MATH 53 DISCUSSION SECTION PROBLEMS - 3/9/23

1. Double integrals over general regions

(1) True/false practice:
(a) The iterated integral

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}-y^{2}} d y d x
$$

will give us the volume of the top hemisphere of a sphere of radius 1 .
(b) If we need to find a double integral over a region that is of neither type I nor type II, there is still hope.
(2) Describe the following regions in the plane as i) a type I region and ii) a type II region:
(a) The region above the parabola $y=x^{2}$ and below the line $y=1$.
(b) The region between the line $y=2 x$ and the x-axis for x between 0 and 1 .
(c) The region inside the circle with radius 1 and center $(1,2)$.
(3) (textbook 15.2.3) Evaluate the iterated integral

$$
\int_{0}^{1} \int_{0}^{y} x e^{y^{3}} d x d y
$$

and sketch the domain of integration. What would happen if you tried to do the integral in the other order?
(4) (textbook 15.2.7) Evaluate the double integral

$$
\iint_{D} \frac{y}{x^{2}+1} d A, \quad D=\{(x, y) \mid 0 \leq x \leq 4,0 \leq y \leq \sqrt{x}\} .
$$

(5) (textbook 15.2.23) Find the volume of the solid lying under the plane $3 x+2 y-z=0$ and above the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
(6) (textbook 15.2.59) Give upper and lower bounds for the value of the integral

$$
\iint_{S} \sqrt{4-x^{2} y^{2}} d A, \quad S=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, x \geq 0\right\}
$$

(7) (from an old exam) Evaluate the double integral

$$
\int_{0}^{1} \int_{x^{2}}^{1} e^{y^{3 / 2}} d y d x
$$

Note (since the typsetting might not be clear) that the exponent is the function $y^{3 / 2}$.

2. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left(^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

