MATH 53 DISCUSSION SECTION ANSWERS - 4/27/23

JAMES ROWAN

1. The divergence theorem

(1) (textbook 16.9.5) Find $\iint_{S} \mathbf{F} \bullet d \mathbf{S}$, where $\mathbf{F}=x y e^{z} \mathbf{i}+x y^{2} z^{3} \mathbf{j}-y e^{z} \mathbf{k}$ and S is the surface of the box bounded by the coordinate planes and the planes $x=3, y=2$, and $z=1$.

Since the surface we are working with is the surface of a box, it will have six pieces. Furthermore, our vector field is complicated. These two facts suggest that we should try using the divergence theorem.

We have $\operatorname{div} \mathbf{F}=y e^{z}+2 x y z^{3}-y e^{z}=2 x y z^{3}$. The divergence theorem tells us we have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \bullet d \mathbf{S} & =\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} 2 x y z^{3} d z d y d x \\
& =2 \int_{0}^{3} x d x \cdot \int_{0}^{2} y d y \cdot \int_{0}^{1} z^{3} d z \\
& =\frac{9}{2}
\end{aligned}
$$

(2) (textbook 16.9.31) Suppose S and E satisfy the conditions of the divergence theorem and f is a scalar function with continuous partial derivatives. Prove that

$$
\iint_{S} f \mathbf{n} d S=\iiint_{E} \nabla f d V
$$

Note that these expressions are both vector quantities. We'll show these expressions are equal by looking at each component individually.

The x-component of $\iint_{S} f \mathbf{n} d S$ is equal to $\iint_{S}\langle f, 0,0\rangle \cdot n d S$, which is another way of writing the flux of the vector field $\langle f, 0,0\rangle$ through the surface $S, \iint_{S}\langle f, 0,0\rangle \cdot d \mathbf{S}$. We can evaluate this surface integral using the divergence theorem; we have

$$
\begin{aligned}
\iint_{S}\langle f, 0,0\rangle \cdot d \mathbf{S} & =\iiint_{E} \operatorname{div}(\langle f, 0,0\rangle) d V \\
& =\iiint_{E} f_{x} d V
\end{aligned}
$$

Similarly, we compute that the y-component of $\iint_{S} f \mathbf{n} d S$ is $\iiint_{E} f_{y} d V$ and the z-component of $\iint_{S} f \mathbf{n} d S$ is $\iiint_{E} f_{z} d V$. Since the $x-, y-$, and z-components of $\iint_{S}^{E} f \mathbf{n} d S$ are $\iiint_{E} f_{x} d V, \iiint_{E} f_{y} d V$, and $\iint_{E} f_{z} d V$, respectively, and these are precisely the x-, y-, and z-components of $\iiint_{E} \nabla f d V$, we have

$$
\iint_{S} f \mathbf{n} d S=\iiint_{E} \nabla f d V
$$

as desired.

2. More Stokes' theorem

(3) (from an old exam, continuation from last Tuesday) We define the Laplacian of \mathbf{F}, the vector field denoted by $\nabla^{2} \mathbf{F}$, as

$$
\nabla^{2} \mathbf{F}=\left\langle\nabla^{2} P, \nabla^{2} Q, \nabla^{2} R\right\rangle
$$

where

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

is the ordinary Laplacian on scalar-valued functions. It is a fact (which you don't need to prove) that

$$
\operatorname{curl}(\operatorname{curl} \mathbf{F})=\operatorname{grad}(\operatorname{div} \mathbf{F})-\nabla^{2} \mathbf{F}
$$

for all vector fields $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ in three dimensions such that all second partial derivatives of P, Q, and R exist. Let \mathbf{S} be a smooth orientable surface with an orientation chosen, let C be its smooth, positively-oriented boundary curve (i.e. its boundary curve whose orientation aligns with that of S), and let $\mathbf{F}(x, y, z)=\langle P(x, y, z), Q(x, y, z), R(x, y, z)\rangle$ be a vector field in three dimensions such that all second partial derivatives of P, Q, and R exist and are continuous on an open region around S.

Prove the following "integration by parts" formula:

$$
\iint_{S}(\operatorname{grad}(\operatorname{div} \mathbf{F})) \bullet d \mathbf{S}=\int_{C}(\operatorname{curl} \mathbf{F}) \bullet d \mathbf{r}+\iint_{S}\left(\nabla^{2} \mathbf{F}\right) \bullet d \mathbf{S} .
$$

The given hypotheses are enough to apply Stokes' theorem on the vector field curl F. This tells us that

$$
\int_{C}(\operatorname{curl} \mathbf{F}) \bullet d \mathbf{r}=\iint_{S} \operatorname{curl}(\operatorname{curl} \mathbf{F}) \bullet d \mathbf{S}
$$

By the fact above, we know that

$$
\operatorname{curl}(\operatorname{curl} \mathbf{F})=\operatorname{grad}(\operatorname{div} \mathbf{F})-\nabla^{2} \mathbf{F},
$$

so that the above becomes

$$
\int_{C}(\operatorname{curl} \mathbf{F}) \bullet d \mathbf{r}=\iint_{S} \operatorname{grad}(\operatorname{div} \mathbf{F}) \bullet d \mathbf{S}-\iint_{S}\left(\nabla^{2} \mathbf{F}\right) \bullet d \mathbf{S}
$$

Rearranging these terms, we have

$$
\iint_{S}(\operatorname{grad}(\operatorname{div} \mathbf{F})) \bullet d \mathbf{S}=\int_{C}(\operatorname{curl} \mathbf{F}) \bullet d \mathbf{r}+\iint_{S}\left(\nabla^{2} \mathbf{F}\right) \bullet d \mathbf{S}
$$

as desired.

