MATH 53 DISCUSSION SECTION PROBLEMS - 3/23/23

1. Triple integrals in polar coordinates

(1) (textbook 15.8.13) Sketch the solid described by the inequalities $2 \leq \rho \leq 4,0 \leq \phi \leq \frac{\pi}{3}, 0 \leq \theta \leq \pi$.
(2) (textbook 15.8.41) Evaluate the integral $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} x y d z d y d x$.
(3) (textbook 15.8.21) Evaluate $\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} d V$, where B is the ball with center the origin and radius 5 .
(4) (an old quiz) Consider the solid region E bounded by the $x y$-plane and the paraboloid $z=$ $16-x^{2}-y^{2}$. What is the average height of a point in E above the $x y$-plane?
(5) (an old quiz) Using a triple integral, find the volume of the portion of the sphere of radius 2 centered at the origin lying between the cones $z=\sqrt{x^{2}+y^{2}}$ and $z=\sqrt{3 x^{2}+3 y^{2}}$ and above the $x y$-plane.
(6) (an old quiz) Using a triple integral, find the volume of the region lying above the cone $z=$ $\sqrt{x^{2}+y^{2}}$ and below the surface $z=\sqrt{4-x^{2}-y^{2}}$.
(7) (*) What would an analogue of spherical polar coordinates for four-dimensional space look like? What would be the "hypervolume element" (i.e. the $d V=d x d y d z d w$) be for spherical polar coordinates in four dimensions?

2. Notes

Original author: James Rowan.
All problems labeled "textbook" come from Stewart, James, Multivariable Calculus: Math 53 at UC Berkeley, 8th Edition, Cengage Learning, 2016.

Problems marked $\left({ }^{*}\right)$ are challenge problems, with problems marked $\left({ }^{* *}\right)$ especially challenging problems.

