MATH 53 DISCUSSION SECTION PROBLEMS - 4/20/23

1. Parametric surfaces and their areas

(1) (textbook 16.6.5) Identify the surface with the vector equation $\mathbf{r}(s, t)=\langle s \cos t, s \sin t, s\rangle$.
(2) (textbook 16.6.19) Find a parametric representation for the plane through the origin that contains the vectors $\mathbf{i}-\mathbf{j}$ and $\mathbf{j}-\mathbf{k}$.
(3) (textbook 16.6.25) Find a parametric representation for the part of the sphere $x^{2}+y^{2}+z^{2}=36$ that lies between the planes $z=0$ and $z=3 \sqrt{3}$.
(4) (textbook 16.6.37) Find an equation of the tangent plane to $\mathbf{r}(u, v)=u^{2} \mathbf{i}+2 u \sin v \mathbf{j}+u \cos v \mathbf{k}$ at the point corresponding to $u=1, v=0$.
(5) (textbook 16.6.48) Find the area of the helicoid with vector equation $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+$ $v \mathbf{k}, 0 \leq u \leq 1,0 \leq v \leq \pi$.

2. Surface Integrals of functions

(6) True/false practice:
(a) The angular coordinates (ϕ, θ) used in spherical polar coordinates are often a good choice for parametrizing surfaces which have some rotational symmetries.
(b) As with our integral formula for surface area, we have a shortcut formula for surface integrals of functions $g(x, y, z)$ over graphs $z=f(x, y)$.
(7) (textbook 16.7.17 with a typo, oops) Evaluate $\iint_{S}\left(x^{2} y+y^{2} z\right) d S$, where S is the hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$.
(8) (a cross between textbook 16.7 .9 and 16.7 .10 , oops) Find $\iint_{S} x^{2} y z d S$, where S is the part of the plane $2 x+2 y+z=4$ that lies in the first octant.

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left(^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

