MATH 53 DISCUSSION SECTION PROBLEMS - 4/25/23

1. Surface Integrals of vector fields

(1) True/false practice:
(a) Every surface is orientable.
(b) A common interpretation for surface integrals of vector fields is as flux through the surface.
(2) (conceptual) Suppose $\mathbf{F}(x, y, z)$ is tangent to the surface S at all points (x, y, z) on S. What is $\iint_{S} \mathbf{F} \bullet d \mathbf{S}$? How might we interpret $\mathbf{F}(x, y, z)$ being tangent to S and the value of this surface integral?
(3) (conceptual) List some interpretations of surface integrals, both of vector fields and scalar functions.
(4) (textbook 16.7.23) Evaluate $\iint_{S} \mathbf{F} \bullet d \mathbf{S}$, where S is the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the square $0 \leq x \leq 1,0 \leq y \leq 1$ and has upward orientation (why do we specify this?) and $\mathbf{F}(x, y, z)=x y \mathbf{i}+y z \mathbf{j}+z x \mathbf{k}$.
(5) (from an old quiz) Consider the parametric surface S given by $\mathbf{r}(u, v)=\langle\cos (u+v), \sin (u+v), u\rangle$ for $0 \leq v \leq 2 \pi$ and $u \in \mathbb{R}$.
(a) What kind of curves are the grid curves of this surface for constant u and for constant v ?
(b) Sketch a picture of this surface by drawing a few grid curves $u=k$ and a few grid curves $v=k$.
(c) Set up and evaluate somehow a double integral expression in the $u v$-plane that gives the total flux of the vector field $\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}+x y z \mathbf{k}$ through the portion of this surface with $0 \leq u \leq 2 \pi, 0 \leq v \leq 2 \pi$ and with the outward-pointing orientation on S.

2. Stokes' theorem

(6) True/false practice:
(a) Let $\mathbf{F}(x, y, z)$ be a continuous vector field whose components have continuous partial derivatives on an open region which contains the surface of the earth. Since the northern hemisphere D_{N}, oriented so that its normal is point out to space, and the southern hemisphere D_{S}, oriented so that its normal is point out to space, both have the equator oriented west-to-east (i.e. counterclockwise) as their boundary, we know

$$
\iint_{D_{N}}(\nabla \times \mathbf{F}) \bullet d \mathbf{S}=\iint_{D_{S}}(\nabla \times \mathbf{F}) \bullet d \mathbf{S}
$$

by Stokes' theorem.
(b) We can use Stokes' theorem to show that irrotational vector fields defined on all of \mathbb{R}^{3} have line integrals that are independent of path.
(7) (textbook 16.8.13) By explicitly computing the line integral and surface integral, verify that Stokes' theorem holds for the vector field $\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}-2 \mathbf{k}$ where S is the cone $z^{2}=x^{2}+y^{2}$, $0 \leq z \leq 4$, oriented downward.
(8) (textbook 16.8.20) Suppose S and C satisfy the hypotheses of Stokes' theorem (where C is the positively-oriented boundary of S), and that f and g have continuous second-order partial derivatives. Prove that
(a) $\int_{C}(f \nabla g) \bullet d \mathbf{r}=\iint_{S}(\nabla f \times \nabla g) \bullet d \mathbf{S}$.
(b) $\int_{C}(f \nabla f) \bullet d \mathbf{r}=0$.
(c) $\int_{C}(f \nabla g+g \nabla f) \bullet d \mathbf{r}=0$.

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left(^{*}\right)$ are challenge problems, with problems marked $\left(^{* *}\right)$ especially challenging problems.

