MATH 53 DISCUSSION SECTION PROBLEMS - 4/27/23

1. The divergence theorem

(1) (textbook 16.9.5) Find $\iint_{S} \mathbf{F} \bullet d \mathbf{S}$, where $\mathbf{F}=x y e^{z} \mathbf{i}+x y^{2} z^{3} \mathbf{j}-y e^{z} \mathbf{k}$ and S is the surface of the box bounded by the coordinate planes and the planes $x=3, y=2$, and $z=1$.
(2) (textbook 16.9.31) Suppose S and E satisfy the conditions of the divergence theorem and f is a scalar function with continuous partial derivatives. Prove that

$$
\iint_{S} f \mathbf{n} d S=\iiint_{E} \nabla f d V
$$

2. More Stokes' theorem

(3) (from an old exam, continuation from last Tuesday) We define the Laplacian of \mathbf{F}, the vector field denoted by $\nabla^{2} \mathbf{F}$, as

$$
\nabla^{2} \mathbf{F}=\left\langle\nabla^{2} P, \nabla^{2} Q, \nabla^{2} R\right\rangle
$$

where

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

is the ordinary Laplacian on scalar-valued functions. It is a fact (which you don't need to prove) that

$$
\operatorname{curl}(\operatorname{curl} \mathbf{F})=\operatorname{grad}(\operatorname{div} \mathbf{F})-\nabla^{2} \mathbf{F}
$$

for all vector fields $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ in three dimensions such that all second partial derivatives of P, Q, and R exist. Let \mathbf{S} be a smooth orientable surface with an orientation chosen, let C be its smooth, positively-oriented boundary curve (i.e. its boundary curve whose orientation aligns with that of S), and let $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ be a vector field in three dimensions such that all second partial derivatives of P, Q, and R exist and are continuous on an open region around S.

Prove the following "integration by parts" formula:

$$
\iint_{S}(\operatorname{grad}(\operatorname{div} \mathbf{F})) \bullet d \mathbf{S}=\int_{C}(\operatorname{curl} \mathbf{F}) \bullet d \mathbf{r}+\iint_{S}\left(\nabla^{2} \mathbf{F}\right) \bullet d \mathbf{S}
$$

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

