (\sqrt{\pi}/2)} = \text{ indeterminate} \end{aligned}$$

(Here we are using the fact that Γ has poles at $0,-1,-2,\ldots.)$

We now take a step back and modify the definition of $\zeta(s)$ to construct a new function $L(\chi, s)$, which will turn out to encode information about a larger field than \mathbb{Q} , in this case $\mathbb{Q}(i)$. Although we will focus on one function for concreteness, we emphasize that the following discussion can be made much more general.

We now take a step back and modify the definition of $\zeta(s)$ to construct a new function $L(\chi, s)$, which will turn out to encode information about a larger field than \mathbb{Q} , in this case $\mathbb{Q}(i)$. Although we will focus on one function for concreteness, we emphasize that the following discussion can be made much more general.

For $n \in \mathbb{Z}$, define

$$\chi(n) = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{4}, \\ -1 & \text{if } n \equiv 3 \pmod{4}, \\ 0 & \text{if n is even.} \end{cases}$$

We now take a step back and modify the definition of $\zeta(s)$ to construct a new function $L(\chi, s)$, which will turn out to encode information about a larger field than \mathbb{Q} , in this case $\mathbb{Q}(i)$. Although we will focus on one function for concreteness, we emphasize that the following discussion can be made much more general.

For $n \in \mathbb{Z}$, define

$$\chi(n) = \begin{cases} 1 & \text{if } n \equiv 1 \pmod{4}, \\ -1 & \text{if } n \equiv 3 \pmod{4}, \\ 0 & \text{if n is even.} \end{cases}$$

This is a *Dirichlet character*; i.e. a completely multiplicative function on \mathbb{Z} that is periodic mod some m (here m = 4) and equal to zero on inputs that are not relatively prime to m.

We then define our L-function by the Dirichlet series

$$L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

= 1 - $\frac{1}{3^s} + \frac{1}{5^s} - \frac{1}{7^s} + \cdots$

This again converges absolutely for $\operatorname{Re}(s) > 1$.

As with $\zeta,$ this has an Euler product, but now different primes behave differently in it:

$$L(\chi, s) = \prod_{p=2} 1 \cdot \prod_{p \equiv 1 \pmod{4}} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right)$$
$$\cdot \prod_{p \equiv 3 \pmod{4}} \left(1 - \frac{1}{p^s} + \frac{1}{p^{2s}} - \cdots \right)$$

As with $\zeta,$ this has an Euler product, but now different primes behave differently in it:

$$L(\chi, s) = \prod_{p=2} 1 \cdot \prod_{p \equiv 1 \pmod{4}} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right)$$
$$\cdot \prod_{p \equiv 3 \pmod{4}} \left(1 - \frac{1}{p^s} + \frac{1}{p^{2s}} - \cdots \right)$$
$$= \prod_{p \equiv 1 \pmod{4}} \left(\frac{1}{1 - 1/p^s} \right) \cdot \prod_{p \equiv 3 \pmod{4}} \left(\frac{1}{1 + 1/p^s} \right).$$

Now we are ready to see the connection between $L(\chi, s)$ and the arithmetic of $\mathbb{Q}(i)$. Consider the product $L(\chi, s) \cdot \zeta(s)$:

Now we are ready to see the connection between $L(\chi, s)$ and the arithmetic of $\mathbb{Q}(i)$. Consider the product $L(\chi, s) \cdot \zeta(s)$:

$$L(\chi, s)\zeta(s) = \prod_{p=2} \frac{1}{1 - 1/p^s} \cdot \prod_{p \equiv 1 \pmod{4}} \left(\frac{1}{1 - 1/p^s}\right)^2$$
$$\cdot \prod_{p \equiv 3 \pmod{4}} \left(\frac{1}{1 - 1/p^{2s}}\right)$$

Now we are ready to see the connection between $L(\chi, s)$ and the arithmetic of $\mathbb{Q}(i)$. Consider the product $L(\chi, s) \cdot \zeta(s)$:

$$L(\chi, s)\zeta(s) = \prod_{p=2} \frac{1}{1 - 1/p^s} \cdot \prod_{\substack{p \equiv 1 \pmod{4}}} \left(\frac{1}{1 - 1/p^s}\right)^2$$
$$\cdot \prod_{\substack{p \equiv 3 \pmod{4}}} \left(\frac{1}{1 - 1/p^{2s}}\right)$$
$$= \prod_{\substack{0 \neq \mathfrak{p} \subseteq \mathbb{Z}[i]\\ \text{prime ideals}}} \frac{1}{1 - 1/(N\mathfrak{p})^s}$$

Now we are ready to see the connection between $L(\chi, s)$ and the arithmetic of $\mathbb{Q}(i)$. Consider the product $L(\chi, s) \cdot \zeta(s)$:

$$L(\chi, s)\zeta(s) = \prod_{p=2} \frac{1}{1 - 1/p^s} \cdot \prod_{\substack{p \equiv 1 \pmod{4}}} \left(\frac{1}{1 - 1/p^s}\right)^2$$
$$\cdot \prod_{\substack{p \equiv 3 \pmod{4}}} \left(\frac{1}{1 - 1/p^{2s}}\right)$$
$$= \prod_{\substack{0 \neq \mathfrak{p} \subseteq \mathbb{Z}[i]\\ \text{prime ideals}}} \frac{1}{1 - 1/(N\mathfrak{p})^s}$$
$$= \sum_{\substack{0 \neq \mathfrak{a} \subseteq \mathbb{Z}[i]\\ \text{ideals}}} \frac{1}{(N\mathfrak{a})^s}$$

This is the natural analogue of $\zeta(s)$ for the number field $\mathbb{Q}(i)$, so we will call this function $\zeta_{\mathbb{Q}(i)}(s)$. So we have shown the identity:

$$L(\chi, s) = rac{\zeta_{\mathbb{Q}(i)}(s)}{\zeta(s)}.$$

This is the natural analogue of $\zeta(s)$ for the number field $\mathbb{Q}(i)$, so we will call this function $\zeta_{\mathbb{Q}(i)}(s)$. So we have shown the identity:

$$L(\chi, s) = rac{\zeta_{\mathbb{Q}(i)}(s)}{\zeta(s)}.$$

Remark: We can analogously define the Dedekind zeta function ζ_K for an arbitrary number field K. When K/\mathbb{Q} is an abelian (Galois) extension, ζ_K will factor as a product of $[K : \mathbb{Q}]$ Dirichlet *L*-functions, including $\zeta(s)$ itself.

This *L*-function also has:

• analytic continuation (to all of \mathbb{C} , with no pole at 1)

This *L*-function also has:

- analytic continuation (to all of \mathbb{C} , with no pole at 1)
- a slightly different functional equation:

$$(4/\pi)^{s/2}\Gamma\left(\frac{s+1}{2}\right)L(\chi,s) = (4/\pi)^{(1-s)/2}\Gamma\left(\frac{(1-s)+1}{2}\right)L(\chi,1-s)$$

This L-function also has:

- analytic continuation (to all of \mathbb{C} , with no pole at 1)
- a slightly different functional equation:

$$(4/\pi)^{s/2}\Gamma\left(\frac{s+1}{2}\right)L(\chi,s) = (4/\pi)^{(1-s)/2}\Gamma\left(\frac{(1-s)+1}{2}\right)L(\chi,1-s)$$

• The generalized Riemann hypothesis (open problem), which predicts that all zeroes of $L(\chi, s)$ with real part between 0 and 1 must have real part $\frac{1}{2}$, for all Dirichlet characters χ .

Special values of $L(\chi, s)$

• • • • • • • •

3

Observations:

• Values at negative integers are still rational. In fact, there is a formula for them in terms of "generalized Bernoulli numbers".

Observations:

- Values at negative integers are still rational. In fact, there is a formula for them in terms of "generalized Bernoulli numbers".
- The roles of negative evens and negative odds have been switched, and similarly positive evens and positive odds. This is because the gamma-factors in the functional equation have poles in different places.

Observations:

- Values at negative integers are still rational. In fact, there is a formula for them in terms of "generalized Bernoulli numbers".
- The roles of negative evens and negative odds have been switched, and similarly positive evens and positive odds. This is because the gamma-factors in the functional equation have poles in different places.
- The value at 1 is $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots = \frac{\pi}{4}$, which we will now see has a particularly special meaning.

Theorem (Dedekind 1894, Landau 1903)

For any number field K, we have:

$$\lim_{s\to 1}\frac{\zeta_{\mathcal{K}}(s)}{\zeta(s)}=\frac{2^{r_1}(2\pi)^{r_2}h_{\mathcal{K}}R_{\mathcal{K}}}{w_{\mathcal{K}}\sqrt{|D_{\mathcal{K}}|}},$$

where:

- r_1 is the number of embeddings $K \hookrightarrow \mathbb{R}$,
- r₂ is the number of conjugate pairs of embeddings K → C with image not contained in R,
- $h_{\mathcal{K}} = |\operatorname{Cl}_{\mathcal{K}}|$ is the class number of \mathcal{K} ,
- R_K is the regulator of K,
- w_K is the number of roots of unity in K, and
- D_K is the discriminant of K.

Analytic class number formula, continued

In our situation, $K = \mathbb{Q}(i)$:

$$L(\chi, s) = \lim_{s \to 1} \frac{\zeta_{\kappa}(s)}{\zeta(s)}$$

Analytic class number formula, continued

In our situation, $K = \mathbb{Q}(i)$:

$$L(\chi, s) = \lim_{s \to 1} \frac{\zeta_{\kappa}(s)}{\zeta(s)}$$
$$= \frac{2^{r_1} (2\pi)^{r_2} h_{\kappa} R_{\kappa}}{w_{\kappa} \sqrt{|D_{\kappa}|}}$$

L

In our situation, $K = \mathbb{Q}(i)$:

$$\begin{aligned} (\chi, s) &= \lim_{s \to 1} \frac{\zeta_{\mathcal{K}}(s)}{\zeta(s)} \\ &= \frac{2^{r_1} (2\pi)^{r_2} h_{\mathcal{K}} R_{\mathcal{K}}}{w_{\mathcal{K}} \sqrt{|D_{\mathcal{K}}|}} \\ &= \frac{2^0 \cdot (2\pi)^1 \cdot 1 \cdot 1}{4 \cdot \sqrt{|-4|}} \end{aligned}$$

Ravi Fernando (UC Berkeley)

Special values of L-functions

April 14, 2018 16 / 19

In our situation, $K = \mathbb{Q}(i)$:

$$L(\chi, s) = \lim_{s \to 1} \frac{\zeta_K(s)}{\zeta(s)}$$

= $\frac{2^{r_1}(2\pi)^{r_2}h_K R_K}{w_K \sqrt{|D_K|}}$
= $\frac{2^0 \cdot (2\pi)^1 \cdot 1 \cdot 1}{4 \cdot \sqrt{|-4|}}$
= $\frac{\pi}{4}.$

• a meromorphic continuation to \mathbb{C} ,

- a meromorphic continuation to C,
- a functional equation relating L(s) to $\overline{L(c-\overline{s})}$ for some constant c,

- a meromorphic continuation to \mathbb{C} ,
- a functional equation relating L(s) to $\overline{L(c-\overline{s})}$ for some constant c,
- a *Riemann hypothesis* restricting the location of their zeroes and poles, and

- a meromorphic continuation to \mathbb{C} ,
- a functional equation relating L(s) to $\overline{L(c-\overline{s})}$ for some constant c,
- a *Riemann hypothesis* restricting the location of their zeroes and poles, and
- rational values—or more precisely, values that are rational multiples of some predictable "periods" such as powers of π—at all integer inputs where neither of the Γ-factors in the functional equation has a pole. (Deligne's conjecture on special values)

If $E = (y^2 = x^3 + ax + b)$ is an elliptic curve over \mathbb{Q} , let

$$a_p = p + 1 - \# E(\mathbb{F}_p)$$

for each prime p, where $\#E(\mathbb{F}_p)$ is the number of points of the reduction of (a minimal Weierstrass model of) E modulo p.

If $E = (y^2 = x^3 + ax + b)$ is an elliptic curve over \mathbb{Q} , let

$$a_p = p + 1 - \# E(\mathbb{F}_p)$$

for each prime p, where $\#E(\mathbb{F}_p)$ is the number of points of the reduction of (a minimal Weierstrass model of) E modulo p. The *L*-function of E is defined approximately as

$$L(E,s) = \prod_{p} \left(1 - a_p \cdot p^{-s} + p \cdot p^{-2s}\right)^{-1},$$

with suitable corrections at the finitely many primes of bad reduction.

Conjecture (Birch and Swinnerton-Dyer)

For every elliptic curve E/\mathbb{Q} ,

$$\operatorname{ord}_{s=1}L(E,s) = \operatorname{rank} E(\mathbb{Q}).$$

Moreover, there is a formula for the leading coefficient in terms of arithmetic invariants of the curve:

$$\lim_{s\to 1} \frac{L(E,s)}{(s-1)^r} = \frac{|\mathrm{III}_{E/\mathbb{Q}}| \cdot \Omega_E \cdot R_E \cdot \prod_{\rho|2\Delta} c_{\rho}}{|E(\mathbb{Q})_{\mathrm{tors}}|^2}.$$

Ravi Fernando (UC Berkeley)