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Given an abelian variety A of dimension g over a finite field Fq, we can associate to A a
multiset of 2g algebraic numbers, the eigenvalues of Frobq on H1

ét(AFq
,Q`) for any ` - q. These

are all Weil q-integers; that is, they are algebraic integers with absolute value √q upon any
embedding into C. It is well-known that isogenous abelian varieties have the same Frobenius
eigenvalues, and that the Frobenius eigenvalues of a simple abelian variety form a single Galois
conjugacy class (possibly with multiplicity—more on this soon). This allows us to state the
Honda-Tate theorem:

Theorem 1. (Honda-Tate) For every finite field Fq, the map

{simple abelian varieties over Fq} /isogeny −→ {GQ-conjugacy classes of Weil q-numbers}

is a bijection.

Injectivity was proved by Tate in 1966, and surjectivity by Honda in 1968.

One might naively expect that for abelian varieties of dimension g, the resulting Frobenius
eigenvalues α1, . . . , α2g are all distinct algebraic integers of degree 2g. Indeed, they are all roots
of the characteristic polynomial fA(x) =

∏2g
i=1(x − αi), which is in Z[x] by the “rationality”

Weil conjecture. Moreover, if B is another abelian variety with fB|fA, then B embeds into
A up to isogeny. (The isogeny category is semisimple, so in this case A is isogenous to the
direct product of B and some other abelian variety B′.) But it is nonetheless possible for
fA(x) to be reducible even when A is simple. The purpose of this note is to illustrate a con-
crete example of this type of behavior. This example was worked out with Sander Mack-Crane
and Dylan Yott after Berkeley’s RTG research workshop on arithmetic geometry in spring 2018.

Let us begin by illustrating an example of the “expected” behavior. Fix a prime p. If E/Fp is
an elliptic curve with Frobenius eigenvalues α1, α2, we have |E(Fpn)| = 1 + pn − αn1 − αn2 . In
particular, |E(Fp)| = p + 1 − ap, where ap = α1 + α2 is an integer in [−2

√
p, 2
√
p]. Given ap,

we have (x − α1)(x − α2) = x2 − apx + p; the determinant here must be p because Frobenius
acts as multiplication by p on Λ2H1

ét(AFq
,Q`) = H2

ét(AFq
,Q`). The quadratic formula gives

α1,2 =
ap ±

√
a2p − 4p

2
. (1)

Since |ap| ≤ 2
√
p, the square root is imaginary, so |α1| = |α2| = p, and the αi are indeed

Weil numbers. It is a consequence of our later discussion that for all primes p and all integers
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ap ∈ [−2
√
p, 2
√
p], there exists an elliptic curve over Fp with trace ap. Tate’s work implies that

elliptic curves over finite fields are isogenous if and only if they have the same trace (equivalently,
the same number of points), and these isogeny classes correspond to all of the Weil numbers
above. Note in particular that the conjugacy class {±

√
−p} corresponds to an isogeny class of

supersingular elliptic curves.

We now consider the conjugacy class {±√p}, which is notably absent from the list above.
These cannot arise from an elliptic curve, as the determinant of Frobenius would be −p instead
of p. So they must instead appear, each with multiplicity g > 1, as the Frobenius eigenvalues
of an isogeny class of abelian varieties of dimension g. The determinant (

√
p)g(−√p)g agrees

with the desired pg if and only if g is even. For p ≡ 1 (mod 4), we will construct an explicit
abelian variety of even dimension p−1

2
realizing ±√p as Frobenius eigenvalues:

Proposition 2. Let p ≡ 1 (mod 4), and let C be the hyperelliptic curve y2 = xp − x, ramified
over P1

Fp
at all of its Fp-points. The Jacobian Jac(C) has Frobenius eigenvalues ±√p with

multiplicity p−1
2

each.

Before proving this, we make a few observations. First, the quadratic twist of C given
by y2 = c(xp − x) with c ∈ F×p a non-square works as well, as we only need #C(Fp2) below.
Second, we do not claim that Jac(C) is simple; for now, we are only proving that it is isogenous
to some power of a simple abelian variety whose isogeny class corresponds to {±√p} under
Honda-Tate. We also note that a similar construction cannot work for all primes; in fact, for
p = 2 and p = 3, one can show by point counts similar to those below that no Jacobian of any
curve has Frobenius eigenvalues ±√p. For arbitrary p ≡ 3 (mod 4), we note that p−1

2
is odd,

and so cannot be the right dimension.

Proof. First, notice that since the ramification divisor of C/P1 has degree p + 1, C has genus
p−1
2

by Riemann-Hurwitz. The Hasse-Weil bound then implies that

#C(Fp2) ≥ 1 + p2 − 2gp = 1 + p. (2)

We claim that our curve realizes this lower bound. If so, all of the Frobenius eigenvalues of C
must satisfy α2

i = p; this forces half of them to be √p and half −√p in order for the Frobenius
trace to be rational. Since Jac(C) has the same first cohomology as C, this would imply the
proposition.

Our curve clearly has exactly p + 1 Fp-points, namely the point at infinity and the p points
(x, 0). Now suppose C has a point (x0, y0) ∈ Fp2 ×Fp2 other than these. Then we must have
y0 6= 0, as g(x) = xp − x has all its roots in Fp. Let σ : Fp2 → Fp2 be the Frobenius map, so
that σ2 = id. Then we have

σ(g(x0)) = xp
2

0 − x
p
0 (3)

= x0 − xp0 = −g(x0), (4)

so g(x0)
p−1 = −1 since g(x0) is nonzero. But since p+1

2
is odd, we have

g(x0)
(p−1)(p+1)/2 = −1 (5)

also, and so g(x0) is a non-square in Fp2 . Thus all of the Fp2-points of C are defined already
over Fp.
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1 The minimal dimension
Given a Weil q-number π, it is natural to ask for the dimension of the corresponding (isogeny
class of) simple abelian varieties. This question is actually answered in Tate’s work, conditional
on the existence of such abelian varieties (later proved by Honda). It turns out that the Weil
number determines End(A)⊗Q, and this in turn determines the dimension. We will summarize
how this all works, and defer to Tate for the proofs.

Fix a Weil q-number π. The rationalized endomorphism algebra D = End(A)⊗Q is a simple
algebra with center K = Q(π), where π corresponds to the relative Frobenius. As a central
simple K-algebra, it can be specified by its class in

Br(K) = ker

⊕
v-∞

Q/Z⊕
⊕
v real

1

2
Z/Z→ Q/Z

 , (6)

where the map is given by summing all entries. Tate showed that the Brauer invariants of D
are as follows: invv(D) = 0 for v - p finite, 1

2
for v real, and

invv(D) =
ordv(π)

ordv(q)
· [Kv : Qp] = ordv(π) · fv

logp(q)
∈ Q/Z (7)

for v | p, where fv is the inertia degree of the extension Kv/Qp.

Finally, the dimension of A is given by 2 dim(A) = [D : K]1/2 · [K : Q]. But [D : K] is
just the order of the Brauer class, which is the lcm of the orders of the above-mentioned ele-
ments of Q/Z. So dimA is easy to calculate in terms of the arithmetic of the field K = Q(π).

In the case where q = p and π = ±√p, D is the algebra of Hamilton quaternions over
K = Q(

√
p), so 2 dimA = 2 · 2. So in fact the simple abelian varieties corresponding to

±√p are surfaces.

Indeed, we can construct such an abelian surface as the Weil restriction of an elliptic curve
E/Fp2 with Frobenius eigenvalues p, p. Proof: (Res

Fp2

Fp
E)F2

p
= E ×E has Frobenius eigenvalues

p, p, p, p, so the Frobenius eigenvalues of Res
Fp2

Fp
E must all be square roots of p, with rational

sum.

Remark: Suppose q = p. Then for v | p, the second formula for invv(D) above clearly gives
0 ∈ Q/Z. It follows that the Brauer class [D] has order 2 if K has a real place, and 1 otherwise.
But ±√p are the only real Weil p-numbers, so for π 6= ±√p we have

2 dimA = [D : K]1/2 · [K : Q] = 2 · [K : Q]. (8)

So over Fp, our naive guess for dimA is correct in all cases except π = ±√p.
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2 Relation to our first construction
We have now constructed two abelian varieties over Fp with Frobenius eigenvalues ±√p. By
Tate’s work, it follows that every isogeny summand of Jac(C) must be isogenous to Res

Fp2

Fp
E,

so in fact Jac(C) ∼ (Res
Fp2

Fp
E)(p−1)/4. Under the further hypothesis that p ≡ 5 (mod 8), we can

observe this fact directly.

We will construct one of the coordinate maps Jac(C) → Res
Fp2

Fp
E; once we do this, the other

coordinate maps should follow by composing with automorphisms of C. By the universal
properties of the Weil restriction and the Jacobian, such maps are in bijection with maps
Jac(C)Fp2

→ E over Fp2 , and therefore with maps CFp2
→ E over Fp2 . We will construct such

a map (and indeed, such an E) as a quotient of CFp2
by a suitable group of automorphisms.

At this point, the entire problem is over Fp2 , so we abusively write C for CFp2
and work in

the category of Fp2-schemes unless otherwise specified.

Before studying the automorphisms of C, let’s see what properties are forced upon it by
Riemann-Hurwitz.1 If G is a subgroup of Aut(C) of order n, Riemann-Hurwitz says that

p− 3 = 2gC − 2 = n(2gC/G − 2) + degR = degR, (9)

where R is the ramification divisor of π : C → C/G. The degree of R can be calculated after
passing to an algebraic closure: it is

degR =
∑

x∈(C/G)(Fp2 )

n− |π−1(x)| (10)

=
∑

y∈C(Fp2 )

| StabG(y)| − 1 (11)

=
∑

1 6=g∈G

|(CFp2
)g|; (12)

that is, the sum of the geometric fix loci of the non-identity elements of G. So given that the
quotient map is generically separable, it is necessary and sufficient for this quantity to equal
p− 3.

Now we look into the structure of Aut(C). Since C is a hyperelliptic curve branched at all
p + 1 Fp-points of P1, it follows that any automorphism ϕ : C → C fits into a commutative
square

C
ϕ //

π
��

C

π
��

P1 ϕ // P1,

1The map we eventually construct will have degree prime to p, so it will be generically separable.
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where ϕ is an automorphism of P1 preserving the Fp-points. Such an automorphism is given
by a fractional linear transformation x 7→ ax+b

cx+d
with a, b, c, d ∈ Fp, modulo scalars. Conversely,

for any given ϕ =

(
a b
c d

)
, one can calculate that there are exactly two ϕ ∈ Aut(C) inducing

it, given by the formula

(x, y) 7→

(
ax+ b

cx+ d
,

√
det · y

(cx+ d)(p+1)/2

)
, (13)

where
√

det ∈ Fp2 is one of the two square roots of ad− bc ∈ F×p . In the case ϕ =

(
a 0
0 a

)
, the

identity automorphism is the one with
√

det = a(p+1)/2; that is,
√

det = a if a ∈ (F×p )2 and −a
otherwise.

The result of this discussion is the following description of Aut(C): it is the group of invertible

2× 2 matrices
(
a b
c d

)
over Fp equipped with

√
det ∈ F2

p, with coordinate-wise multiplication,

modulo the subgroup of elements ((
a 0
0 a

)
, a(p+1)/2

)
. (14)

Observe that this fits into a non-split short exact sequence

1→ ±1→ Aut(C)→ PGL2(Fp)→ 1, (15)

where −1 := (I,−1) represents the hyperelliptic involution (x, y) 7→ (x,−y).

So far we have not used the condition that p ≡ 5 (mod 8). For such p, we now construct
a subgroup G < Aut(C) with order p−1

2
such that each non-identity element fixes exactly two

geometric points, resulting in the sum of p − 3 required by Riemann-Hurwitz. Let H denote
the maximal prime-to-2 subgroup of F×p , namely H = (F×p )4. Fix a non-square α ∈ F×p , along
with a choice of square root

√
α ∈ F×p2 . Then the involution((

0 −α
1 0

)
,
√
α

)
(16)

normalizes the subgroup {((
β2 0
0 1

)
, β

)
: β ∈ H

}
(17)

and we define G to be the semidirect product. This is a dihedral group of order 2(p−1
4

), and
one can calculate directly that it has the desired properties.2

2For
((

0 −α
1 0

)
,
√
α

)
, note that there are two fixed points x = ±

√
−a after projecting to P1. The preimages

in C of one of these points are both fixed, and those of the other are transposed.
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Remark: if p ≡ 1 (mod 8), it is not clear how to make this construction work. It may even be
impossible, since there is no a priori reason that the map C → E must be Galois. The problem
is that the hyperelliptic involution −1 ∈ Aut(C) has p + 1 > p − 3 geometric fixed points by
itself, and so it cannot lie in G. The natural analogue of (17) above would be a cyclic subgroup
of order p−1

4
, which is even for p ≡ 1 (mod 8). Therefore this subgroup would contain −1.
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