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1 Motivation

This note provides some background information on the finite group invariant MaxDim, for
participants in the 2017 SPUR program at Cornell. The second author’s paper [4] (based on
work that began in the 2013 REU) has more details and proofs of some statements mentioned
here; however, here we provide some examples and questions not discussed there.

Let G be a finite group, and recall the invariants r(G) ≤ m(G) ≤ i(G), which respectively
measure the sizes of the smallest generating sequence, the largest irredundant generating se-
quence, and the largest irredundant sequence in G. Before defining MaxDim(G), let’s motivate
why the invariants we already care about, particularly m and i, might have something to do
with maximal subgroups.

Suppose we are interested in r, m, and i of G = S7. Since G is generated by (12) and
(234567)—check this if you haven’t seen it before!—we have r(G) = 2. We also have the irre-
dundant generating sequence (12), (23), . . . , (67), which shows that m(G) ≥ 6. We might then
suspect that m(G) = 6. But it’s not clear why there can’t be an irredundant generating set of
length 7,1 and it’s far too computationally expensive to check all

(
7!
7

)
candidates. We need a

better way.

Notice that a subset of G generates G if and only if it isn’t contained in any proper sub-
group. So any 7-element irredundant generating set {g1, . . . , g7} has the property that each
6-element subset {gj : j 6= i} is contained in a proper subgroup Hi < G. We can even enlarge
these Hi to maximal subgroups Mi, while keeping the property that each Mi contains all of the
gj except for gi. Then to search for irredundant generating sequences {gi}, it suffices to search
through large families of maximal subgroups {Mi}, look for elements gi ∈ ∩j 6=iMj, and check
whether the gi generate G.

Crucially, there aren’t too many maximal subgroups of G, and we can understand them all rea-
sonably well: all of them are conjugate to either A7 (order 2520), S6 (order 720), S5×S2 (order
240), S4×S3 (order 144), or (Z/7Z)o (Z/7Z)× (order 42). (This isn’t obvious to a human—at

1In fact, one may wonder whether the irredundant generating sequences could “skip” length 7 but reappear
at some larger number. Fortunately, Tarski’s theorem prevents this.
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least not any human I know—but a computer algebra system like GAP or Magma can calculate
it very quickly.) We would then show that the last of these is too small to occur as an Mi, by
showing that the chain of subgroups G > Mi1 > Mi1 ∩Mi2 > Mi1 ∩Mi2 ∩Mi3 > · · · is strictly
decreasing for any choice of indices. (This is easier than it looks: just look at which of these sub-
groups contain each gi.) Finally, we would examine how the remaining maximal subgroups can
intersect with each other, and eventually show that a length-7 irredundant generating sequence
cannot exist. The conceptual overhead of looking at 7-tuples of maximal subgroups instead of
7-tuples of elements pays off in the fact that there are far fewer of the former than the latter,
and what was previously an intractable calculation has become potentially doable. In fact, this
approach is essentially the best general-purpose method we have to compute m of a finite group.

If we were Julius Whiston in 2000, we would apply the same approach to all Sn, using the
O’Nan-Scott theorem to classify the maximal subgroups of Sn. We would rule out the “small”
cases (which depend on the classification of finite simple groups!), and examine the rest, using
strong induction on n, to show that m(Sn) is n− 1 and no greater. We would even show more
in the process: that i(Sn) = n− 1, that m(An) = n− 2, and that every irredundant set in Sn

of maximal size actually generates the group.

2 Definition and basic properties

We will now formalize the discussion of the subgroups Mi in the preceding example (or Hi,
since maximality isn’t needed in the definition), and then explain the precise connection to
m(G) and i(G) and the role of the elements gi.

Definition and Lemma 1. We say that a family of subgroups Hi ≤ G, indexed by a set S,
is in general position if it satisfies either of the following equivalent conditions:

1. Whenever ∩i∈IHi = ∩j∈JHj for I, J ⊆ S, we have I = J .

2. For every i ∈ S, the intersection ∩j 6=iHj properly contains ∩j∈SHj.

We let MaxDim(G) denote the size of the largest family of maximal subgroups of G in general
position.

Proof. To show that (1) implies (2), simply take I = S and J = S \ {i}. To show the reverse
implication (by contrapositive), suppose we are given I 6= J ⊆ S violating (1), and take i ∈ I \J
without loss of generality. Then we have ∩i∈IHi = ∩j∈JHj, so

∩j∈I∪JHj = ∩j∈JHj = ∩j∈J∪I\{i}Hj. (1)

Intersecting both sides with all Hk for k /∈ I ∪J yields ∩j 6=iHj = ∩all jHj, contradicting (2).

Exercise 1. Interpret MaxDim((Z/pZ)n) in terms of linear algebra over Fp, and show that
r = m = i = MaxDim = n for this group.

Now let (g1, . . . , gn) be an irredundant generating sequence of a group G. For each i, let
Hi = 〈gj : j 6= i〉. Since Hi is a proper subgroup of G, it is contained in some maximal subgroup
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Mi. We must have gi /∈ Mi, since otherwise Mi contains 〈g1, . . . , gn〉 = G. It follows that the
intersection of all Mi contains none of the gi, while the intersection of any n−1 of them contains
exactly one gi. In particular, using criterion (2) above, we have shown that the Mi are in general
position. (The same argument applies to the Hi.) Thus, any length-n irredundant generating
sequence of a finite group G gives rise to at least one family of n maximal subgroups of G in
general position. We have shown:

Proposition 2. For finite G, we have m(G) ≤ MaxDim(G).

Next, we might ask whether the correspondence can be reversed. That is, given a family of
maximal subgroups of G in general position, can we recover an irredundant generating sequence
of the same length? This is not generally possible; in fact, we will see soon that MaxDim(G)
can be strictly greater than m(G). However, we can always recover some irredundant (but not
necessarily generating) sequence of the same length, which implies:

Proposition 3. For finite G, we have MaxDim(G) ≤ i(G).

Proof. Let (Mi)1≤i≤n be a family of subgroups in general position; they need not even be
maximal. By condition (2) of the definition of general position, we can choose elements gi ∈
(∩j 6=iMj) \Mi for each i. By construction, we have gj ∈Mi if and only if j 6= i. So for every i,
the subgroup 〈gj : j 6= i〉 is contained in Mi and 〈all gj〉 is not, so the elements g1, . . . , gn form
an irredundant sequence. Taking n = MaxDim(G) gives the result.

In summary, we have r(G) ≤ m(G) ≤ MaxDim(G) ≤ i(G) for all finite groups G.

Remark 4. Suppose we have a family of subgroups (Hi)i∈S and a family (gj)j∈S of elements
of G indexed by the same set S, and suppose that gj ∈ Hi holds exactly when j 6= i. Then
the argument of Proposition 2 shows that the Hi are in general position. In this case, we
say that the gj certify that the Hi are in general position. We can summarize the last two
results as saying that every irredundant generating sequence certifies a family of subgroups in
general position (which we can choose to be maximal), and every such family is certified by
some irredundant sequence.

The MaxDim viewpoint is quite fruitful for calculatingm, both theoretically (as in Whiston’s
theorem) and computationally. Gabe Frieden has written a program in GAP using this idea:
it finds all maximal subgroups of G, looks for large families of them in general position, and
then checks whether any of these are certified by an irredundant generating sequence.

Exercise 2. Show that m(G) = MaxDim(G) = i(G) for finite abelian groups G.

Exercise 3. Let G be a finite p-group. Then an exercise (6.1.26a) in Dummit & Foote shows
thatG/Φ(G) ∼= (Z/pZ)n for some n. Show that r(G) = m(G) = MaxDim(G) = n, and conclude
that r = m = MaxDim for all finite nilpotent groups. (Reduce to Exercise 1 by showing that
all three invariants are insensitive to modding out by Φ(G).2 A finite nilpotent group is the
direct product of its Sylow subgroups.) On the other hand, show that i(G) need not equal the
rest even for nilpotent groups. In particular, setting G = (Z/pZ)p o (Z/pZ), where Z/pZ acts

2Your argument should show moreover that every family of n maximal subgroups of G in general position
intersects in exactly Φ(G).
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by cyclically permuting the p factors on the left, show that r(G) = m(G) = MaxDim(G) = 2,
but i(G) = p. The point is that your length-p irredundant sequence will necessarily live in a
subgroup “deep inside” G, and adding anything outside of this will cause lots of redundancy.

The equality MaxDim(G) = m(G) does not hold for all finite groups, or even all solvable
groups. However, we show in [4] that it is true for finite supersolvable groups, a class of groups
lying between nilpotent and solvable groups.

Question 1. Are there other interesting classes of groups for which MaxDim(G) = m(G)?
What about the stronger condition that m(G) = i(G), or that every family of maximal sub-
groups in general position is certified by a generating sequence?

3 Groups where MaxDim > m

In practice, MaxDim seems to behave more like m than i, and it is surprisingly difficult to find
a group G where they are not equal. (Indeed, we know from computations that the smallest
group with MaxDim > m has order 720. In GAP’s SmallGroups library, it is identified as
SmallGroup(720, 774).) In [4], we discuss a family of finite groups G = A5 o (Z/pZ), p a
prime, where m(G) ≤ 5 but MaxDim(G) ≥ 2p grows without bound as p → ∞. Detomi
and Lucchini [2] have since found similar behavior in a family of solvable groups. Instead of
retelling those stories here, we’ll describe the first known counterexample, which Gabe Frieden
discovered computationally in the 2011 REU. This example is nice because it has a very hands-
on interpretation in terms of finite projective geometry, which allows us to see concretely how a
family of maximal subgroups in general position can fail to come from an irredundant generating
set.

3.1 Gabe Frieden’s example

Consider the simple group PSL(3, 2) of order 168, which acts as the symmetries of the Fano
plane P = P2(F2). Let G be the wreath product PSL(3, 2) o (Z/2Z); this is the symmetry group
of the disjoint union of two Fano planes P ∪Q. (We are allowed to apply any two symmetries to
the two planes separately, and to switch them with each other, so |G| = 1682 · 2 = 56448.) We
will show that G has a set of six maximal subgroups in general position that are not certified
by any generating set.

Let’s recall some things about the Fano plane and its symmetries. As a projective plane,
its “points” are the lines (one-dimensional linear subspaces) in F3

2, and its “lines” are the two-
dimensional linear subspaces. Equivalently, its points are the equivalence classes of nonzero
vectors in F3

2 under nonzero scalar multiplication (which is trivial, because the only nonzero
scalar is 1), and its lines are the sets of three nonzero points that lie in a common plane. A
symmetry (or automorphism) of P is defined to be any permutation of the seven points that
sends lines to lines.

You can check that P contains seven points and seven lines; each line contains three points;
each point lies on three lines; there is a unique line connecting any two points, there is a unique
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point of intersection of any two lines, and so on.3 By linear algebra, there exists a unique sym-
metry of P sending any basis (i.e. set of three points whose corresponding linear subspaces are
linearly independent) to any other basis. In particular, Aut(P ) acts 2-transitively, and almost
3-transitively: any ordered triple of non-collinear points can be sent to any other. A nice exam-
ple of this is if we decide to fix two points on the “line at infinity” (thus all three of them, namely
the three nonzero points [a : b : 0] in projective coordinates): we still have four symmetries,
acting on the “affine part” of P (i.e. the four points [a : b : 1]) by translations in the (a, b)-plane.

We now construct our six maximal subgroups of G. Choose one point p in our first plane
P , and three non-collinear points p1, p2, p3 in Q. Dually, choose one line ` in Q, and three
lines `1, `2, `3 in P not passing through a common point. For i = 1, 2, 3, we let Hi < G be the
subgroup preserving the set {p, pi}, and let Ki < G preserve {`, `i}. So for example an element
in H1 must either fix both p and p1, or swap the two planes while sending p and p1 to each
other.

Exercise 4. Show that the Hi and Ki are maximal subgroups of G. You will probably need
some transitivity properties of PSL(3, 2) acting on P and Q.

We claim that the intersection of all six subgroups is trivial, but that the intersection of any
five is nontrivial. To prove this, note that any element g ∈ (H1 ∩H2 ∩ · · · ) must fix {p, p1} and
{p, p2}, so it fixes p and in particular doesn’t swap P and Q. Then g must also fix all three pi,
which forces it to fix Q pointwise. A similar argument with the Ki forces g to fix P pointwise,
so g = 1.

On the other hand, suppose we intersect all but K3. This forces us to fix Q pointwise, as
well as fixing p and fixing `1 and `2 each setwise. Then we must fix the intersection point
p′ = `1.`2, so we fix every point on the line `′ = pp′. (I’m ignoring the case p′ = p, which is
easier.) But if we choose coordinates so that `′ is the line at infinity, then we can take g to be
one of the transpositions from earlier, namely the one parallel to the lines `1 and `2. (You may
want to draw a picture if you haven’t already!) The dual argument works for intersecting all
but one of the Hi; this is left as an exercise.

So we’ve shown that the six subgroups are in general position. But the five-fold intersec-
tions are very small; in particular, just by intersecting two of the Hi or two of the Ki, we
already get an intersection contained in the index-2 subgroup (PSL(3, 2))2. So if {gi} is any
set certifying that they are in general position, then all gi ∈ (PSL(3, 2))2, so they cannot be a
generating set.

We haven’t actually proved that m(G) < 6, since there could be other sets of six maximal
subgroups in general position. But in fact we know computationally that m(G) = 5 and
MaxDim(G) = 6.

Question 2. Can we say something interesting about generating sequences of other groups

3The symmetry between these statements is not a coincidence. In fact, the points and lines are dual to each
other: if we define a new plane P∨ by declaring its points to be the lines of P , declaring its lines to be the
points of P , and saying that ` lies on p in P∨ if and only if p lies on ` in P , then P∨ is isomorphic to P .

5



(e.g. PSL(3, p), PSL(n, q), their wreath products with Z/2Z, etc.) using similar geometric
arguments?

The case of G = PSL(3, p) seems most accessible. In this case, with p 6= 2 prime, we can
write down some explicit maximal subgroups (stabilizers of certain points and lines) that show
MaxDim(G) ≥ 5. It might be possible to compute the exact value—is it always 5?—and then
say something about m(G) and i(G).

4 Other questions

In the spirit of understanding groups in terms of their Jordan-Hölder decompositions, it would
be good to understand how r(G),m(G),MaxDim(G), i(G), and so on behave for finite simple
groups, and how they transform in extensions. The simplest open problem in this direction,
and the most embarrassing to not have an answer to, seems to be the following:

Question 3. Is MaxDim(G×H) = MaxDim(G) + MaxDim(H)?

The behavior of r,m, and i under direct products is well-understood, the latter two being
additive. For MaxDim, we have MaxDim(G×H) ≥ MaxDim(G)+MaxDim(H) by considering
maximal subgroups of the form M ×H and G×N , with M < G and N < H maximal. In the
case where G and H are relatively prime (no nontrivial quotients in common), every maximal
subgroup of G×H has this form, so MaxDim(G×H) = MaxDim(G) + MaxDim(H).

More generally, the subgroups (and thus the maximal subgroups) of G × H are classified by
Goursat’s lemma. (Thévenaz, [7], gives an exposition of this and proves some more general
statements.) The maximal subgroups come in two flavors: the “standard” ones described
above, and some “diagonal” ones. To construct the latter, suppose we have surjective homo-
morphisms ϕ : G → S and ψ : H → S, where S is some group. Then we get a subgroup
M = {(g, h) ∈ G × H : ϕ(g) = ψ(h)}, which is maximal if and only if S is simple. So for
example if G = H is already a simple group, then taking S = G and ψ = id gives the twisted
diagonal subgroup {(g, ϕ(g)) ∈ G × G} for each automorphism ϕ ∈ Aut(G). These are all of
the nonstandard maximal subgroups of G×G for G simple.

To produce a counterexample to the desired equality, we would need to fit at least one of
these diagonal subgroups into a large family of maximals in general position. This seems diffi-
cult, partly because the diagonal subgroups tend to be much smaller than the standard ones,
and partly because the diagonals may intersect each other in unpredictable ways.

More ambitiously, we might ask:

Question 4. What can be said about m, MaxDim, etc. of a semidirect product? A wreath
product? A non-split extension?

On the simple groups side, most of what we know depends on the classification of finite
simple groups, which makes things necessarily complicated. It is known that all finite simple
groups satisfy r(G) = 2 (except those for which r(G) = 1!), and even some stronger properties
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such as so-called 3
2
-generation. (A group G is 3

2
-generated if for all g 6= 1, there exists h such

that G = 〈g, h〉.)

But not much is known in general about the other invariants. As far as we are aware, m(G) is
known for three infinite families of finite simple groups: m(Z/pZ) = 1 (trivial); m(An) = n− 2
(Whiston, [8]); and m(PSL(2, p)) = 4 for p = 7, 11, 19, 31, and 3 for other p > 3 (Jambor, [5],
building on work of Nachman and others). We also have a list of m(G) for all simple groups
of order < 126000. Still, there are vast areas of the classification that haven’t been touched.
It may be possible, for example, to understand the generating sets of some more of the groups
PSL(n, q), other classical groups of Lie type, or some sporadic groups.

Question 5. How do m, MaxDim, and i behave for (some classes of) finite simple groups? For
example, are they all equal?
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