MATH 53 DISCUSSION SECTION ANSWERS - 3/9/23

JAMES ROWAN

1. Double integrals over general regions

(1) True/false practice:
(a) The iterated integral

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}-y^{2}} d y d x
$$

will give us the volume of the top hemisphere of a sphere of radius 1 .
True. The graph of the function $z=\sqrt{1-x^{2}-y^{2}}$ gives the top hemisphere of the sphere of radius 1 centered at the origin. The region $-1 \leq x \leq 1,-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}$ is the unit disc in the $x y$-plane, so we are finding the volume between the top of a sphere of radius 1 and the plane slicing the sphere in half through its equator.
(b) If we need to find a double integral over a region that is of neither type I nor type II, there is still hope.

True. We can split our region into a number of smaller regions, each of which is of type I or type II; the integral over the whole region will be the sum of the integrals over the smaller regions.
(2) Describe the following regions in the plane as i) a type I region and ii) a type II region:
(a) The region above the parabola $y=x^{2}$ and below the line $y=1$.

The parabola and the line intersect at the points $(-1,1)$ and $(1,1)$, and in the region between them the parabola is below the line. Viewed as a type I region, this region is the set of points where $-1 \leq x \leq 1$ and $x^{2} \leq y \leq 1$.
The range of possible y values is from 0 (at the point $(0,0)$) to 1 at the top line. At any given value of y, the largest x can be is \sqrt{y} and the smallest x can be is $-\sqrt{y}$, so viewed as a type II region, this region is the set of points where $0 \leq y \leq 1$ and $-\sqrt{y} \leq x \leq \sqrt{y}$.
(b) The region between the line $y=2 x$ and the x-axis for x between 0 and 1 .

The x-axis is the line $y=0$. Viewed as a type I region, this is the region $0 \leq x \leq 1$ and $0 \leq y \leq 2 x$.
The values of y in this region range from 0 (along the x-axis) to 2 (at the point $(1,2)$ at the upper-right corner). For a given value of y, the smallest x can be is $\frac{y}{2}$, and the largest x can be is 1 , so viewed as a type II region this region is the region $0 \leq y \leq 2, \frac{y}{2} \leq x \leq 1$.
(c) The region inside the circle with radius 1 and center $(1,2)$.

The smallest and largest values of x are -1 and 1 , and the smallest and largest values of y are -1 and 1. Viewed as a type I region, this region is $-1 \leq x \leq 1,-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}$. Viewed as a type II region, this region is $-1 \leq y \leq 1,-\sqrt{1-y^{2}} \leq x \leq \sqrt{1-y^{2}}$.
The symmetry between these expressions shouldn't be surprising, as the circle is a very symmetrical object. We will see in the Friday $3 / 13$ lecture a better way of setting up this integral.
(3) Evaluate the iterated integral

$$
\int_{0}^{1} \int_{0}^{y} x e^{y^{3}} d x d y
$$

and sketch the domain of integration. What would happen if you tried to do the integral in the other order?

The domain of integration is a triangle (see the Zoom whiteboard pictures for details).
We have

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{y} x e^{y^{3}} d x d y & =\int_{0}^{1} e^{y^{3}} \int_{0}^{y} x d x d y \\
& =\left.\int_{0}^{1} e^{y^{3}} \frac{x^{2}}{2}\right|_{0} ^{y} d y \\
& =\int_{0}^{1} \frac{y^{2}}{2} e^{y^{3}} d y \\
& =\int_{0}^{1} \frac{1}{6} e^{u} d u \\
& =\frac{1}{6}(e-1)
\end{aligned}
$$

where we make the substitution $u=y^{3}, d u=3 y^{2} d y$.
Trying this integral in the other order, we would have $\int_{0}^{1} \int_{x}^{1} e^{y^{3}} d y d x$; the function $e^{y^{3}}$ does not have an elementary antiderivative we can write down, so this order is impossible, and we have to use the given order.
(4) Evaluate the double integral

$$
\iint_{D} \frac{y}{x^{2}+1} d A, \quad D=\{(x, y) \mid 0 \leq x \leq 4,0 \leq y \leq \sqrt{x}\}
$$

The given description of the region is as a type I region, so we could set up our integral as

$$
\int_{0}^{4} \int_{0}^{\sqrt{x}} \frac{y}{x^{2}+1} d y d x
$$

This order seems fine computationally, so we go ahead and compute:

$$
\begin{aligned}
\int_{0}^{4} \int_{0}^{\sqrt{x}} \frac{y}{x^{2}+1} d y d x & =\int_{0}^{4} \frac{1}{x^{2}+1} \int_{0}^{\sqrt{x}} y d y d x \\
& =\left.\int_{0}^{4} \frac{1}{x^{2}+1} \frac{y^{2}}{2}\right|_{0} ^{\sqrt{x}} d x \\
& =\int_{0}^{4} \frac{1}{2} \cdot \frac{x}{x^{2}+1} d x \\
& =\int_{1}^{17} \frac{1}{4 u} d u \\
& =\frac{1}{4} \ln (17)
\end{aligned}
$$

where we made the substitution $u=x^{2}+1, d u=2 x d x$.
(5) Find the volume of the solid lying under the plane $3 x+2 y-z=0$ and above the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.

This volume is given by the integral of $3 x+2 y$ over the reigon in the $x y$-plane between these two parabolas. We see that the parabolas intersect at $(0,0)$ and $(1,1)$, and that between $x=0$ and $x=1, \sqrt{x}>x^{2}$, so we can set up our integral as follows (see the Zoom whiteboard pictures for a sketch):

$$
\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(3 x+2 y) d y d x
$$

We have

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(3 x+2 y) d y d x & =\int_{0}^{1} 3 x y+\left.y^{2}\right|_{x^{2}} ^{\sqrt{x}} d x \\
& =\int_{0}^{1}\left(3 x^{3 / 2}-3 x^{3}+x-x^{4}\right) d x \\
& =\frac{6}{5} x^{5 / 2}-\frac{3}{4} x^{4}+\frac{1}{2} x^{2}-\left.\frac{1}{5} x^{5}\right|_{0} ^{1} \\
& =\frac{3}{4}
\end{aligned}
$$

(6) Give upper and lower bounds for the value of the integral

$$
\iint_{S} \sqrt{4-x^{2} y^{2}} d A, \quad S=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, x \geq 0\right\}
$$

We use the fact that

$$
\operatorname{Area}(D) \min _{D} f(x, y) \leq \iint_{D} f(x, y) d A \leq \operatorname{Area}(D) \min _{D} f(x, y)
$$

Our region is one-half of a disc of area 1 , so it has area $\frac{\pi}{2}$. The largest values $f(x, y)=\sqrt{4-x^{2} y^{2}}$ takes on in region is 2 , at the point $(0,0)$, while the smallest value it takes on is $\sqrt{15} 2$, at the point $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$. This means we have

$$
\frac{\pi \sqrt{15}}{4} \leq \iint_{S} \sqrt{4-x^{2} y^{2}} d A \leq \pi
$$

These bounds are approximately 3.04 and 3.14 , and the actual value for the integral is around 3.12; note that while this integral is impossible for us to compute directly, we were able to make a decent estimate. Using the properties of the function and its partial derivatives to justify that a certain kind of Riemann sum (lower-left corner, say) is guaranteed to be an underestimate always is
(7) Evaluate the double integral

$$
\int_{0}^{1} \int_{x^{2}}^{1} e^{y^{3 / 2}} d y d x
$$

Note (since the typsetting might not be clear) that the exponent is the function $y^{3 / 2}$.
We see that we are trying to integrate $e^{y^{3 / 2}}$ with respect to y as the inner integral here; this is a classic problem type where we will want to change the order of integration, since this function has no elementary antiderivative we can write down. The region $0 \leq x \leq 1, x^{2} \leq y \leq 1$ can be expressed as a type II region (i.e. with the other order of integration) as $0 \leq y \leq 1,0 \leq x \leq \sqrt{y}$; see the Zoom whiteboard pictures for a sketch of this situation. We have

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{2}}^{1} e^{y^{3 / 2}} d y d x & =\int_{0}^{1} \int_{0}^{\sqrt{y}} e^{y^{3 / 2}} d x d y \\
& =\left.\int_{0}^{1} x e^{y^{3 / 2}}\right|_{0} ^{\sqrt{y}} d y \\
& =\int_{0}^{1} y^{1 / 2} e^{y^{3 / 2}} d y \\
& =\int_{0}^{1} \frac{2}{3} e^{u} d u \\
& =\frac{2}{3}(e-1)
\end{aligned}
$$

where we made the substitution $u=y^{3 / 2}, d u=\frac{3}{2} y^{1 / 2} d y$.

When James gave this as a midterm problem in the summer of 2018, a few students tried changing the order of integration on part (b) by writing $\int_{x^{2}}^{1} \int_{0}^{1} e^{y^{3 / 2}} d x d y$; you always want your outermost bounds to be a pair of constants.

