MATH 53 DISCUSSION SECTION ANSWERS - 4/27/23

JAMES ROWAN

1. THE DIVERGENCE THEOREM

(1) (textbook 16.9.5) Find [[,F e dS, where F = zye*i + xy?2%j — ye*k and S is the surface of the
box bounded by the coordinate planes and the planes z = 3, y = 2, and z = 1.

Since the surface we are working with is the surface of a box, it will have six pieces. Furthermore,
our vector field is complicated. These two facts suggest that we should try using the divergence
theorem.

We have divF = ye? + 2zyz® — ye? = 2xyz>. The divergence theorem tells us we have
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(2) (textbook 16.9.31) Suppose S and F satisfy the conditions of the divergence theorem and f is a
scalar function with continuous partial derivatives. Prove that

é/fndS:/E//Vde.

Note that these expressions are both vector quantities. We’ll show these expressions are equal by
looking at each component individually.
The z-component of [[ fndS is equal to [[(f,0,0) - ndS, which is another way of writing the
s s

flux of the vector field (f,0,0) through the surface S, [[(f,0,0) - dS. We can evaluate this surface
s

integral using the divergence theorem; we have
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Similarly, we compute that the y-component of f [ fndS is f [[ f,dV and the z-component of

ff fndS is fff f-dV. Since the z—, y—, and z- components of ff fndS are fff fzdV, fff 1AV,
and f I fde respectively, and these are precisely the z-, y—, and 2- componentb of [[[V de7 we
E

é/fndS:/E//Vde

have

as desired.
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2. MORE STOKES’ THEOREM

(3) (from an old exam, continuation from last Tuesday) We define the Laplacian of F, the vector
field denoted by V2F, as
V?F = (V?P,V?Q,V>*R),
where

is the ordinary Laplacian on scalar-valued functions. It is a fact (which you don’t need to prove)
that
curl(curl F) = grad(divF) — V?F
for all vector fields F(x,y,z2) = (P(x,y, 2),Q(x,y, 2), R(z,y,2)) in three dimensions such that all
second partial derivatives of P, @), and R exist. Let S be a smooth orientable surface with an
orientation chosen, let C' be its smooth, positively-oriented boundary curve (i.e. its boundary curve
whose orientation aligns with that of S), and let F(x,y,z) = (P(,v, 2), Q(x,y, 2), R(z,y, 2)) be a
vector field in three dimensions such that all second partial derivatives of P, @), and R exist and are
continuous on an open region around S.
Prove the following “integration by parts” formula:

//S(grad(divF))odS:/C(curlF)odr+//S(V2F)odS.

The given hypotheses are enough to apply Stokes’ theorem on the vector field curl F. This tells

us that
/ (curl F) e dr = // curl(curl F) e dS.
c 5

By the fact above, we know that
curl(curl F) = grad(divF) — V*F,

so that the above becomes

/C(curlF) o dr = //S grad(divF) e dS — //S(WF) e dS.

Rearranging these terms, we have

//S(grad(divF))odS - /C(curlF).dH//S(sz) o dS

as desired.



