MATH 53 DISCUSSION SECTION PROBLEMS - 3/7/23

1. LaGRange multipliers

(1) True/false practice:
(a) When using Lagrange multipliers to find the maximum of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$, we always get a system of linear equations in x, y, z, λ which we will immediately know how to solve.
(b) The geometric intuition behind the method of Lagrange multipliers is that the maximum and minimum values of $f(x, y, z)$ subject to the constraint $g(x, y, z)=k$, if they exist, should correspond to the points where the level surfaces of f are tangent to the constraint surface $g(x, y, z)=k$.
(2) (textbook 14.8.5) Given that the extreme value problem has a solution with both a maximum value and a minimum value, use Lagrange multipliers to find the extreme values of $f(x, y)=x y$ subject to the constraint $4 x^{2}+y^{2}=8$.
(3) (textbook 14.8.21) Find the extreme values of $f(x, y)=x^{2}+y^{2}+4 x-4 y$ on the region $x^{2}+y^{2} \leq 9$.
(4) $\left(\left(^{*}\right)\right.$, textbook 14.8.49) Find the maximum value of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sqrt[n]{x_{1} x_{2} \cdots x_{n}}$ given that $x_{1}, x_{2}, \ldots, x_{n}$ are positive numbers and $x_{1}+x_{2}+\cdots+x_{n}=n$. Why does this imply that for all positive numbers $x_{1}, x_{2}, \ldots, x_{n}$,

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n} ?
$$

When does equality hold?

2. Double integrals over rectangles

(5) True/false practice:
(a) Analogous to the midpoint rule for approximating integrals of functions of one variable, we have a midpoint rule for approximating double integrals.
(b) When expressing a double integral of a continuous function $f(x, y)$ over a rectangular region R of the form $\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$ as an iterated integral, we do get to make at least one choice that could make our lives easier.
(c) $\int_{0}^{1} \int_{0}^{x} e^{x y} d x d y$ is a valid iterated integral to write down.
(6) (textbook 15.1.3) Estimate $\iint_{R} x e^{-x y} d A$, where $R=[0,2] \times[0,1]$ by using a Riemann sum with $m=n=2$ and using upper-right corners. Then estimate it again using the midpoint rule.
(7) (textbook 15.1.23) Evaluate the double integral

$$
\int_{0}^{3} \int_{0}^{\pi / 2} t^{2} \sin ^{3} \phi d \phi d t
$$

(8) (textbook 15.1.43) Find the volume of the solid enclosed by the paraboloid $z=2+x^{2}+(y-2)^{2}$ and the planes $z=1, x=1, x=-1, y=0$, and $y=4$.
(9) (textbook 15.1.49) Evaluate the double integral

$$
\iint_{R} \frac{x y}{1+x^{4}} d A, \quad R=\{(x, y) \mid-1 \leq x \leq 1,0 \leq y \leq 1\}
$$

3. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

