Extra algebraic points in $X\left(\mathbb{Q}_{p}\right)_{1}$

Ravi Fernando and Shelly Manber

June 18, 2021

Background

In Lecture 2, we saw some examples of genus-3 hyperelliptic curves X / \mathbb{Q} with $r=\mathrm{rk} \operatorname{Jac} X=1$ such that the Chabauty-Coleman set $X\left(\mathbb{Q}_{p}\right)_{1}$ (for some prime p) does not equal $X(\mathbb{Q})$, but all of the extra points are algebraic and can be explained geometrically.

The simplest way this can happen is when we have a non-rational Weierstrass point $P=(x, 0)$. Then $2(P-\infty)$ is a principal divisor, which forces $\int_{\infty}^{P} \omega=0$ for all global 1-forms ω. More generally, $P \in X(K)$ will lie in $X\left(\mathbb{Q}_{p}\right)_{1}$ if $n(P-\infty) \in J(\mathbb{Q})$ for some $n>0$.

Background

A more complicated situation can occur if $J=\operatorname{Jac}(X)$ decomposes as a product of an elliptic curve E and an abelian variety A, all of $J(\mathbb{Q})$ (up to torsion) lies in E, and P lives in E mod torsion. Then we have $P \in \overline{J(\mathbb{Q})}+J(K)_{\text {tors }}$, so P is killed by the annihilating differentials.

Question

Our question was whether genus-2 curves can exhibit similar behavior. That is: can we exhibit a genus-2 rank-1 curve X / \mathbb{Q} and a prime p such that $X\left(\mathbb{Q}_{p}\right)_{1}$ consists entirely of algebraic points, and such that we can explain the points (other than rational points and Weierstrass points) via a decomposition of $\operatorname{Jac}(X)$?

Answer: yes!

Example

Let X be the genus- 2 hyperelliptic curve with LMFDB label 15360.h.184320.1. This is the unique curve on LMFDB with $g=2, r=1$, $\operatorname{Aut}(X)=V_{4}$, and four rational Weierstrass points. It is given by the equation

$$
y^{2}=2 x^{5}-x^{4}-5 x^{3}+3 x+1
$$

which we renormalized ($4 y \mapsto y, 2 x \mapsto x$) to the monic form

$$
y^{2}=x^{5}-x^{4}-10 x^{3}+24 x+16
$$

Example

This curve has six rational points: $(0, \pm 4),(-2,0),(-1,0),(2,0)$, and ∞. Choosing $p=7$ (the smallest prime of good reduction), we calculated that $\left|X\left(\mathbb{Q}_{7}\right)_{1}\right|=14$. Besides the rational points, it contains:

$$
\begin{aligned}
& P_{1}=(\sqrt{2}, 2+2 \sqrt{2}), \\
& P_{2}=(2+2 \sqrt{2}, 16+12 \sqrt{2}),
\end{aligned}
$$

and their orbits under $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$ and the hyperelliptic involution.

Extra automorphisms

Before explaining the extra points, let's first take a closer look at X. As I said, Aut (X) is a Klein four-group, where one of the involutions is the hyperelliptic involution ι. Another involution is given by

$$
\sigma:(x, y) \mapsto\left(\frac{-2 x}{x+2}, \frac{8 y}{(x+2)^{3}}\right)
$$

The Jacobian $J=\operatorname{Jac}(X)$ splits (up to isogeny) as $E_{1} \times E_{2}$, where E_{1} and E_{2} are respectively the quotients of X by the involutions σ and $\sigma \circ \iota$.
(Aside: the quotient by ι is just \mathbb{P}^{1}, of course. Here's a nice visualization challenge: picture a 2-holed torus, and figure out which of the three "obvious" involutions corresponds to the hyperelliptic involution.)

Explanation of extra points

Let's figure out where the (non-torsion) rational points are on $J \sim E_{1} \times E_{2}$.
LMFDB tells us that $J(\mathbb{Q}) \simeq \mathbb{Z} \times(\mathbb{Z} / 2 \mathbb{Z})^{\oplus 3}$, and $(0,4)$ and $(0,-4) \in X(\mathbb{Q})$ map to an inverse pair of generators of $J(\mathbb{Q}) /$ tors. Notice that σ fixes each of these points, and ι switches them. It follows that the quotient $X /(\sigma \circ \iota)=E_{2}$ identifies these two points with each other, and in particular $2 \cdot(0,4)$ maps to 0 in E_{2}.

So up to torsion, all of $J(\mathbb{Q})$ lives in (and is dense in) the E_{1} factor, and none of it lives in E_{2}.

Explanation of extra points

The upshot: if we can show that P_{1} and P_{2} map to torsion points in E_{2} (i.e. they live in $E_{1}+$ tors $\subset J$), then this will explain their appearance in $X\left(\mathbb{Q}_{7}\right)_{1}$: every point in E_{1} is killed by the annihilating differentials because $J(\mathbb{Q})$ is dense in E_{1}, and torsion points in J are killed by all differentials.

So we must show that P_{1} is torsion in J once we identify every point with its image under $\sigma \circ \iota$, and similarly for P_{2}. In fact, we have $\sigma \circ \iota\left(P_{1}\right)=\overline{P_{2}}$ (where the bar denotes the nontrivial element of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}) / \mathbb{Q})$), and similarly $\sigma \circ \iota\left(P_{2}\right)=\overline{P_{1}}$. A calculation in Sage shows that

$$
4\left(P_{1}+\overline{P_{2}}\right)=4\left(P_{2}+\overline{P_{1}}\right)=0 \in J
$$

So P_{1} and P_{2} are at worst 8-torsion in E_{2}.

Other primes

Aside: working with the same curve X but $p=11$ instead, we lose these special points (since $\sqrt{2} \notin \mathbb{Q}_{11}$), gain the irrational Weierstrass points $(1 \pm \sqrt{5}, 0)$, and also gain two pairs of points that appear to be transcendental.

With $p=17$ (the next prime such that $\sqrt{2} \in \mathbb{Q}_{p}$), we get the two special points again, along with some points whose x-coordinates appear to lie in the quartic fields 4.2.1984.1 and 4.0.656.1. I don't know why.

