MATH 53 DISCUSSION SECTION PROBLEMS - 4/13/23

1. Green's theorem

(1) (textbook 16.4.11) Let C be the triangle from $(0,0)$ to $(0,4)$ to $(2,0)$ and then back to $(0,0)$. Let $\mathbf{F}(x, y)=\langle y \cos x-x y \sin x, x y+x \cos x\rangle$. Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
(2) (textbook 16.4.17) Use Green's theorem to find the work done by the force $\mathbf{F}(x, y)=x(x+y) \mathbf{i}+$ $x y^{2} \mathbf{j}$ in moving a particle from the origin along the x-axis to $(1,0)$, along the straight line segment from there to $(0,1)$, and then back to the origin along the y-axis. (Why isn't this just zero?)
(3) (textbook 16.4.19) Use one of the formulas from equation (5) in section 16.4 to find the area under one arch (i.e. for $0 \leq t \leq 2 \pi$) of the cycloid $x=t-\sin t, y=1-\cos t$ using Green's theorem.
(4) (from an old quiz) Consider the vector field $\mathbf{F}(x, y)=(1-y) \mathbf{i}+(x+1) \mathbf{j}$.
(a) Sketch a picture of this vector field.
(b) Evaluate $\int_{C} \mathbf{F} \bullet \mathbf{r}$, where C is the circle $x^{2}+y^{2}=1$, oriented counterclockwise.
(c) Give two ways you can tell that this vector field is not conservative.
(5) (from an old exam) Consider the region D consisting of the set of points (x, y) such that $1 \leq$ $x^{2}+y^{2} \leq 9$.
(a) On a picture of D, draw the positively-oriented boundary of D, and draw a few unit tangent vectors with the correct orientation on each part of the boundary.
(b) On a second picture of D below, draw the positively-oriented boundary of D, and draw a few unit normal vectors pointing outward from the region D on each part of the boundary.
(c) Letting C denote the positively-oriented boundary of D, and letting

$$
\mathbf{F}(x, y)=\frac{\left(-2 x-y\left(x^{2}+y^{2}\right)\right) \mathbf{i}+\left(x\left(x^{2}+y^{2}\right)-2 y\right) \mathbf{j}}{\left(x^{2}+y^{2}\right)^{2}}
$$

find

$$
\int_{C} \mathbf{F} \bullet d \mathbf{r}
$$

(d) (*) Letting C denote the positively-oriented boundary of D, with \mathbf{n} denoting the outwardpointing unit normal vectors as you drew in part (b) and with $\mathbf{F}(x, y)$ the same vector field as in part (c) above, find

$$
\int_{C}(F \bullet \mathbf{n}) d s
$$

(6) (textbook 16.4.31) Use Green's theorem to prove the change of variables formula in the special case where $f(x, y)=1$. More concretely, denoting by R the region in the $x y$ plane corresponding to the region S in the $u v$-plane, show that

$$
\iint_{R} d x d y=\iint_{S}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

2. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

