
MATH 53 DISCUSSION SECTION SOLUTIONS – 3/7/23

JAMES ROWAN

1. Lagrange multipliers

(1) True/false practice:
(a) When using Lagrange multipliers to find the maximum of f(x, y, z) subject to the constraint

g(x, y, z) = k, we always get a system of linear equations in x, y, z, λ which we will immediately
know how to solve.

False. We often get a nonlinear system of equations, and there’s no general approach to solving
these. Common tactics for solving these include trying to solve for one variable in one equation
and then substitute this into another equation and adding/subtracting multiples of the first two
equations to get something simpler.

(b) The geometric intuition behind the method of Lagrange multipliers is that the maximum and
minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k, if they exist, should
correspond to the points where the level surfaces of f are tangent to the constraint surface
g(x, y, z) = k.

True. Just as ∇f is perpendicular to the level curves for a two-variable function f(x, y), ∇f
is perpendicular to the level surfaces of a three-variable function f(x, y, z), so the Lagrange
multiplier system in three variables is coming from this “tangent level surfaces” idea as well.

(2) (textbook 14.8.5) Given that the extreme value problem has a solution with both a maximum
value and a minimum value, use Lagrange multipliers to find the extreme values of f(x, y) = xy
subject to the constraint 4x2 + y2 = 8.

Our constraint curve is g(x, y) = 4x2 + y2 = 8. We have ∇f = 〈y, x〉 and ∇g = 〈8x, 2y〉. Our
Lagrange multiplier system is:

y = 8λx(1)

x = 2λy(2)

4x2 + y2 = 8.(3)

We plug equation (2) into equation (1) to get

y = 8λ(2λy),

or, equivalently, y = 16λ2y. This tells us that either y = 0 or 16λ2 = 1.
If y = 0, equation (3) (the constraint) tells us that x = ±

√
2. This means that (

√
2, 0) and

(−
√

2, 0) are possible locations for the maximum and minimum subject to the constraint.
If 16λ2 = 1, we know that λ = ± 1

4 .

If λ = 1
4 , equation (1) becomes y = 2x. Plugging this into equation (3), we have 4x2 + (2x)2 = 8,

or, equivalently, 8x2 = 8. This gives x = ±1. This means that (1, 2) and (−1,−2) are possible
locations for the maximum and minimum subject to the constraint.

If λ = − 1
4 , equation (1) becomes y = −2x. Plugging this into equation (3), we have 4x2+(−2x)2 =

8, or, equivalently, 8x2 = 8. This gives x = ±1. This means that (1,−2) and (−1, 2) are possible
locations for the maximum and minimum subject to the constraint.

Comparing the values of f(x, y) = xy at these six candidate points, we see that we attain a
maximum of 2 at the points (1, 2) and (−1,−2) and a minimum of −2 at the points (−1, 2) and
(1,−2).
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(3) (textbook 14.8.21) Find the extreme values of f(x, y) = x2+y2+4x−4y on the region x2+y2 ≤ 9.

This region is a closed disk of radius 3 in the plane, so it is closed and bounded, and we know
the extreme values will exist. There are two places to check: any interior critical points and the
boundary.
∇f = 〈2x+ 4, 2y − 4〉, so the critical points of f are the solutions to the system

2x+ 4 = 0(4)

2y − 4 = 0.(5)

We see that there is only one critical point for f , (−2, 2). At this point f = −8; we will compare
this to the solutions we get from the Lagrange multiplier system on the boundary.

The boundary is the level curve x2 + y2 = 9. With g(x, y) = x2 + y2, we set up our lagrange
multiplier system:

2x+ 4 = λ2x(6)

2y − 4 = λ2y(7)

x2 + y2 = 9.(8)

Adding the first two equations, we get 2x + 2y = λ(2x + 2y), so either 2x + 2y = 0 or λ = 1. If
λ = 1, then equation (1) becomes 2x+ 4 = 2x, which never holds, so we can’t have λ = 1. We must
have 2x+ 2y = 0, i.e. that y = −x. Plugging this into equation (3), we get x2 + (−x)2 = 9, so that

x = ± 3
√
2

2 . At
(

3
√
2

2 ,− 3
√
2

2

)
, f = 9 + 12

√
2. At

(
− 3
√
2

2 , 3
√
2

2

)
. f = 9− 12

√
2.

Comparing our three candidate points, we see that we have an absolute minimum of −8 at (−2, 2)

and an absolute maximum of 9 + 12
√

2 at
(

3
√
2

2 ,− 3
√
2

2

)
.

(4) ((*), textbook 14.8.49) Find the maximum value of f(x1, x2, . . . , xn) = n
√
x1x2 · · ·xn given that

x1, x2, . . . , xn are positive numbers and x1 + x2 + · · · + xn = n. Why does this imply that for all
positive numbers x1, x2, . . . , xn,

n
√
x1x2 · · ·xn ≤

x1 + x2 + · · ·+ xn
n

?

When does equality hold?

The Lagrange multiplier system is

1

n
(x2x3 · · ·xn)(x1x2 · · ·xn)

1
n−1 = λ(9)

1

n
(x1x3 · · ·xn)(x1x2 · · ·xn)

1
n−1 = λ(10)

... =
...(11)

1

n
(x1x2 · · ·xn−1)(x1x2 · · ·xn)

1
n−1 = λ(12)

x1 + x2 + · · ·+ xn = n.(13)

When we solve this system (noting that the first n equations are symmetric), we find that the
only solution occurs when x1 = x2 = · · · = xn = 1. Testing some other point (say, when all the xi
except xn are 10−100 and xn is n− (n− 1)10100, we see that other points on the constraint surface
give smaller values of f ,so the maximum value of f(x1, x2, . . . , xn) is 1.

Given any positive numbers x1, x2, . . . , xn whose sum is some positive number S, we can run the
same argument and see that the maximum value of n

√
x1x2 · · ·xn is x1+x2+···+xn

n , with equality only
when all the xi are equal.

2. Double integrals over rectangles

(5) True/false practice:
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(a) Analogous to the midpoint rule for approximating integrals of functions of one variable, we have
a midpoint rule for approximating double integrals.

True. We use the midpoint of each of the subrectangles we’ve divided the region into as the
sample point.

(b) When expressing a double integral of a continuous function f(x, y) over a rectangular region R
of the form {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d} as an iterated integral, we do get to make at least one
choice that could make our lives easier.

True. We can pick the order of integration, which can often simplify the integration.

(c)
∫ 1

0

∫ x
0
exydxdy is a valid iterated integral to write down.

False. We can’t use x as both the bound and the variable of integration for the inner integral
here; the bounds on the inner integral need to look like constants from the perspective of x.

(6) (textbook 15.1.3) Estimate
∫ ∫

R
xe−xydA, where R = [0, 2]× [0, 1] by using a Riemann sum with

m = n = 2 and using upper-right corners. Then estimate it again using the midpoint rule.

For upper-right corners, our sample points are (1, 0.5), (1, 1), (2, 0.5), and (2, 1). The area of each
rectangle is 0.5. Some computation gives an approximate answer of 0.99.

For midpoints, our sample points are (0.5, 0.25), (0.5, 0.75), (1.5, 0.25), and (1.5, 0.75). The area
of each rectangle is 0.5. Some computation gives an approximate answer of 1.15.

(7) (textbook 15.1.23) Evaluate the double integral∫ 3

0

∫ π/2

0

t2 sin3 φdφdt.

Writing the inner integral as
∫ pi/2
0

(1− cos2 φ) sinφdφ, we make the substitution u = cosφ, du =

− sinφdφ. The inner integral becomes
∫ 1

0
(1 − u2)du, which is 2

3 . The full iterated integral is thus∫ 3

0
t2 · 23dt, which is 6.

(8) (textbook 15.1.43) Find the volume of the solid enclosed by the paraboloid z = 2 + x2 + (y − 2)2

and the planes z = 1, x = 1, x = −1, y = 0, and y = 4.
The volume underneath the paraboloid 2 + x2 + (y − 2)2 bounded by the four planes x = 1,

x = −1, y = 0, and y = 4 is ∫ 1

−1

∫ 4

0

(
2 + x2 + (y − 2)2

)
dydx,

which is 88
3 However, the volume between the xy-plane and the plane z = 1 is the volume of a

rectangular prism with side lengths 2, 4, and 1, which is 8. The volume of the solid enclosed by the
paraboloid z = 2 + x2 + (y − 2)2 and the planes z = 1, x = 1, x = −1, y = 0, and y = 4 is thus
88
3 − 8 = 64

3 .
(9) (textbook 15.1.49) Evaluate the double integral∫∫

R

xy

1 + x4
dA, R = {(x, y)| − 1 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

We exploit symmetry: our region of integration is symmetric about the y-axis, and our integrand
is odd in the x variable (i.e. f(−x, y) = −f(x, y)). This means that the positive contributions from
the x > 0 portion of R are exactly cancelled by the negative contributions from the x < 0 portion of
R, and we get a final answer of 0. Note that checking for symmetry of the region/integrand is a useful
strategy for dealing with difficult or annoying integrands in cases where the region of integration is
nice.
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3. Notes

All problems labeled “textbook” come from Stewart, James, Multivariable Calculus: Math 53 at UC
Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked (*) are challenge problems, with problems marked (**) especially challenging problems.


