MATH 53 DISCUSSION SECTION ANSWERS - 4/18/23

1. Curl and divergence

(1) (a) True, and there is no perfect analogue of curl in other numbers of dimensions. It's like a cross product; recall that curl can be written in shorthand as $\nabla \times \mathbf{F}$.
(b) The textbook only defines it on \mathbb{R}^{3}, as far as I can tell. But we saw in lecture that it makes sense on \mathbb{R}^{2} too (or in fact on \mathbb{R}^{n} for any n). It's like a dot product; recall that div can be written in shorthand as $\nabla \bullet \mathbf{F}$.
(c) True, this is a formula from lecture (and you can verify it directly).
(2) (a) An example is $\mathbf{F}(x, y, z)=\langle x, y, z\rangle$; the arrows should be separating from each other.
(b) An example is $\mathbf{F}(x, y, z)=-\langle x, y, z\rangle$; the arrows should be pointing in towards each other.
(c) An example is $\mathbf{F}(x, y, z)=\langle-y, x, 0\rangle$; the arrows should be swirling around some axis.
(3) (a) If \mathbf{F} is a vector field, then its curl $\nabla \times \mathbf{F}$ is too, so the curl of the curl makes sense and is a vector field. It's not always zero; for example, if $\mathbf{F}=e^{x} \mathbf{j}$, then you can calculate that $\nabla \times(\nabla \times \mathbf{F})=-\mathbf{F} \neq \mathbf{0}$.
(b) This doesn't make sense: the divergence of a vector field is a function (i.e. a scalar field), so you can't take the divergence again.
(c) This also doesn't make sense: the divergence of a vector field is a function, so you can't take its curl.
(d) This makes sense: the gradient of a function is a vector field, so you can take its curl (which is a vector field). The result is always $\mathbf{0}$; this is Theorem 3 in section 16.5 of the textbook.
(e) This makes sense: the divergence $\nabla \bullet \mathbf{F}$ is a function, so you can take its gradient; the result is a vector field. It's not always zero: for example, if $\mathbf{F}=x^{2} \mathbf{i}$, then $\nabla \bullet \mathbf{F}=2 x$, so $\nabla(\nabla \bullet \mathbf{F})=2 \mathbf{i}$.
(f) This also makes sense: if f is a function, then ∇f is a vector field, so its divergence makes sense and is a function. It's not always zero; in fact, it equals the Laplacian of f; i.e. the sum of its pure second partial derivatives.
(g) $\nabla \times(f \nabla f)$ This makes sense: if f is a function, then ∇f is a vector field, and $f \nabla f$ is the vector field obtained by multiplying this vector field by the function f. Then this vector field has a curl $\nabla \times(f \nabla f)$, which is another vector field.

It's less obvious whether this is always zero. In fact it is, because $f \nabla f$ is conservative:

$$
f \nabla f=\left\langle f f_{x}, f f_{y}, f f_{z}\right\rangle=\frac{1}{2}\left\langle\left(f^{2}\right)_{x},\left(f^{2}\right)_{y},\left(f^{2}\right)_{z}\right\rangle=\nabla\left(f^{2} / 2\right)
$$

(4) We have $P=x y^{2} z^{2}, Q=x^{2} y z^{2}$, and $R=x^{2} y^{2} z$, so the curl is

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left(R_{y}-Q_{z}\right) \mathbf{i}+\left(P_{z}-R_{x}\right) \mathbf{j}+\left(Q_{x}-P_{y}\right) \mathbf{k} \\
& =\left(2 x^{2} y z-2 x^{2} y z\right) \mathbf{i}+\left(2 x y^{2} z-2 x y^{2} z\right) \mathbf{j}+\left(2 x y z^{2}-2 x y z^{2}\right) \mathbf{k}=0 .
\end{aligned}
$$

The divergence is

$$
\begin{aligned}
\nabla \bullet \mathbf{F} & =P_{x}+Q_{y}+R_{z} \\
& =y^{2} z^{2}+x^{2} z^{2}+x^{2} y^{2}
\end{aligned}
$$

As an aside, you can check that $\mathbf{F}=\nabla f$, where $f=x^{2} y^{2} z^{2} / 2$. This explains both calculations above: the curl of a gradient is always zero, and the divergence of a gradient is the Laplacian (i.e. the sum of the pure second partial derivatives).
(5) We have $P=x y e^{z}, Q=0$, and $R=y z e^{x}$, so the curl is

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left(R_{y}-Q_{z}\right) \mathbf{i}+\left(P_{z}-R_{x}\right) \mathbf{j}+\left(Q_{x}-P_{y}\right) \mathbf{k} \\
& =z e^{x} \mathbf{i}+\left(x y e^{z}-y z e^{x}\right) \mathbf{j}+-x e^{z} \mathbf{k}
\end{aligned}
$$

The divergence is

$$
\begin{aligned}
\nabla \bullet \mathbf{F} & =P_{x}+Q_{y}+R_{z} \\
& =y e^{z}+0+y e^{x} .
\end{aligned}
$$

(6) We have $P=z \cos y, Q=x z \sin y$, and $R=x \cos y$, so the curl is

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left(R_{y}-Q_{z}\right) \mathbf{i}+\left(P_{z}-R_{x}\right) \mathbf{j}+\left(Q_{x}-P_{y}\right) \mathbf{k} \\
& =(-x \sin y-x \sin y) \mathbf{i}+(-\cos y-\cos y) \mathbf{j}+(z \sin y+z \sin y) \mathbf{k}
\end{aligned}
$$

Since this is not the zero vector field (and curl grad $f=\nabla \times(\nabla f)=0$ for all f), the given vector field is not conservative.
(7) Given that $\mathbf{F}=\langle P(x, y), Q(x, y), 0\rangle$, the formula for the curl of \mathbf{F} simplifies because $R=0$ and all partial derivatives with respect to z are zero. We have:

$$
\begin{aligned}
\operatorname{curl} \operatorname{curl} \mathbf{F} & =\operatorname{curl}\left(\left\langle 0,0, Q_{x}-P_{y}\right\rangle\right) \\
& =\left\langle\left(Q_{x}-P_{y}\right)_{y},-\left(Q_{x}-P_{y}\right)_{x}, 0\right\rangle \\
& =\left\langle Q_{x y}-P_{y y}, P_{x y}-Q_{x x}, 0\right\rangle
\end{aligned}
$$

As for the gradient of the divergence, we have:

$$
\begin{aligned}
\operatorname{grad} \operatorname{div} \mathbf{F} & =\operatorname{grad}\left(P_{x}+Q_{y}\right) \\
& =\left\langle\left(P_{x}+Q_{y}\right)_{x},\left(P_{x}+Q_{y}\right)_{y}, 0\right\rangle \\
& =\left\langle P_{x x}+Q_{x y}, P_{x y}+Q_{y y}, 0\right\rangle
\end{aligned}
$$

The last term is:

$$
-\nabla^{2} \mathbf{F}=-\left\langle P_{x x}+P_{y y}, Q_{x x}+Q_{y y}, 0\right\rangle
$$

Putting everything together, we see that

$$
\begin{aligned}
\operatorname{grad} \operatorname{div} \mathbf{F}-\nabla^{2} \mathbf{F} & =\left\langle P_{x x}+Q_{x y}, P_{x y}+Q_{y y}, 0\right\rangle-\left\langle P_{x x}+P_{y y}, Q_{x x}+Q_{y y}, 0\right\rangle \\
& =\left\langle Q_{x y}-P_{y y}, P_{x y}-Q_{x x}, 0\right\rangle \\
& =\operatorname{curl} \operatorname{curl} \mathbf{F},
\end{aligned}
$$

as claimed.

