
MATH 53 DISCUSSION SECTION ANSWERS – 4/25/23

1. Surface Integrals of vector fields

(1) True/false practice:
(a) False: the Möbius band is not orientable.
(b) True.

(2) In this case, we have F • n = 0, so
∫∫
S
F • dS = 0. We can interpret this as saying that all the flow

is occurring along the surface, not across it.
(3) Surface integrals of scalar functions can represent mass (the surface integral of density), area (the

surface integral of the function 1), etc. Surface integrals of vector fields can represent flux across the
surface (where the underlying vector field represents the flow of the fluid/the force field).

(4) Because the surface is given by z = g(x, y) = 4− x2 − y2, we use the shortcut formula:∫∫
S

F • dS =

∫∫
D

(−Pgx −Qgy +R) dA

=

∫∫
D

(−xy(−2x)− yz(−2y) + zx) dA

=

∫ 1

0

∫ 1

0

(
2x2y + 2y2z + zx

)
dxdy

=

∫ 1

0

∫ 1

0

(
2x2y + 2y2(4− x2 − y2) + (4− x2 − y2)x

)
dxdy

=

∫ 1

0

∫ 1

0

(
2x2y + (8y2 − 2x2y2 − 2y4) + (4x− x3 − xy2)

)
dxdy

=

∫ 1

0

[
2x3y/3 + (8xy2 − 2x3y2/3− 2xy4) + (2x2 − x4/4− x2y2/2)

]x=1

x=0
dy

=

∫ 1

0

(
2y/3 + (8y2 − 2y2/3− 2y4) + (2− 1/4− y2/2)

)
dy

=
[
y2/3 + (8y3/3− 2y3/9− 2y5/5) + (2y − y/4− y3/6)

]y=1

y=0

= 1/3 + (8/3− 2/9− 2/5) + (2− 1/4− 1/6)

=
713

180
.

Note that the shortcut formula always assumes the upward orientation of the graph of z = g(x, y);
the surface integral with the downward orientation would be the negative of this.

(5) (a) The grid curves with u constant are circles. The grid curves with v constant are helices.
(b) Picture omitted. Because cos2(u + v) + sin2(u + v) = 1, the surface is part of the cylinder

x2 + y2 = 1.
(c) We have

ru = 〈− sin(u+ v), cos(u+ v), 1〉 and

rv = 〈− sin(u+ v), cos(u+ v), 0〉, so

ru × rv = 〈− cos(u+ v),− sin(u+ v), 0〉.

This is a normal vector to the surface (and it happens to have magnitude 1), but it’s not the one
we want: at the point (x, y, z) = (cos(u+v), sin(u+v), u), the vector 〈− cos(u+v),− sin(u+v), 0〉
points inwards rather than outwards. So we set up the integral with the negative of this normal
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vector:∫ 2π

0

∫ 2π

0

F(r(u, v)) • 〈cos(u+ v), sin(u+ v), 0〉dudv

=

∫ 2π

0

∫ 2π

0

〈− sin(u+ v), cos(u+ v), u sin(u+ v) cos(u+ v)〉 • 〈cos(u+ v), sin(u+ v), 0〉dudv

=

∫ 2π

0

∫ 2π

0

0dudv

= 0.

This is an instance of the situation described in problem 2: the vector

F(r(u, v)) = 〈− sin(u+ v), cos(u+ v), u sin(u+ v) cos(u+ v)〉 = 〈−y, x, xyz〉

lies in the plane spanned by

ru = 〈− sin(u+ v), cos(u+ v), 1〉 = 〈−y, x, 1〉 and

rv = 〈− sin(u+ v), cos(u+ v), 0〉 = 〈−y, x, 0〉,

namely the tangent plane to the surface, so the flow is all happening along the surface and not
across it.

2. Stokes’ theorem

(6) True/false practice:
(a) Let F(x, y, z) be a continuous vector field whose components have continuous partial derivatives

on an open region which contains the surface of the earth. Since the northern hemisphere DN ,
oriented so that its normal is point out to space, and the southern hemisphere DS , oriented
so that its normal is point out to space, both have the equator oriented west-to-east (i.e.
counterclockwise) as their boundary, we know∫∫

DN

(∇× F) • dS =

∫∫
DS

(∇× F) • dS

by Stokes’ theorem.

False. The boundary of DN is the equator oriented counterclockwise, but the boundary of DS

is the equator oriented clockwise. This means that Stokes’ theorem tells us∫∫
DN

(∇× F) • dS = −
∫∫

DS

(∇× F) • dS

instead.
(b) We can use Stokes’ theorem to show that irrotational vector fields defined on all of R3 have line

integrals that are independent of path.

True. Given two paths C1 and C2 with the same starting and ending points, we can construct
the closed loop C consisting of C1 and −C2, in that order. To show that

∫
C1

F · dr =
∫
C2

F · dr,

it is enough to show that
∫
C
F · dr = 0. Since the domain of F is all of R3, we can find a

surface S (there are in fact many such surfaces) for which C = ∂S (i.e. for which C is its
positively-oriented boundary). We can apply Stokes’ theorem to the curve C and find∫

C

F · dr =

∫∫
S

∇× F · dS

=

∫∫
S

0 · dS

= 0

since the vector field is irrotational.
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(7) (textbook 16.8.13) By explicitly computing the line integral and surface integral, verify that
Stokes’ theorem holds for the vector field F(x, y, z) = −yi+xj−2k where S is the cone z2 = x2 +y2,
0 ≤ z ≤ 4, oriented downward.

The boundary curve is the circle, x2 + y2 = 16, z = 4, oriented clockwise. We parametrize this
curve as r(t) = 〈4 cos(−t), 4 sin(−t), 4〉, 0 ≤ t ≤ 2π, where the − sign inside the cosine and sine
comes from the fact that we are trying to get a counterclockwise orientation. We have∫

C

F · dr =

∫ 2π

0

〈−4 sin(−t), 4 cos(−t),−2〉 · 〈4 sin(−t),−4 cos(−t), 0〉dt

= −16

∫ 2π

0

sin2(−t) + cos2(−t)dt

= −32π.

We have ∇× F = 〈0, 0, 2〉. Since our surface is a portion of graph of the function z =
√
x2 + y2,

we can use the shortcut formula for flux through a portion of a graph. Since we want the downward
orientation on the surface, we will use 〈fx, fy,−1〉 as the normal vector and not 〈−fx,−fy, 1〉 as
found in the formula in the textbook, which assumes positive orientation. We have, letting D be the
disk x2 + y2 ≤ 16 in the xy-plane,∫∫

S

∇× F · dS =

∫∫
D

(
0 · x√

x2 + y2
+ 0 · y√

x2 + y2
− 2

)
dA

=

∫ 2π

0

∫ 4

0

−2rdrdθ

= −2 ·
∫ 2π

0

∫ 4

0

rdrdθ

= −32π,

which matches the answer we got from computing the line integral directly. (Note that in plugging
into the shortcut formula, we used 〈P,Q,R〉 = ∇ × F instead of F, because we’re calculating the
surface integral of the curl of F.)

(8) (textbook 16.8.20) Suppose S and C satisfy the hypotheses of Stokes’ theorem (where C is the
positively-oriented boundary of S), and that f and g have continuous second-order partial derivatives.
(a)

∫
C

(f∇g) • dr =
∫∫
S

(∇f ×∇g) • dS.

We apply Stokes’ theorem:∫
C

(f∇g) • dr =

∫∫
S

∇× (f∇g) · ds.

We compute using the definition of the curl and the product rule for partial derivatives along
with Clairaut’s theorem

∇× (f∇g) = 〈(fgz)y − (fgy)z, (fgx)z − (fgz)x, (fgy)x − (fgx)y〉
= 〈fygz + fgzy − fzgy − fgyz, fzgx + fgxz − fxg−fgzx, fxgy + fgyx − fygx − fgxy〉
= 〈fygz − fzgy, fzgx − fxgz, fxgy − fygx〉
= ∇f ×∇g.

Plugging this in to the right-hand side of our Stokes’ theorem appplication, we have∫
C

(f∇g) • dr =

∫∫
S

(∇f ×∇g) • dS

as desired.



4 MATH 53 DISCUSSION SECTION ANSWERS – 4/25/23

(b)
∫
C

(f∇f) • dr = 0.

We apply Stokes’ theorem and get∫
C

(f∇f) • dr =

∫∫
S

∇× (f∇f) · ds.

Using the “product rule” for curl proved in the above problem, we have ∇×(f∇f) = ∇f×∇f =
0, so we have ∫

C

(f∇f) • dr =

∫∫
S

0 · ds = 0.

(c)
∫
C

(f∇g + g∇f) • dr = 0.

We apply the result of part (a) above, splitting the surface integral into two surface integrals
first: ∫

C

(f∇g + g∇f) • dr =

∫
C

(f∇g) • dr +

∫
C

(g∇f) • dr

=

∫∫
S

(∇f ×∇g) • dS +

∫∫
S

(∇g ×∇f) • dS

= 0

since u× v = −v × u.


