
MATH 53 DISCUSSION SECTION ANSWERS – 4/20/23

1. Parametric surfaces and their areas

(1) This surface is the cone x2 + y2 = z2. One way to tell this: if you divide through by s, you get the
circle 〈cos t, sin t, 1〉, which lies flat on a plane above the origin. If you then scale this by all real
numbers s, this has the effect of sliding that circle outwards to infinity, inwards to the origin, and
(when s < 0) across the origin as well.

(2) This is given by r(u, v) = 0 + u(i− j) + v(j− k).
(3) There are several reasonable ways to do this. For example, we can write this in spherical coordinates

as follows: ρ = 6, π/6 ≤ φ ≤ π/2 (this corresponds to the bounds on z—draw a picture) and
0 ≤ θ ≤ 2π. Converting this into Cartesian coordinates gives the parametrization

〈6 sinφ cos θ, 6 sinφ sin θ, 6 cosφ〉,

with the same bounds on φ and θ.
(4) We have ru = 〈2u, 2 sin v, cos v〉 = 〈2, 0, 1〉 and rv = 〈0, 2u cos v,−u sin v〉 = 〈0, 2, 0〉, so the tangent

plane is the plane passing through r(1, 0) = 〈1, 0, 1〉 and containing vectors parallel to 〈2, 0, 1〉 and
〈0, 2, 0〉. This in particular has normal vector given by 〈2, 0, 1〉 × 〈0, 2, 0〉 = 〈−2, 0, 4〉, so it can be
described by the equation

−2(x− 1) + 0(y − 0) + 4(z − 1) = 0.

This can be rewritten as

−x+ 2z = 1.

(5) We have ru = 〈cos v, sin v, 0〉 and rv = 〈−u sin v, u cos v, 1〉, so

ru × rv = 〈sin v,− cos v, u cos2 v + u sin2 v〉 = 〈sin v,− cos v, u〉,

and thus

|ru × rv| =
√

1 + u2.

Thus the area is ∫∫
D

|ru × rv|dA =

∫ 1

0

∫ π

0

√
1 + u2dvdu

=

(∫ 1

0

√
1 + u2du

)(∫ π

0

1dv

)
= π

∫ 1

0

√
1 + u2du.

This is a difficult integral, which was discussed in lecture; you have to substitute u = tan θ and
then integrate by parts and use trig identities. (If you’re familiar with hyperbolic trig functions, the
substitution u = sinh t leads to a slightly easier solution.) The answer turns out to be

π

∫ 1

0

√
1 + u2du = π

[
u
√
u2 + 1 + log(

√
u2 + 1 + u)

2

]u=1

u=0

= π

√
2 + log(

√
2 + 1)

2
.

2. Surface Integrals of functions

(6) (a) True.
(b) True: ∫∫

S

f(x, y, z)dS =

∫∫
D

f(x, y, g(x, y))

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

+ 1dA.

1



2 MATH 53 DISCUSSION SECTION ANSWERS – 4/20/23

(7) We can write this surface in spherical coordinates as ρ = 2, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2, which leads
to the parametrization

r(φ, θ) = 〈2 sinφ cos θ, 2 sinφ sin θ, 2 cosφ〉.

This has partial derivatives

rφ = 〈2 cosφ cos θ, 2 cosφ sin θ,−2 sinφ〉,
rθ = 〈−2 sinφ sin θ, 2 sinφ cos θ, 0〉,

which yields

rφ × rθ = 〈4 sin2 φ cos θ, 4 sin2 φ sin θ, 4 sinφ cosφ〉,

|rφ × rθ| =
√

16(sin4 φ+ sin2 φ cos2 φ)

=

√
16 sin2 φ = 4 sinφ.

Then the surface integral is given by∫∫
S

(x2y + y2z)dS =

∫∫
D

(
(2 sinφ cos θ)2(2 sinφ sin θ) + (2 sinφ sin θ)2(2 cosφ)

)
4 sinφdA

=

∫ π/2

0

∫ 2π

0

(32 sin4 φ cos2 θ sin θ + 32 sin3 φ sin2 θ cosφ)dφdθ.

If we separate the two terms of the integrand, we can factor out the φ and θ parts of the functions,
yielding:

32

(∫ π/2

0

sin4 φdφ

)(∫ 2π

0

cos2 θ sin θdθ

)
+ 32

(∫ π/2

0

sin3 φ cosφdφ

)(∫ 2π

0

sin2 θdθ

)
.

All of the four integrals above can be calculated with Math 1B methods. The hardest is
∫

sin4 φdφ,

for which you need to use two double-angle formulas, sin2 φ = 1−cos(2φ)
2 and cos2 φ = 1+cos(2φ)

2 . The
four integrals turn out to be 3π/16, 0, 1/4, and π respectively (which in particular means you can
skip the hard integral if you notice that the second one is zero), so the answer is

32 · 3π

16
· 0 + 32 · 1

4
· π = 8π.

In fact, if you’re observant, you can skip integrating the x2y term right from the beginning: since x2y
is an odd function of y and the given hemisphere is symmetric across the plane y = 0, this term will
automatically integrate to 0. (The same is not true of the y2z term because the given hemisphere is
not symmetric across the plane z = 0.)

(8) We can parametrize S by u = x and v = y:

r(u, v) = 〈u, v, 4− 2u− 2v〉.

This gives

ru = 〈1, 0,−2〉 and

rv = 〈0, 1,−2〉, so

ru × rv = 〈2, 2, 1〉 and

|ru × rv| =
√

22 + 22 + 12 = 3.

Thus the integral in question is ∫∫
D

x2yz(3dA),
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where D is the region lying below S in the plane—namely the triangle with x ≥ 0, y ≥ 0, and
z = 4− 2z − 2y = 0 (or equivalently x+ y ≤ 2). So the integral is:

3

∫∫
D

x2yzdA = 3

∫ 2

0

∫ 2−x

0

x2yzdydx

= 3

∫ 2

0

∫ 2−x

0

x2y(4− 2x− 2y)dydx

= 3

∫ 2

0

∫ 2−x

0

4x2y − 2x3y − 2x2y2dydx

= 3

∫ 2

0

[
2x2y2 − x3y2 − 2x2y3/3

]y=2−x
y=0

dx

= 3

∫ 2

0

(
2x2(2− x)2 − x3(2− x)2 − 2x2(2− x)3/3

)
dx

= 3

∫ 2

0

(
2x2(x2 − 4x+ 4)− x3(x2 − 4x+ 4)− 2x2(−x3 + 6x2 − 12x+ 8)/3

)
dx

= 3

∫ 2

0

(
−x5/3 + 2x4 − 4x3 + 8x2/3

)
dx

= 3
[
−x6/18 + 2x5/5− x4 + 8x3/9

]x=2

x=0

= 3 (−64/18 + 64/5− 16 + 64/9) =
16

15
.


