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Anatomy of a Rubik’s cube

A disassembled Rubik’s cube contains:

1 core with 6 stationary face centers

8 corner pieces with 3 stickers each

12 edge pieces with 2 stickers each

Since the center pieces never move relative to each other, we use them as
reference points to determine where all the other pieces should be placed.
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The cheater’s Rubik’s cube group

We define the “cheater’s Rubik’s cube group” G to be the set of all
operations that can be done to a Rubik’s cube by taking it apart and
putting it back together. This allows us to do four things:

Permute the 12 edge pieces

Flip any subset of the edges in place

Permute the 8 corner pieces

Twist any subset of the corners in place

This gives us the group

G = (Z12
2 o S12)× (Z8

3 o S8) (1)

= (Z2 o S12)× (Z3 o S8), (2)

with order |G | = 212 · 12! · 38 · 8! ≈ 5 · 1020.
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The actual Rubik’s cube group

The Rubik’s cube group G is defined to be the subgroup of G generated
by the 90-degree clockwise rotations of the six faces, which we denote U,
F, R, B, L, and D. This fails to be the full group G because of three
parity-like restrictions that are necessary for a given Rubik’s cube
configuration to be solvable:

(index 2) the total number of edges flipped must be even.

(index 3) the total number of clockwise corner rotations must be a
multiple of 3.

(index 2) the overall permutation of corners and edges must be an
even permutation.

In fact, G is a normal subgroup of G with index 2 · 3 · 2 = 12, so it has
order

|G | =
212 · 12! · 38 · 8!

12
= 43, 252, 003, 274, 489, 856, 000. (3)
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Another description

An equivalent description of G is as the semidirect product GO o GP ,
where GO describes all orientations (flips and twists) of pieces, and GP

describes all permutations. These groups have the following structure:

GO
∼= Z11

2 × Z7
3, which we view as the subgroup of Z12

2 × Z8
3 where

the Z2-coordinates sum to 0 (mod 2), and the Z3-coordinates sum to
0 (mod 3). Each coordinate represents the flipping of an edge or the
twisting of a corner.

GP = (S12 × S8) ∩ A20, where we view S12 × S8 as a subgroup of S20
in the obvious way. That is, we can do any permutation of the 12
edges and any permutation of the 8 corners, as long as the two
permutations have the same parity.

To construct the semidirect product, we let GP act on GO by permuting
the coordinates.
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Generating sets

The most obvious generating set of G , {U,F ,R,B, L,D}, is redundant:
any one of the six generators can be expressed in terms of the others.
However, any five out of six form an irredundant generating set.

Question

Can we generate G with fewer elements, or with more irredundant
elements?

r(G ) = minimal number of generators = 2.

m(G ) = maximal number of irredundant generators = ?.

i(G ) = maximal number of irredundant elements = ?.
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Two lemmas for calculating m

Our goal is to calculate m(G ). We will use two related lemmas:

Lemma 1

If G is any group and N is a normal subgroup, then
m(G ) ≤ i(N) + m(G/N).

Lemma 2

If N is a minimal normal subgroup of G and N is abelian, then

m(G ) =

{
m(G/N) if N is contained in the Frattini subgroup Φ(G ),

1 + m(G/N) otherwise.

(4)
(A minimal normal subgroup is a subgroup that is inclusion-minimal
among nontrivial normal subgroups.)
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Finding abelian minimal normal subgroups

Since GO
∼= Z11

2 ×Z7
3 is an abelian normal subgroup of G , we look inside it

for abelian minimal normal subgroups. We have a chain of normal
subgroups of G :

1 < Z < GEO < GO < G , (5)

where:

Z ∼= Z2 is the center of G , generated by the “superflip”,

GEO
∼= Z11

2 is the edge orientation group, which contains edge flips
but not corner twists, and

GO
∼= Z11

2 × Z7
3 is the full orientation group as before, including edge

flips and corner twists.
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Applying lemma 2

Given the chain

1 < Z < GEO < GO < G , (6)

we now apply lemma 2 three times, with three successive choices of
abelian minimal normal subgroups:

The center Z of G equals the Frattini subgroup, so m(G ) = m(G/Z ).

GEO/Z is minimal normal in G/Z . It is abelian and not contained in
the Frattini subgroup, so the quotient (G/Z )/(GEO/Z ) = G/GEO

satisfies m(G ) = 1 + m(G/GEO).

GO/GEO is minimal normal in G/GEO . It is abelian and not contained
in the Frattini subgroup, so the quotient
(G/GEO)/(GO/GEO) = G/GO has m(G/GEO) = 1 + m(G/GO).

So m(G ) = 2 + m(G/GO) = 2 + m(GP).
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Calculating m(GP): upper bound

We now only need to calculate m of GP = (S12 × S8) ∩ A20. We can’t
apply lemma 2 anymore, because there are no more abelian minimal
normal subgroups. Instead, we apply lemma 1.

Observe that GP contains the normal subgroup N = A12 × 1, with
GP/N ∼= S8. So lemma 1 gives:

m(GP) ≤ i(A12) + m(S8) (7)

= (12− 2) + (8− 1) = 17. (8)

Here we use Whiston’s theorem that Sn has m = i = n − 1 and An has
m = i = n − 2.
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Calculating m(GP): lower bound

In order to show that m(GP) is equal to 17, we exhibit an explicit
irredundant generating set of this size. We choose:

ten 3-cycles of edges: (1, 2, 3), . . . , (1, 2, 12);

six 3-cycles of corners: (13, 14, 15), . . . , (13, 14, 20); and

one double transposition: (1, 2)(13, 14).

The subgroup generated by all but the last of these elements is A12 × A8,
and adding the last generates the full GP . But if we remove (e.g.) the
3-cycle (1, 2, 3), then all of the remaining elements fix the point 3. So this
is an irredundant generating sequence of GP , and therefore m(GP) ≥ 17.
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Conclusion

Since we calculated that m(GP) = 17, it follows that

m(G ) = 2 + 17 = 19. (9)

So among any set of elements generating G , some subset of size at most
19 suffices to generate.
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